4539 lines
246 KiB
Plaintext
4539 lines
246 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "84b6e27e-4bda-4d38-8689-ec7fc0da1848",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Define segment and predict sales associated"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "ec059482-45d3-4ae6-99bc-9b4ced115db3",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Importations of packages "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 97,
|
|||
|
"id": "9771bf29-d08e-4674-8c23-9a2672fbef8f",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import pandas as pd\n",
|
|||
|
"import numpy as np\n",
|
|||
|
"import os\n",
|
|||
|
"import s3fs\n",
|
|||
|
"import re\n",
|
|||
|
"from sklearn.linear_model import LogisticRegression\n",
|
|||
|
"from sklearn.ensemble import RandomForestClassifier\n",
|
|||
|
"from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, recall_score\n",
|
|||
|
"from sklearn.utils import class_weight\n",
|
|||
|
"from sklearn.neighbors import KNeighborsClassifier\n",
|
|||
|
"from sklearn.pipeline import Pipeline\n",
|
|||
|
"from sklearn.compose import ColumnTransformer\n",
|
|||
|
"from sklearn.preprocessing import OneHotEncoder\n",
|
|||
|
"from sklearn.impute import SimpleImputer\n",
|
|||
|
"from sklearn.model_selection import GridSearchCV\n",
|
|||
|
"from sklearn.preprocessing import StandardScaler, MaxAbsScaler, MinMaxScaler\n",
|
|||
|
"from sklearn.metrics import make_scorer, f1_score, balanced_accuracy_score\n",
|
|||
|
"import seaborn as sns\n",
|
|||
|
"import matplotlib.pyplot as plt\n",
|
|||
|
"from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score\n",
|
|||
|
"from sklearn.exceptions import ConvergenceWarning, DataConversionWarning\n",
|
|||
|
"from sklearn.naive_bayes import GaussianNB\n",
|
|||
|
"from scipy.optimize import fsolve\n",
|
|||
|
"\n",
|
|||
|
"import pickle\n",
|
|||
|
"import warnings"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "048fcd7c-800a-4a6b-b725-faf8410f924a",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## load databases"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "539ccbdf-f29f-4f04-99c1-8c88d0efe514",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# Create filesystem object\n",
|
|||
|
"S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n",
|
|||
|
"fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "0c3a6ddc-9345-4a42-b6bf-a20a95de3028",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def load_train_test():\n",
|
|||
|
" BUCKET = \"projet-bdc2324-team1/Generalization/sport\"\n",
|
|||
|
" File_path_train = BUCKET + \"/Train_set.csv\"\n",
|
|||
|
" File_path_test = BUCKET + \"/Test_set.csv\"\n",
|
|||
|
" \n",
|
|||
|
" with fs.open( File_path_train, mode=\"rb\") as file_in:\n",
|
|||
|
" dataset_train = pd.read_csv(file_in, sep=\",\")\n",
|
|||
|
" # dataset_train['y_has_purchased'] = dataset_train['y_has_purchased'].fillna(0)\n",
|
|||
|
"\n",
|
|||
|
" with fs.open(File_path_test, mode=\"rb\") as file_in:\n",
|
|||
|
" dataset_test = pd.read_csv(file_in, sep=\",\")\n",
|
|||
|
" # dataset_test['y_has_purchased'] = dataset_test['y_has_purchased'].fillna(0)\n",
|
|||
|
" \n",
|
|||
|
" return dataset_train, dataset_test"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "2831d546-b365-498b-8248-c618bd9c3057",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"dataset_train, dataset_test = load_train_test()\n",
|
|||
|
"dataset_train.isna().sum()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 85,
|
|||
|
"id": "b8827f7b-b304-4f51-9814-c7a98ed88cf0",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def features_target_split(dataset_train, dataset_test):\n",
|
|||
|
" \n",
|
|||
|
" features_l = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max', \n",
|
|||
|
" 'time_between_purchase', 'nb_tickets_internet', 'fidelity', 'is_email_true', 'opt_in', #'is_partner',\n",
|
|||
|
" 'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened']\n",
|
|||
|
"\n",
|
|||
|
" # we suppress fidelity, time between purchase, and gender other (colinearity issue)\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" features_l = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', \n",
|
|||
|
" 'purchase_date_min', 'purchase_date_max', 'nb_tickets_internet', 'is_email_true', \n",
|
|||
|
" 'opt_in', 'gender_female', 'gender_male', 'nb_campaigns', 'nb_campaigns_opened']\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" \n",
|
|||
|
" X_train = dataset_train[features_l]\n",
|
|||
|
" y_train = dataset_train[['y_has_purchased']]\n",
|
|||
|
"\n",
|
|||
|
" X_test = dataset_test[features_l]\n",
|
|||
|
" y_test = dataset_test[['y_has_purchased']]\n",
|
|||
|
" return X_train, X_test, y_train, y_test"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 86,
|
|||
|
"id": "c18195fc-ed40-4e39-a59e-c9ecc5a8e6c3",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Shape train : (224213, 17)\n",
|
|||
|
"Shape test : (96096, 17)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_train, X_test, y_train, y_test = features_target_split(dataset_train, dataset_test)\n",
|
|||
|
"print(\"Shape train : \", X_train.shape)\n",
|
|||
|
"print(\"Shape test : \", X_test.shape)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "74eda066-5e01-43aa-b0cf-cc6d9bbf770e",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## get results from the logit cross validated model"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 87,
|
|||
|
"id": "7c81390e-598c-4f02-bd56-dd03b00dcb33",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>nb_tickets</th>\n",
|
|||
|
" <th>nb_purchases</th>\n",
|
|||
|
" <th>total_amount</th>\n",
|
|||
|
" <th>nb_suppliers</th>\n",
|
|||
|
" <th>vente_internet_max</th>\n",
|
|||
|
" <th>purchase_date_min</th>\n",
|
|||
|
" <th>purchase_date_max</th>\n",
|
|||
|
" <th>time_between_purchase</th>\n",
|
|||
|
" <th>nb_tickets_internet</th>\n",
|
|||
|
" <th>fidelity</th>\n",
|
|||
|
" <th>is_email_true</th>\n",
|
|||
|
" <th>opt_in</th>\n",
|
|||
|
" <th>gender_female</th>\n",
|
|||
|
" <th>gender_male</th>\n",
|
|||
|
" <th>gender_other</th>\n",
|
|||
|
" <th>nb_campaigns</th>\n",
|
|||
|
" <th>nb_campaigns_opened</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>100.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>55.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>17.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>80.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>120.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>34.0</td>\n",
|
|||
|
" <td>2.0</td>\n",
|
|||
|
" <td>416.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>478.693148</td>\n",
|
|||
|
" <td>115.631470</td>\n",
|
|||
|
" <td>363.061678</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96091</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>67.31</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>278.442257</td>\n",
|
|||
|
" <td>278.442257</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>15.0</td>\n",
|
|||
|
" <td>5.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96092</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>61.41</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>189.207373</td>\n",
|
|||
|
" <td>189.207373</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>12.0</td>\n",
|
|||
|
" <td>9.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96093</th>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.00</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>-1.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>29.0</td>\n",
|
|||
|
" <td>3.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96094</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>79.43</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>279.312905</td>\n",
|
|||
|
" <td>279.312905</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>20.0</td>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96095</th>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.00</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>-1.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>31.0</td>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>96096 rows × 17 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" nb_tickets nb_purchases total_amount nb_suppliers \\\n",
|
|||
|
"0 4.0 1.0 100.00 1.0 \n",
|
|||
|
"1 1.0 1.0 55.00 1.0 \n",
|
|||
|
"2 17.0 1.0 80.00 1.0 \n",
|
|||
|
"3 4.0 1.0 120.00 1.0 \n",
|
|||
|
"4 34.0 2.0 416.00 1.0 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 1.0 1.0 67.31 1.0 \n",
|
|||
|
"96092 1.0 1.0 61.41 1.0 \n",
|
|||
|
"96093 0.0 0.0 0.00 0.0 \n",
|
|||
|
"96094 1.0 1.0 79.43 1.0 \n",
|
|||
|
"96095 0.0 0.0 0.00 0.0 \n",
|
|||
|
"\n",
|
|||
|
" vente_internet_max purchase_date_min purchase_date_max \\\n",
|
|||
|
"0 0.0 5.177187 5.177187 \n",
|
|||
|
"1 0.0 426.265613 426.265613 \n",
|
|||
|
"2 0.0 436.033437 436.033437 \n",
|
|||
|
"3 0.0 5.196412 5.196412 \n",
|
|||
|
"4 0.0 478.693148 115.631470 \n",
|
|||
|
"... ... ... ... \n",
|
|||
|
"96091 1.0 278.442257 278.442257 \n",
|
|||
|
"96092 1.0 189.207373 189.207373 \n",
|
|||
|
"96093 0.0 550.000000 550.000000 \n",
|
|||
|
"96094 1.0 279.312905 279.312905 \n",
|
|||
|
"96095 0.0 550.000000 550.000000 \n",
|
|||
|
"\n",
|
|||
|
" time_between_purchase nb_tickets_internet fidelity is_email_true \\\n",
|
|||
|
"0 0.000000 0.0 1 True \n",
|
|||
|
"1 0.000000 0.0 2 True \n",
|
|||
|
"2 0.000000 0.0 2 True \n",
|
|||
|
"3 0.000000 0.0 1 True \n",
|
|||
|
"4 363.061678 0.0 4 True \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 0.000000 1.0 2 True \n",
|
|||
|
"96092 0.000000 1.0 1 True \n",
|
|||
|
"96093 -1.000000 0.0 1 True \n",
|
|||
|
"96094 0.000000 1.0 1 True \n",
|
|||
|
"96095 -1.000000 0.0 2 True \n",
|
|||
|
"\n",
|
|||
|
" opt_in gender_female gender_male gender_other nb_campaigns \\\n",
|
|||
|
"0 False 1 0 0 0.0 \n",
|
|||
|
"1 True 0 1 0 0.0 \n",
|
|||
|
"2 True 1 0 0 0.0 \n",
|
|||
|
"3 False 1 0 0 0.0 \n",
|
|||
|
"4 False 1 0 0 0.0 \n",
|
|||
|
"... ... ... ... ... ... \n",
|
|||
|
"96091 False 0 1 0 15.0 \n",
|
|||
|
"96092 False 0 1 0 12.0 \n",
|
|||
|
"96093 True 1 0 0 29.0 \n",
|
|||
|
"96094 False 0 1 0 20.0 \n",
|
|||
|
"96095 False 0 1 0 31.0 \n",
|
|||
|
"\n",
|
|||
|
" nb_campaigns_opened \n",
|
|||
|
"0 0.0 \n",
|
|||
|
"1 0.0 \n",
|
|||
|
"2 0.0 \n",
|
|||
|
"3 0.0 \n",
|
|||
|
"4 0.0 \n",
|
|||
|
"... ... \n",
|
|||
|
"96091 5.0 \n",
|
|||
|
"96092 9.0 \n",
|
|||
|
"96093 3.0 \n",
|
|||
|
"96094 4.0 \n",
|
|||
|
"96095 4.0 \n",
|
|||
|
"\n",
|
|||
|
"[96096 rows x 17 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 87,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 75,
|
|||
|
"id": "c708f439-bb75-4688-bf4f-4c04e13deaae",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def load_model(type_of_activity, model):\n",
|
|||
|
" BUCKET = f\"projet-bdc2324-team1/Output_model/{type_of_activity}/{model}/\"\n",
|
|||
|
" filename = model + '.pkl'\n",
|
|||
|
" file_path = BUCKET + filename\n",
|
|||
|
" with fs.open(file_path, mode=\"rb\") as f:\n",
|
|||
|
" model_bytes = f.read()\n",
|
|||
|
"\n",
|
|||
|
" model = pickle.loads(model_bytes)\n",
|
|||
|
" return model"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 80,
|
|||
|
"id": "5261a803-05b8-41a0-968c-dc7bde48ddd3",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Exception ignored in: <function AbstractBufferedFile.__del__ at 0x7fe766001ee0>\n",
|
|||
|
"Traceback (most recent call last):\n",
|
|||
|
" File \"/opt/mamba/lib/python3.11/site-packages/fsspec/spec.py\", line 1952, in __del__\n",
|
|||
|
" self.close()\n",
|
|||
|
" File \"/opt/mamba/lib/python3.11/site-packages/fsspec/spec.py\", line 1929, in close\n",
|
|||
|
" if not self.forced:\n",
|
|||
|
" ^^^^^^^^^^^\n",
|
|||
|
"AttributeError: 'S3File' object has no attribute 'forced'\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<style>#sk-container-id-2 {\n",
|
|||
|
" /* Definition of color scheme common for light and dark mode */\n",
|
|||
|
" --sklearn-color-text: black;\n",
|
|||
|
" --sklearn-color-line: gray;\n",
|
|||
|
" /* Definition of color scheme for unfitted estimators */\n",
|
|||
|
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
|||
|
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
|||
|
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
|||
|
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
|||
|
" /* Definition of color scheme for fitted estimators */\n",
|
|||
|
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
|||
|
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
|||
|
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
|||
|
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
|||
|
"\n",
|
|||
|
" /* Specific color for light theme */\n",
|
|||
|
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
|||
|
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
|||
|
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
|||
|
" --sklearn-color-icon: #696969;\n",
|
|||
|
"\n",
|
|||
|
" @media (prefers-color-scheme: dark) {\n",
|
|||
|
" /* Redefinition of color scheme for dark theme */\n",
|
|||
|
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
|||
|
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
|||
|
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
|||
|
" --sklearn-color-icon: #878787;\n",
|
|||
|
" }\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 {\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 pre {\n",
|
|||
|
" padding: 0;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 input.sk-hidden--visually {\n",
|
|||
|
" border: 0;\n",
|
|||
|
" clip: rect(1px 1px 1px 1px);\n",
|
|||
|
" clip: rect(1px, 1px, 1px, 1px);\n",
|
|||
|
" height: 1px;\n",
|
|||
|
" margin: -1px;\n",
|
|||
|
" overflow: hidden;\n",
|
|||
|
" padding: 0;\n",
|
|||
|
" position: absolute;\n",
|
|||
|
" width: 1px;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-dashed-wrapped {\n",
|
|||
|
" border: 1px dashed var(--sklearn-color-line);\n",
|
|||
|
" margin: 0 0.4em 0.5em 0.4em;\n",
|
|||
|
" box-sizing: border-box;\n",
|
|||
|
" padding-bottom: 0.4em;\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-container {\n",
|
|||
|
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
|||
|
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
|||
|
" so we also need the `!important` here to be able to override the\n",
|
|||
|
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
|||
|
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
|||
|
" display: inline-block !important;\n",
|
|||
|
" position: relative;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-text-repr-fallback {\n",
|
|||
|
" display: none;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"div.sk-parallel-item,\n",
|
|||
|
"div.sk-serial,\n",
|
|||
|
"div.sk-item {\n",
|
|||
|
" /* draw centered vertical line to link estimators */\n",
|
|||
|
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
|||
|
" background-size: 2px 100%;\n",
|
|||
|
" background-repeat: no-repeat;\n",
|
|||
|
" background-position: center center;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Parallel-specific style estimator block */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-parallel-item::after {\n",
|
|||
|
" content: \"\";\n",
|
|||
|
" width: 100%;\n",
|
|||
|
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
|||
|
" flex-grow: 1;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-parallel {\n",
|
|||
|
" display: flex;\n",
|
|||
|
" align-items: stretch;\n",
|
|||
|
" justify-content: center;\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
" position: relative;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-parallel-item {\n",
|
|||
|
" display: flex;\n",
|
|||
|
" flex-direction: column;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-parallel-item:first-child::after {\n",
|
|||
|
" align-self: flex-end;\n",
|
|||
|
" width: 50%;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-parallel-item:last-child::after {\n",
|
|||
|
" align-self: flex-start;\n",
|
|||
|
" width: 50%;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-parallel-item:only-child::after {\n",
|
|||
|
" width: 0;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Serial-specific style estimator block */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-serial {\n",
|
|||
|
" display: flex;\n",
|
|||
|
" flex-direction: column;\n",
|
|||
|
" align-items: center;\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
" padding-right: 1em;\n",
|
|||
|
" padding-left: 1em;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
|||
|
"clickable and can be expanded/collapsed.\n",
|
|||
|
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
|||
|
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
|||
|
"*/\n",
|
|||
|
"\n",
|
|||
|
"/* Pipeline and ColumnTransformer style (default) */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-toggleable {\n",
|
|||
|
" /* Default theme specific background. It is overwritten whether we have a\n",
|
|||
|
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Toggleable label */\n",
|
|||
|
"#sk-container-id-2 label.sk-toggleable__label {\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: block;\n",
|
|||
|
" width: 100%;\n",
|
|||
|
" margin-bottom: 0;\n",
|
|||
|
" padding: 0.5em;\n",
|
|||
|
" box-sizing: border-box;\n",
|
|||
|
" text-align: center;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 label.sk-toggleable__label-arrow:before {\n",
|
|||
|
" /* Arrow on the left of the label */\n",
|
|||
|
" content: \"▸\";\n",
|
|||
|
" float: left;\n",
|
|||
|
" margin-right: 0.25em;\n",
|
|||
|
" color: var(--sklearn-color-icon);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Toggleable content - dropdown */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-toggleable__content {\n",
|
|||
|
" max-height: 0;\n",
|
|||
|
" max-width: 0;\n",
|
|||
|
" overflow: hidden;\n",
|
|||
|
" text-align: left;\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-toggleable__content.fitted {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-toggleable__content pre {\n",
|
|||
|
" margin: 0.2em;\n",
|
|||
|
" border-radius: 0.25em;\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-toggleable__content.fitted pre {\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
|||
|
" /* Expand drop-down */\n",
|
|||
|
" max-height: 200px;\n",
|
|||
|
" max-width: 100%;\n",
|
|||
|
" overflow: auto;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
|||
|
" content: \"▾\";\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Pipeline/ColumnTransformer-specific style */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Estimator-specific style */\n",
|
|||
|
"\n",
|
|||
|
"/* Colorize estimator box */\n",
|
|||
|
"#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-label label.sk-toggleable__label,\n",
|
|||
|
"#sk-container-id-2 div.sk-label label {\n",
|
|||
|
" /* The background is the default theme color */\n",
|
|||
|
" color: var(--sklearn-color-text-on-default-background);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* On hover, darken the color of the background */\n",
|
|||
|
"#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Label box, darken color on hover, fitted */\n",
|
|||
|
"#sk-container-id-2 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Estimator label */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-label label {\n",
|
|||
|
" font-family: monospace;\n",
|
|||
|
" font-weight: bold;\n",
|
|||
|
" display: inline-block;\n",
|
|||
|
" line-height: 1.2em;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-label-container {\n",
|
|||
|
" text-align: center;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Estimator-specific */\n",
|
|||
|
"#sk-container-id-2 div.sk-estimator {\n",
|
|||
|
" font-family: monospace;\n",
|
|||
|
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
|||
|
" border-radius: 0.25em;\n",
|
|||
|
" box-sizing: border-box;\n",
|
|||
|
" margin-bottom: 0.5em;\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-estimator.fitted {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* on hover */\n",
|
|||
|
"#sk-container-id-2 div.sk-estimator:hover {\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 div.sk-estimator.fitted:hover {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
|||
|
"\n",
|
|||
|
"/* Common style for \"i\" and \"?\" */\n",
|
|||
|
"\n",
|
|||
|
".sk-estimator-doc-link,\n",
|
|||
|
"a:link.sk-estimator-doc-link,\n",
|
|||
|
"a:visited.sk-estimator-doc-link {\n",
|
|||
|
" float: right;\n",
|
|||
|
" font-size: smaller;\n",
|
|||
|
" line-height: 1em;\n",
|
|||
|
" font-family: monospace;\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
" border-radius: 1em;\n",
|
|||
|
" height: 1em;\n",
|
|||
|
" width: 1em;\n",
|
|||
|
" text-decoration: none !important;\n",
|
|||
|
" margin-left: 1ex;\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
|||
|
" color: var(--sklearn-color-unfitted-level-1);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
".sk-estimator-doc-link.fitted,\n",
|
|||
|
"a:link.sk-estimator-doc-link.fitted,\n",
|
|||
|
"a:visited.sk-estimator-doc-link.fitted {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
|||
|
" color: var(--sklearn-color-fitted-level-1);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* On hover */\n",
|
|||
|
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
|||
|
".sk-estimator-doc-link:hover,\n",
|
|||
|
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
|||
|
".sk-estimator-doc-link:hover {\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
|||
|
" color: var(--sklearn-color-background);\n",
|
|||
|
" text-decoration: none;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
|||
|
".sk-estimator-doc-link.fitted:hover,\n",
|
|||
|
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
|||
|
".sk-estimator-doc-link.fitted:hover {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
|||
|
" color: var(--sklearn-color-background);\n",
|
|||
|
" text-decoration: none;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Span, style for the box shown on hovering the info icon */\n",
|
|||
|
".sk-estimator-doc-link span {\n",
|
|||
|
" display: none;\n",
|
|||
|
" z-index: 9999;\n",
|
|||
|
" position: relative;\n",
|
|||
|
" font-weight: normal;\n",
|
|||
|
" right: .2ex;\n",
|
|||
|
" padding: .5ex;\n",
|
|||
|
" margin: .5ex;\n",
|
|||
|
" width: min-content;\n",
|
|||
|
" min-width: 20ex;\n",
|
|||
|
" max-width: 50ex;\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
" box-shadow: 2pt 2pt 4pt #999;\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background: var(--sklearn-color-unfitted-level-0);\n",
|
|||
|
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
".sk-estimator-doc-link.fitted span {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background: var(--sklearn-color-fitted-level-0);\n",
|
|||
|
" border: var(--sklearn-color-fitted-level-3);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
".sk-estimator-doc-link:hover span {\n",
|
|||
|
" display: block;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 a.estimator_doc_link {\n",
|
|||
|
" float: right;\n",
|
|||
|
" font-size: 1rem;\n",
|
|||
|
" line-height: 1em;\n",
|
|||
|
" font-family: monospace;\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
" border-radius: 1rem;\n",
|
|||
|
" height: 1rem;\n",
|
|||
|
" width: 1rem;\n",
|
|||
|
" text-decoration: none;\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" color: var(--sklearn-color-unfitted-level-1);\n",
|
|||
|
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 a.estimator_doc_link.fitted {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
|||
|
" color: var(--sklearn-color-fitted-level-1);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* On hover */\n",
|
|||
|
"#sk-container-id-2 a.estimator_doc_link:hover {\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
|||
|
" color: var(--sklearn-color-background);\n",
|
|||
|
" text-decoration: none;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-2 a.estimator_doc_link.fitted:hover {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
|||
|
"}\n",
|
|||
|
"</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GridSearchCV(cv=3, error_score='raise',\n",
|
|||
|
" estimator=Pipeline(steps=[('preprocessor',\n",
|
|||
|
" ColumnTransformer(transformers=[('num',\n",
|
|||
|
" Pipeline(steps=[('scaler',\n",
|
|||
|
" StandardScaler())]),\n",
|
|||
|
" ['nb_tickets',\n",
|
|||
|
" 'nb_purchases',\n",
|
|||
|
" 'total_amount',\n",
|
|||
|
" 'nb_suppliers',\n",
|
|||
|
" 'vente_internet_max',\n",
|
|||
|
" 'purchase_date_min',\n",
|
|||
|
" 'purchase_date_max',\n",
|
|||
|
" 'time_between_purchase',\n",
|
|||
|
" 'nb_tickets_internet',\n",
|
|||
|
" 'nb_campaigns',\n",
|
|||
|
" 'nb_...\n",
|
|||
|
" 1.562500e-02, 3.125000e-02, 6.250000e-02, 1.250000e-01,\n",
|
|||
|
" 2.500000e-01, 5.000000e-01, 1.000000e+00, 2.000000e+00,\n",
|
|||
|
" 4.000000e+00, 8.000000e+00, 1.600000e+01, 3.200000e+01,\n",
|
|||
|
" 6.400000e+01]),\n",
|
|||
|
" 'LogisticRegression_cv__class_weight': ['balanced',\n",
|
|||
|
" {0.0: 0.5837086520288036,\n",
|
|||
|
" 1.0: 3.486549107420539}],\n",
|
|||
|
" 'LogisticRegression_cv__penalty': ['l1', 'l2']},\n",
|
|||
|
" scoring=make_scorer(recall_score, response_method='predict'))</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-9\" type=\"checkbox\" ><label for=\"sk-estimator-id-9\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> GridSearchCV<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.model_selection.GridSearchCV.html\">?<span>Documentation for GridSearchCV</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>GridSearchCV(cv=3, error_score='raise',\n",
|
|||
|
" estimator=Pipeline(steps=[('preprocessor',\n",
|
|||
|
" ColumnTransformer(transformers=[('num',\n",
|
|||
|
" Pipeline(steps=[('scaler',\n",
|
|||
|
" StandardScaler())]),\n",
|
|||
|
" ['nb_tickets',\n",
|
|||
|
" 'nb_purchases',\n",
|
|||
|
" 'total_amount',\n",
|
|||
|
" 'nb_suppliers',\n",
|
|||
|
" 'vente_internet_max',\n",
|
|||
|
" 'purchase_date_min',\n",
|
|||
|
" 'purchase_date_max',\n",
|
|||
|
" 'time_between_purchase',\n",
|
|||
|
" 'nb_tickets_internet',\n",
|
|||
|
" 'nb_campaigns',\n",
|
|||
|
" 'nb_...\n",
|
|||
|
" 1.562500e-02, 3.125000e-02, 6.250000e-02, 1.250000e-01,\n",
|
|||
|
" 2.500000e-01, 5.000000e-01, 1.000000e+00, 2.000000e+00,\n",
|
|||
|
" 4.000000e+00, 8.000000e+00, 1.600000e+01, 3.200000e+01,\n",
|
|||
|
" 6.400000e+01]),\n",
|
|||
|
" 'LogisticRegression_cv__class_weight': ['balanced',\n",
|
|||
|
" {0.0: 0.5837086520288036,\n",
|
|||
|
" 1.0: 3.486549107420539}],\n",
|
|||
|
" 'LogisticRegression_cv__penalty': ['l1', 'l2']},\n",
|
|||
|
" scoring=make_scorer(recall_score, response_method='predict'))</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-10\" type=\"checkbox\" ><label for=\"sk-estimator-id-10\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">estimator: Pipeline</label><div class=\"sk-toggleable__content fitted\"><pre>Pipeline(steps=[('preprocessor',\n",
|
|||
|
" ColumnTransformer(transformers=[('num',\n",
|
|||
|
" Pipeline(steps=[('scaler',\n",
|
|||
|
" StandardScaler())]),\n",
|
|||
|
" ['nb_tickets', 'nb_purchases',\n",
|
|||
|
" 'total_amount',\n",
|
|||
|
" 'nb_suppliers',\n",
|
|||
|
" 'vente_internet_max',\n",
|
|||
|
" 'purchase_date_min',\n",
|
|||
|
" 'purchase_date_max',\n",
|
|||
|
" 'time_between_purchase',\n",
|
|||
|
" 'nb_tickets_internet',\n",
|
|||
|
" 'nb_campaigns',\n",
|
|||
|
" 'nb_campaigns_opened']),\n",
|
|||
|
" ('cat',\n",
|
|||
|
" Pipeline(steps=[('onehot',\n",
|
|||
|
" OneHotEncoder(handle_unknown='ignore',\n",
|
|||
|
" sparse_output=False))]),\n",
|
|||
|
" ['opt_in', 'gender_male',\n",
|
|||
|
" 'gender_female'])])),\n",
|
|||
|
" ('LogisticRegression_cv',\n",
|
|||
|
" LogisticRegression(max_iter=5000, solver='saga'))])</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-11\" type=\"checkbox\" ><label for=\"sk-estimator-id-11\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> preprocessor: ColumnTransformer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.compose.ColumnTransformer.html\">?<span>Documentation for preprocessor: ColumnTransformer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>ColumnTransformer(transformers=[('num',\n",
|
|||
|
" Pipeline(steps=[('scaler', StandardScaler())]),\n",
|
|||
|
" ['nb_tickets', 'nb_purchases', 'total_amount',\n",
|
|||
|
" 'nb_suppliers', 'vente_internet_max',\n",
|
|||
|
" 'purchase_date_min', 'purchase_date_max',\n",
|
|||
|
" 'time_between_purchase',\n",
|
|||
|
" 'nb_tickets_internet', 'nb_campaigns',\n",
|
|||
|
" 'nb_campaigns_opened']),\n",
|
|||
|
" ('cat',\n",
|
|||
|
" Pipeline(steps=[('onehot',\n",
|
|||
|
" OneHotEncoder(handle_unknown='ignore',\n",
|
|||
|
" sparse_output=False))]),\n",
|
|||
|
" ['opt_in', 'gender_male', 'gender_female'])])</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-12\" type=\"checkbox\" ><label for=\"sk-estimator-id-12\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">num</label><div class=\"sk-toggleable__content fitted\"><pre>['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max', 'time_between_purchase', 'nb_tickets_internet', 'nb_campaigns', 'nb_campaigns_opened']</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-13\" type=\"checkbox\" ><label for=\"sk-estimator-id-13\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> StandardScaler<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.StandardScaler.html\">?<span>Documentation for StandardScaler</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>StandardScaler()</pre></div> </div></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-14\" type=\"checkbox\" ><label for=\"sk-estimator-id-14\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">cat</label><div class=\"sk-toggleable__content fitted\"><pre>['opt_in', 'gender_male', 'gender_female']</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-15\" type=\"checkbox\" ><label for=\"sk-estimator-id-15\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> OneHotEncoder<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.OneHotEncoder.html\">?<span>Documentation for OneHotEncoder</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>OneHotEncoder(handle_unknown='ignore', sparse_output=False)</pre></div> </div></div></div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-16\" type=\"checkbox\" ><label for=\"sk-estimator-id-16\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> LogisticRegression<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.linear_model.LogisticRegression.html\">?<span>Documentation for LogisticRegression</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>LogisticRegression(max_iter=5000, solver='saga')</pre></div> </div></div></div></div></div></div></div></div></div></div></div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"GridSearchCV(cv=3, error_score='raise',\n",
|
|||
|
" estimator=Pipeline(steps=[('preprocessor',\n",
|
|||
|
" ColumnTransformer(transformers=[('num',\n",
|
|||
|
" Pipeline(steps=[('scaler',\n",
|
|||
|
" StandardScaler())]),\n",
|
|||
|
" ['nb_tickets',\n",
|
|||
|
" 'nb_purchases',\n",
|
|||
|
" 'total_amount',\n",
|
|||
|
" 'nb_suppliers',\n",
|
|||
|
" 'vente_internet_max',\n",
|
|||
|
" 'purchase_date_min',\n",
|
|||
|
" 'purchase_date_max',\n",
|
|||
|
" 'time_between_purchase',\n",
|
|||
|
" 'nb_tickets_internet',\n",
|
|||
|
" 'nb_campaigns',\n",
|
|||
|
" 'nb_...\n",
|
|||
|
" 1.562500e-02, 3.125000e-02, 6.250000e-02, 1.250000e-01,\n",
|
|||
|
" 2.500000e-01, 5.000000e-01, 1.000000e+00, 2.000000e+00,\n",
|
|||
|
" 4.000000e+00, 8.000000e+00, 1.600000e+01, 3.200000e+01,\n",
|
|||
|
" 6.400000e+01]),\n",
|
|||
|
" 'LogisticRegression_cv__class_weight': ['balanced',\n",
|
|||
|
" {0.0: 0.5837086520288036,\n",
|
|||
|
" 1.0: 3.486549107420539}],\n",
|
|||
|
" 'LogisticRegression_cv__penalty': ['l1', 'l2']},\n",
|
|||
|
" scoring=make_scorer(recall_score, response_method='predict'))"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 80,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"logit_cv = load_model(\"sport\", \"LogisticRegression_cv\")\n",
|
|||
|
"logit_cv"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 81,
|
|||
|
"id": "6f3e584d-c70d-4b45-b947-4414ff416e17",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<style>#sk-container-id-3 {\n",
|
|||
|
" /* Definition of color scheme common for light and dark mode */\n",
|
|||
|
" --sklearn-color-text: black;\n",
|
|||
|
" --sklearn-color-line: gray;\n",
|
|||
|
" /* Definition of color scheme for unfitted estimators */\n",
|
|||
|
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
|||
|
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
|||
|
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
|||
|
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
|||
|
" /* Definition of color scheme for fitted estimators */\n",
|
|||
|
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
|||
|
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
|||
|
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
|||
|
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
|||
|
"\n",
|
|||
|
" /* Specific color for light theme */\n",
|
|||
|
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
|||
|
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
|||
|
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
|||
|
" --sklearn-color-icon: #696969;\n",
|
|||
|
"\n",
|
|||
|
" @media (prefers-color-scheme: dark) {\n",
|
|||
|
" /* Redefinition of color scheme for dark theme */\n",
|
|||
|
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
|||
|
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
|||
|
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
|||
|
" --sklearn-color-icon: #878787;\n",
|
|||
|
" }\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 {\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 pre {\n",
|
|||
|
" padding: 0;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 input.sk-hidden--visually {\n",
|
|||
|
" border: 0;\n",
|
|||
|
" clip: rect(1px 1px 1px 1px);\n",
|
|||
|
" clip: rect(1px, 1px, 1px, 1px);\n",
|
|||
|
" height: 1px;\n",
|
|||
|
" margin: -1px;\n",
|
|||
|
" overflow: hidden;\n",
|
|||
|
" padding: 0;\n",
|
|||
|
" position: absolute;\n",
|
|||
|
" width: 1px;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-dashed-wrapped {\n",
|
|||
|
" border: 1px dashed var(--sklearn-color-line);\n",
|
|||
|
" margin: 0 0.4em 0.5em 0.4em;\n",
|
|||
|
" box-sizing: border-box;\n",
|
|||
|
" padding-bottom: 0.4em;\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-container {\n",
|
|||
|
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
|||
|
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
|||
|
" so we also need the `!important` here to be able to override the\n",
|
|||
|
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
|||
|
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
|||
|
" display: inline-block !important;\n",
|
|||
|
" position: relative;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-text-repr-fallback {\n",
|
|||
|
" display: none;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"div.sk-parallel-item,\n",
|
|||
|
"div.sk-serial,\n",
|
|||
|
"div.sk-item {\n",
|
|||
|
" /* draw centered vertical line to link estimators */\n",
|
|||
|
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
|||
|
" background-size: 2px 100%;\n",
|
|||
|
" background-repeat: no-repeat;\n",
|
|||
|
" background-position: center center;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Parallel-specific style estimator block */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-parallel-item::after {\n",
|
|||
|
" content: \"\";\n",
|
|||
|
" width: 100%;\n",
|
|||
|
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
|||
|
" flex-grow: 1;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-parallel {\n",
|
|||
|
" display: flex;\n",
|
|||
|
" align-items: stretch;\n",
|
|||
|
" justify-content: center;\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
" position: relative;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-parallel-item {\n",
|
|||
|
" display: flex;\n",
|
|||
|
" flex-direction: column;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-parallel-item:first-child::after {\n",
|
|||
|
" align-self: flex-end;\n",
|
|||
|
" width: 50%;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-parallel-item:last-child::after {\n",
|
|||
|
" align-self: flex-start;\n",
|
|||
|
" width: 50%;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-parallel-item:only-child::after {\n",
|
|||
|
" width: 0;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Serial-specific style estimator block */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-serial {\n",
|
|||
|
" display: flex;\n",
|
|||
|
" flex-direction: column;\n",
|
|||
|
" align-items: center;\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
" padding-right: 1em;\n",
|
|||
|
" padding-left: 1em;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
|||
|
"clickable and can be expanded/collapsed.\n",
|
|||
|
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
|||
|
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
|||
|
"*/\n",
|
|||
|
"\n",
|
|||
|
"/* Pipeline and ColumnTransformer style (default) */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-toggleable {\n",
|
|||
|
" /* Default theme specific background. It is overwritten whether we have a\n",
|
|||
|
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Toggleable label */\n",
|
|||
|
"#sk-container-id-3 label.sk-toggleable__label {\n",
|
|||
|
" cursor: pointer;\n",
|
|||
|
" display: block;\n",
|
|||
|
" width: 100%;\n",
|
|||
|
" margin-bottom: 0;\n",
|
|||
|
" padding: 0.5em;\n",
|
|||
|
" box-sizing: border-box;\n",
|
|||
|
" text-align: center;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 label.sk-toggleable__label-arrow:before {\n",
|
|||
|
" /* Arrow on the left of the label */\n",
|
|||
|
" content: \"▸\";\n",
|
|||
|
" float: left;\n",
|
|||
|
" margin-right: 0.25em;\n",
|
|||
|
" color: var(--sklearn-color-icon);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Toggleable content - dropdown */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-toggleable__content {\n",
|
|||
|
" max-height: 0;\n",
|
|||
|
" max-width: 0;\n",
|
|||
|
" overflow: hidden;\n",
|
|||
|
" text-align: left;\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-toggleable__content.fitted {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-toggleable__content pre {\n",
|
|||
|
" margin: 0.2em;\n",
|
|||
|
" border-radius: 0.25em;\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-toggleable__content.fitted pre {\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
|||
|
" /* Expand drop-down */\n",
|
|||
|
" max-height: 200px;\n",
|
|||
|
" max-width: 100%;\n",
|
|||
|
" overflow: auto;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
|||
|
" content: \"▾\";\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Pipeline/ColumnTransformer-specific style */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Estimator-specific style */\n",
|
|||
|
"\n",
|
|||
|
"/* Colorize estimator box */\n",
|
|||
|
"#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-label label.sk-toggleable__label,\n",
|
|||
|
"#sk-container-id-3 div.sk-label label {\n",
|
|||
|
" /* The background is the default theme color */\n",
|
|||
|
" color: var(--sklearn-color-text-on-default-background);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* On hover, darken the color of the background */\n",
|
|||
|
"#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Label box, darken color on hover, fitted */\n",
|
|||
|
"#sk-container-id-3 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Estimator label */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-label label {\n",
|
|||
|
" font-family: monospace;\n",
|
|||
|
" font-weight: bold;\n",
|
|||
|
" display: inline-block;\n",
|
|||
|
" line-height: 1.2em;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-label-container {\n",
|
|||
|
" text-align: center;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Estimator-specific */\n",
|
|||
|
"#sk-container-id-3 div.sk-estimator {\n",
|
|||
|
" font-family: monospace;\n",
|
|||
|
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
|||
|
" border-radius: 0.25em;\n",
|
|||
|
" box-sizing: border-box;\n",
|
|||
|
" margin-bottom: 0.5em;\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-estimator.fitted {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* on hover */\n",
|
|||
|
"#sk-container-id-3 div.sk-estimator:hover {\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 div.sk-estimator.fitted:hover {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
|||
|
"\n",
|
|||
|
"/* Common style for \"i\" and \"?\" */\n",
|
|||
|
"\n",
|
|||
|
".sk-estimator-doc-link,\n",
|
|||
|
"a:link.sk-estimator-doc-link,\n",
|
|||
|
"a:visited.sk-estimator-doc-link {\n",
|
|||
|
" float: right;\n",
|
|||
|
" font-size: smaller;\n",
|
|||
|
" line-height: 1em;\n",
|
|||
|
" font-family: monospace;\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
" border-radius: 1em;\n",
|
|||
|
" height: 1em;\n",
|
|||
|
" width: 1em;\n",
|
|||
|
" text-decoration: none !important;\n",
|
|||
|
" margin-left: 1ex;\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
|||
|
" color: var(--sklearn-color-unfitted-level-1);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
".sk-estimator-doc-link.fitted,\n",
|
|||
|
"a:link.sk-estimator-doc-link.fitted,\n",
|
|||
|
"a:visited.sk-estimator-doc-link.fitted {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
|||
|
" color: var(--sklearn-color-fitted-level-1);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* On hover */\n",
|
|||
|
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
|||
|
".sk-estimator-doc-link:hover,\n",
|
|||
|
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
|||
|
".sk-estimator-doc-link:hover {\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
|||
|
" color: var(--sklearn-color-background);\n",
|
|||
|
" text-decoration: none;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
|||
|
".sk-estimator-doc-link.fitted:hover,\n",
|
|||
|
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
|||
|
".sk-estimator-doc-link.fitted:hover {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
|||
|
" color: var(--sklearn-color-background);\n",
|
|||
|
" text-decoration: none;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* Span, style for the box shown on hovering the info icon */\n",
|
|||
|
".sk-estimator-doc-link span {\n",
|
|||
|
" display: none;\n",
|
|||
|
" z-index: 9999;\n",
|
|||
|
" position: relative;\n",
|
|||
|
" font-weight: normal;\n",
|
|||
|
" right: .2ex;\n",
|
|||
|
" padding: .5ex;\n",
|
|||
|
" margin: .5ex;\n",
|
|||
|
" width: min-content;\n",
|
|||
|
" min-width: 20ex;\n",
|
|||
|
" max-width: 50ex;\n",
|
|||
|
" color: var(--sklearn-color-text);\n",
|
|||
|
" box-shadow: 2pt 2pt 4pt #999;\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background: var(--sklearn-color-unfitted-level-0);\n",
|
|||
|
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
".sk-estimator-doc-link.fitted span {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background: var(--sklearn-color-fitted-level-0);\n",
|
|||
|
" border: var(--sklearn-color-fitted-level-3);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
".sk-estimator-doc-link:hover span {\n",
|
|||
|
" display: block;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 a.estimator_doc_link {\n",
|
|||
|
" float: right;\n",
|
|||
|
" font-size: 1rem;\n",
|
|||
|
" line-height: 1em;\n",
|
|||
|
" font-family: monospace;\n",
|
|||
|
" background-color: var(--sklearn-color-background);\n",
|
|||
|
" border-radius: 1rem;\n",
|
|||
|
" height: 1rem;\n",
|
|||
|
" width: 1rem;\n",
|
|||
|
" text-decoration: none;\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" color: var(--sklearn-color-unfitted-level-1);\n",
|
|||
|
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 a.estimator_doc_link.fitted {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
|||
|
" color: var(--sklearn-color-fitted-level-1);\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"/* On hover */\n",
|
|||
|
"#sk-container-id-3 a.estimator_doc_link:hover {\n",
|
|||
|
" /* unfitted */\n",
|
|||
|
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
|||
|
" color: var(--sklearn-color-background);\n",
|
|||
|
" text-decoration: none;\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"#sk-container-id-3 a.estimator_doc_link.fitted:hover {\n",
|
|||
|
" /* fitted */\n",
|
|||
|
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
|||
|
"}\n",
|
|||
|
"</style><div id=\"sk-container-id-3\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GridSearchCV(cv=3, error_score='raise',\n",
|
|||
|
" estimator=Pipeline(steps=[('preprocessor',\n",
|
|||
|
" ColumnTransformer(transformers=[('num',\n",
|
|||
|
" Pipeline(steps=[('scaler',\n",
|
|||
|
" StandardScaler())]),\n",
|
|||
|
" ['nb_tickets',\n",
|
|||
|
" 'nb_purchases',\n",
|
|||
|
" 'total_amount',\n",
|
|||
|
" 'nb_suppliers',\n",
|
|||
|
" 'vente_internet_max',\n",
|
|||
|
" 'purchase_date_min',\n",
|
|||
|
" 'purchase_date_max',\n",
|
|||
|
" 'time_between_purchase',\n",
|
|||
|
" 'nb_tickets_internet',\n",
|
|||
|
" 'nb_campaigns',\n",
|
|||
|
" 'nb_...\n",
|
|||
|
" 1.562500e-02, 3.125000e-02, 6.250000e-02, 1.250000e-01,\n",
|
|||
|
" 2.500000e-01, 5.000000e-01, 1.000000e+00, 2.000000e+00,\n",
|
|||
|
" 4.000000e+00, 8.000000e+00, 1.600000e+01, 3.200000e+01,\n",
|
|||
|
" 6.400000e+01]),\n",
|
|||
|
" 'LogisticRegression_cv__class_weight': ['balanced',\n",
|
|||
|
" {0.0: 0.5837086520288036,\n",
|
|||
|
" 1.0: 3.486549107420539}],\n",
|
|||
|
" 'LogisticRegression_cv__penalty': ['l1', 'l2']},\n",
|
|||
|
" scoring=make_scorer(recall_score, response_method='predict'))</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-17\" type=\"checkbox\" ><label for=\"sk-estimator-id-17\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> GridSearchCV<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.model_selection.GridSearchCV.html\">?<span>Documentation for GridSearchCV</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>GridSearchCV(cv=3, error_score='raise',\n",
|
|||
|
" estimator=Pipeline(steps=[('preprocessor',\n",
|
|||
|
" ColumnTransformer(transformers=[('num',\n",
|
|||
|
" Pipeline(steps=[('scaler',\n",
|
|||
|
" StandardScaler())]),\n",
|
|||
|
" ['nb_tickets',\n",
|
|||
|
" 'nb_purchases',\n",
|
|||
|
" 'total_amount',\n",
|
|||
|
" 'nb_suppliers',\n",
|
|||
|
" 'vente_internet_max',\n",
|
|||
|
" 'purchase_date_min',\n",
|
|||
|
" 'purchase_date_max',\n",
|
|||
|
" 'time_between_purchase',\n",
|
|||
|
" 'nb_tickets_internet',\n",
|
|||
|
" 'nb_campaigns',\n",
|
|||
|
" 'nb_...\n",
|
|||
|
" 1.562500e-02, 3.125000e-02, 6.250000e-02, 1.250000e-01,\n",
|
|||
|
" 2.500000e-01, 5.000000e-01, 1.000000e+00, 2.000000e+00,\n",
|
|||
|
" 4.000000e+00, 8.000000e+00, 1.600000e+01, 3.200000e+01,\n",
|
|||
|
" 6.400000e+01]),\n",
|
|||
|
" 'LogisticRegression_cv__class_weight': ['balanced',\n",
|
|||
|
" {0.0: 0.5837086520288036,\n",
|
|||
|
" 1.0: 3.486549107420539}],\n",
|
|||
|
" 'LogisticRegression_cv__penalty': ['l1', 'l2']},\n",
|
|||
|
" scoring=make_scorer(recall_score, response_method='predict'))</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-18\" type=\"checkbox\" ><label for=\"sk-estimator-id-18\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">estimator: Pipeline</label><div class=\"sk-toggleable__content fitted\"><pre>Pipeline(steps=[('preprocessor',\n",
|
|||
|
" ColumnTransformer(transformers=[('num',\n",
|
|||
|
" Pipeline(steps=[('scaler',\n",
|
|||
|
" StandardScaler())]),\n",
|
|||
|
" ['nb_tickets', 'nb_purchases',\n",
|
|||
|
" 'total_amount',\n",
|
|||
|
" 'nb_suppliers',\n",
|
|||
|
" 'vente_internet_max',\n",
|
|||
|
" 'purchase_date_min',\n",
|
|||
|
" 'purchase_date_max',\n",
|
|||
|
" 'time_between_purchase',\n",
|
|||
|
" 'nb_tickets_internet',\n",
|
|||
|
" 'nb_campaigns',\n",
|
|||
|
" 'nb_campaigns_opened']),\n",
|
|||
|
" ('cat',\n",
|
|||
|
" Pipeline(steps=[('onehot',\n",
|
|||
|
" OneHotEncoder(handle_unknown='ignore',\n",
|
|||
|
" sparse_output=False))]),\n",
|
|||
|
" ['opt_in', 'gender_male',\n",
|
|||
|
" 'gender_female'])])),\n",
|
|||
|
" ('LogisticRegression_cv',\n",
|
|||
|
" LogisticRegression(max_iter=5000, solver='saga'))])</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-19\" type=\"checkbox\" ><label for=\"sk-estimator-id-19\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> preprocessor: ColumnTransformer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.compose.ColumnTransformer.html\">?<span>Documentation for preprocessor: ColumnTransformer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>ColumnTransformer(transformers=[('num',\n",
|
|||
|
" Pipeline(steps=[('scaler', StandardScaler())]),\n",
|
|||
|
" ['nb_tickets', 'nb_purchases', 'total_amount',\n",
|
|||
|
" 'nb_suppliers', 'vente_internet_max',\n",
|
|||
|
" 'purchase_date_min', 'purchase_date_max',\n",
|
|||
|
" 'time_between_purchase',\n",
|
|||
|
" 'nb_tickets_internet', 'nb_campaigns',\n",
|
|||
|
" 'nb_campaigns_opened']),\n",
|
|||
|
" ('cat',\n",
|
|||
|
" Pipeline(steps=[('onehot',\n",
|
|||
|
" OneHotEncoder(handle_unknown='ignore',\n",
|
|||
|
" sparse_output=False))]),\n",
|
|||
|
" ['opt_in', 'gender_male', 'gender_female'])])</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-20\" type=\"checkbox\" ><label for=\"sk-estimator-id-20\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">num</label><div class=\"sk-toggleable__content fitted\"><pre>['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max', 'time_between_purchase', 'nb_tickets_internet', 'nb_campaigns', 'nb_campaigns_opened']</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-21\" type=\"checkbox\" ><label for=\"sk-estimator-id-21\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> StandardScaler<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.StandardScaler.html\">?<span>Documentation for StandardScaler</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>StandardScaler()</pre></div> </div></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-22\" type=\"checkbox\" ><label for=\"sk-estimator-id-22\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">cat</label><div class=\"sk-toggleable__content fitted\"><pre>['opt_in', 'gender_male', 'gender_female']</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-23\" type=\"checkbox\" ><label for=\"sk-estimator-id-23\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> OneHotEncoder<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.OneHotEncoder.html\">?<span>Documentation for OneHotEncoder</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>OneHotEncoder(handle_unknown='ignore', sparse_output=False)</pre></div> </div></div></div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-24\" type=\"checkbox\" ><label for=\"sk-estimator-id-24\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> LogisticRegression<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.linear_model.LogisticRegression.html\">?<span>Documentation for LogisticRegression</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>LogisticRegression(max_iter=5000, solver='saga')</pre></div> </div></div></div></div></div></div></div></div></div></div></div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"GridSearchCV(cv=3, error_score='raise',\n",
|
|||
|
" estimator=Pipeline(steps=[('preprocessor',\n",
|
|||
|
" ColumnTransformer(transformers=[('num',\n",
|
|||
|
" Pipeline(steps=[('scaler',\n",
|
|||
|
" StandardScaler())]),\n",
|
|||
|
" ['nb_tickets',\n",
|
|||
|
" 'nb_purchases',\n",
|
|||
|
" 'total_amount',\n",
|
|||
|
" 'nb_suppliers',\n",
|
|||
|
" 'vente_internet_max',\n",
|
|||
|
" 'purchase_date_min',\n",
|
|||
|
" 'purchase_date_max',\n",
|
|||
|
" 'time_between_purchase',\n",
|
|||
|
" 'nb_tickets_internet',\n",
|
|||
|
" 'nb_campaigns',\n",
|
|||
|
" 'nb_...\n",
|
|||
|
" 1.562500e-02, 3.125000e-02, 6.250000e-02, 1.250000e-01,\n",
|
|||
|
" 2.500000e-01, 5.000000e-01, 1.000000e+00, 2.000000e+00,\n",
|
|||
|
" 4.000000e+00, 8.000000e+00, 1.600000e+01, 3.200000e+01,\n",
|
|||
|
" 6.400000e+01]),\n",
|
|||
|
" 'LogisticRegression_cv__class_weight': ['balanced',\n",
|
|||
|
" {0.0: 0.5837086520288036,\n",
|
|||
|
" 1.0: 3.486549107420539}],\n",
|
|||
|
" 'LogisticRegression_cv__penalty': ['l1', 'l2']},\n",
|
|||
|
" scoring=make_scorer(recall_score, response_method='predict'))"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 81,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"logit_cv"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "006819e7-e9c5-48d9-85ee-aa43d5e4c9c2",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Quartile clustering"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 88,
|
|||
|
"id": "018d8ff4-3436-4eec-8507-d1a265cbabf1",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"y_pred = logit_cv.predict(X_test)\n",
|
|||
|
"y_pred_prob = logit_cv.predict_proba(X_test)[:, 1]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 90,
|
|||
|
"id": "846f53b9-73c2-4a8b-9d9e-f11bf59ce9ba",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/tmp/ipykernel_620/375041546.py:3: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" X_test_segment[\"has_purchased\"] = y_test\n",
|
|||
|
"/tmp/ipykernel_620/375041546.py:4: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" X_test_segment[\"has_purchased_estim\"] = y_pred\n",
|
|||
|
"/tmp/ipykernel_620/375041546.py:5: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" X_test_segment[\"score\"] = y_pred_prob\n",
|
|||
|
"/tmp/ipykernel_620/375041546.py:6: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" X_test_segment[\"quartile\"] = np.where(X_test['score']<0.25, '1',\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>nb_tickets</th>\n",
|
|||
|
" <th>nb_purchases</th>\n",
|
|||
|
" <th>total_amount</th>\n",
|
|||
|
" <th>nb_suppliers</th>\n",
|
|||
|
" <th>vente_internet_max</th>\n",
|
|||
|
" <th>purchase_date_min</th>\n",
|
|||
|
" <th>purchase_date_max</th>\n",
|
|||
|
" <th>time_between_purchase</th>\n",
|
|||
|
" <th>nb_tickets_internet</th>\n",
|
|||
|
" <th>fidelity</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>opt_in</th>\n",
|
|||
|
" <th>gender_female</th>\n",
|
|||
|
" <th>gender_male</th>\n",
|
|||
|
" <th>gender_other</th>\n",
|
|||
|
" <th>nb_campaigns</th>\n",
|
|||
|
" <th>nb_campaigns_opened</th>\n",
|
|||
|
" <th>has_purchased</th>\n",
|
|||
|
" <th>has_purchased_estim</th>\n",
|
|||
|
" <th>score</th>\n",
|
|||
|
" <th>quartile</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>100.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.657671</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>55.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.266538</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>17.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>80.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.214668</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>120.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.657770</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>34.0</td>\n",
|
|||
|
" <td>2.0</td>\n",
|
|||
|
" <td>416.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>478.693148</td>\n",
|
|||
|
" <td>115.631470</td>\n",
|
|||
|
" <td>363.061678</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.894173</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>5</th>\n",
|
|||
|
" <td>2.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>60.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.140069</td>\n",
|
|||
|
" <td>5.140069</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.717482</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>6</th>\n",
|
|||
|
" <td>5.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>61.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>105.053773</td>\n",
|
|||
|
" <td>105.053773</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>5.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.541855</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>7</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>80.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>63.206030</td>\n",
|
|||
|
" <td>63.206030</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.461164</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>8</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>10.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>44.698090</td>\n",
|
|||
|
" <td>44.698090</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>True</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.310828</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>9</th>\n",
|
|||
|
" <td>3.0</td>\n",
|
|||
|
" <td>3.0</td>\n",
|
|||
|
" <td>165.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>266.012106</td>\n",
|
|||
|
" <td>258.012106</td>\n",
|
|||
|
" <td>8.000000</td>\n",
|
|||
|
" <td>3.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>False</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.452877</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>10 rows × 21 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" nb_tickets nb_purchases total_amount nb_suppliers vente_internet_max \\\n",
|
|||
|
"0 4.0 1.0 100.0 1.0 0.0 \n",
|
|||
|
"1 1.0 1.0 55.0 1.0 0.0 \n",
|
|||
|
"2 17.0 1.0 80.0 1.0 0.0 \n",
|
|||
|
"3 4.0 1.0 120.0 1.0 0.0 \n",
|
|||
|
"4 34.0 2.0 416.0 1.0 0.0 \n",
|
|||
|
"5 2.0 1.0 60.0 1.0 0.0 \n",
|
|||
|
"6 5.0 1.0 61.0 1.0 1.0 \n",
|
|||
|
"7 4.0 1.0 80.0 1.0 0.0 \n",
|
|||
|
"8 1.0 1.0 10.0 1.0 0.0 \n",
|
|||
|
"9 3.0 3.0 165.0 1.0 1.0 \n",
|
|||
|
"\n",
|
|||
|
" purchase_date_min purchase_date_max time_between_purchase \\\n",
|
|||
|
"0 5.177187 5.177187 0.000000 \n",
|
|||
|
"1 426.265613 426.265613 0.000000 \n",
|
|||
|
"2 436.033437 436.033437 0.000000 \n",
|
|||
|
"3 5.196412 5.196412 0.000000 \n",
|
|||
|
"4 478.693148 115.631470 363.061678 \n",
|
|||
|
"5 5.140069 5.140069 0.000000 \n",
|
|||
|
"6 105.053773 105.053773 0.000000 \n",
|
|||
|
"7 63.206030 63.206030 0.000000 \n",
|
|||
|
"8 44.698090 44.698090 0.000000 \n",
|
|||
|
"9 266.012106 258.012106 8.000000 \n",
|
|||
|
"\n",
|
|||
|
" nb_tickets_internet fidelity ... opt_in gender_female gender_male \\\n",
|
|||
|
"0 0.0 1 ... False 1 0 \n",
|
|||
|
"1 0.0 2 ... True 0 1 \n",
|
|||
|
"2 0.0 2 ... True 1 0 \n",
|
|||
|
"3 0.0 1 ... False 1 0 \n",
|
|||
|
"4 0.0 4 ... False 1 0 \n",
|
|||
|
"5 0.0 1 ... False 0 1 \n",
|
|||
|
"6 5.0 1 ... False 0 0 \n",
|
|||
|
"7 0.0 1 ... True 0 1 \n",
|
|||
|
"8 0.0 1 ... True 0 0 \n",
|
|||
|
"9 3.0 2 ... False 0 0 \n",
|
|||
|
"\n",
|
|||
|
" gender_other nb_campaigns nb_campaigns_opened has_purchased \\\n",
|
|||
|
"0 0 0.0 0.0 0.0 \n",
|
|||
|
"1 0 0.0 0.0 1.0 \n",
|
|||
|
"2 0 0.0 0.0 0.0 \n",
|
|||
|
"3 0 0.0 0.0 0.0 \n",
|
|||
|
"4 0 0.0 0.0 1.0 \n",
|
|||
|
"5 0 0.0 0.0 0.0 \n",
|
|||
|
"6 1 0.0 0.0 0.0 \n",
|
|||
|
"7 0 0.0 0.0 0.0 \n",
|
|||
|
"8 1 0.0 0.0 0.0 \n",
|
|||
|
"9 1 0.0 0.0 0.0 \n",
|
|||
|
"\n",
|
|||
|
" has_purchased_estim score quartile \n",
|
|||
|
"0 1.0 0.657671 3 \n",
|
|||
|
"1 0.0 0.266538 2 \n",
|
|||
|
"2 0.0 0.214668 1 \n",
|
|||
|
"3 1.0 0.657770 3 \n",
|
|||
|
"4 1.0 0.894173 4 \n",
|
|||
|
"5 1.0 0.717482 3 \n",
|
|||
|
"6 1.0 0.541855 3 \n",
|
|||
|
"7 0.0 0.461164 2 \n",
|
|||
|
"8 0.0 0.310828 2 \n",
|
|||
|
"9 0.0 0.452877 2 \n",
|
|||
|
"\n",
|
|||
|
"[10 rows x 21 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 90,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test_segment = X_test\n",
|
|||
|
"\n",
|
|||
|
"X_test_segment[\"has_purchased\"] = y_test\n",
|
|||
|
"X_test_segment[\"has_purchased_estim\"] = y_pred\n",
|
|||
|
"X_test_segment[\"score\"] = y_pred_prob\n",
|
|||
|
"X_test_segment[\"quartile\"] = np.where(X_test['score']<0.25, '1',\n",
|
|||
|
" np.where(X_test['score']<0.5, '2',\n",
|
|||
|
" np.where(X_test['score']<0.75, '3', '4')))\n",
|
|||
|
"X_test_segment.head(10)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "0916f099-3faa-4c47-9b60-d1ee797b3c9d",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "ad16b8ab-7e01-404b-971e-866e9b9d5aa4",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## definition of functions to compute the bias of scores and adjust it \n",
|
|||
|
"\n",
|
|||
|
"Le biais est calculé de la façon suivante. \n",
|
|||
|
"En notant $\\hat{p(x_i)}$ le score calculé (estimé par la modélisation) et $p(x_i)$ le vrai score (sans biais), et $\\beta$ le logarithme du biais, on a : \\\n",
|
|||
|
"$\\ln{\\frac{\\hat{p(x_i)}}{1-\\hat{p(x_i)}}} = \\beta + \\ln{\\frac{p(x_i)}{1-p(x_i)}}$ \\\n",
|
|||
|
"$ \\frac{\\hat{p(x_i)}}{1-\\hat{p(x_i)}} = \\exp(\\beta) . \\frac{p(x_i)}{1-p(x_i)} $ , soit : \\\n",
|
|||
|
"$p(x_i) = {\\frac{\\frac{\\hat{p(x_i)}}{1-\\hat{p(x_i)}}}{B+\\frac{\\hat{p(x_i)}}{1-\\hat{p(x_i)}}}}$ \\\n",
|
|||
|
"Ce qu'on appelle biais et qu'on estime dans le code par la suite est : $B=\\exp(\\beta) $. Les probabilités ne sont donc pas biaisées si $B=1$. Il y a surestimation si $B>1$. \n",
|
|||
|
"\n",
|
|||
|
"On cherche le B qui permette d'ajuster les probabilités de telle sorte que la somme des scores soit égale à la somme des y_has_purchased. Cela revient à résoudre : \n",
|
|||
|
"\n",
|
|||
|
"\\begin{equation}\n",
|
|||
|
"\\sum_{i}{\\frac{\\frac{\\hat{p(x_i)}}{1-\\hat{p(x_i)}}}{B+\\frac{\\hat{p(x_i)}}{1-\\hat{p(x_i)}}}} = \\sum_{i}{Y_i}\n",
|
|||
|
"\\end{equation}\n",
|
|||
|
"\n",
|
|||
|
"C'est ce que fait la fonction find_bias. \n",
|
|||
|
"\n",
|
|||
|
"Note sur les notations : \\\n",
|
|||
|
"$\\hat{p(x_i)}$ correspond à ce qu'on appelle le score et $p(x_i)$ à ce qu'on appellera le score adjusted"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 91,
|
|||
|
"id": "f0379536-a6c5-4b16-bde5-d0319ec1b140",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# compute adjusted score from odd ratios (cf formula above)\n",
|
|||
|
"def adjusted_score(odd_ratio, bias) :\n",
|
|||
|
" adjusted_score = odd_ratio/(bias+odd_ratio)\n",
|
|||
|
" return adjusted_score"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 92,
|
|||
|
"id": "32a0dfd0-f49d-4785-a56f-706d381bfe41",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# when the score is 1 we cannot compute the odd ratio, so we adjust scores equal to 1\n",
|
|||
|
"# we set the second best score instead\n",
|
|||
|
"\n",
|
|||
|
"def adjust_score_1(score) :\n",
|
|||
|
" second_best_score = np.array([element for element in score if element !=1]).max()\n",
|
|||
|
" new_score = np.array([element if element!=1 else second_best_score for element in score]) \n",
|
|||
|
" return new_score"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 93,
|
|||
|
"id": "2dff1def-02df-413e-afce-b4aeaf7752b6",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def odd_ratio(score) :\n",
|
|||
|
" return score / (1 - score)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 94,
|
|||
|
"id": "683d71fc-7442-4028-869c-49c57592d6e9",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# definition of a function that automatically detects the bias\n",
|
|||
|
"\n",
|
|||
|
"def find_bias(odd_ratios, y_objective, initial_guess=6) :\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" results = minimize(lambda bias : (sum([adjusted_score(element, bias) for element in list(odd_ratios)]) - y_objective)**2 ,\n",
|
|||
|
" initial_guess , method = \"BFGS\")\n",
|
|||
|
"\n",
|
|||
|
" estimated_bias = results.x[0]\n",
|
|||
|
" \"\"\"\n",
|
|||
|
"\n",
|
|||
|
" # faster method\n",
|
|||
|
" bias_estimated = fsolve(lambda bias : sum([adjusted_score(element, bias) for element in list(odd_ratios)]) - y_objective, x0=6)\n",
|
|||
|
" \n",
|
|||
|
" return bias_estimated[0]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 98,
|
|||
|
"id": "781b0d40-c954-4c54-830a-e709c8667328",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"6.172331113516847"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 98,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# computation with the function defined\n",
|
|||
|
"\n",
|
|||
|
"bias_test_set = find_bias(odd_ratios = odd_ratio(adjust_score_1(X_test_segment[\"score\"])), \n",
|
|||
|
" y_objective = y_test[\"y_has_purchased\"].sum(),\n",
|
|||
|
" initial_guess=6)\n",
|
|||
|
"bias_test_set"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 102,
|
|||
|
"id": "248cb862-418e-4767-9933-70c4885ecf40",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"6.070461139075353"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 102,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# comparison with bias of the train set\n",
|
|||
|
"X_train_score = logit_cv.predict_proba(X_train)[:, 1]\n",
|
|||
|
"\n",
|
|||
|
"bias_train_set = find_bias(odd_ratios = odd_ratio(adjust_score_1(X_train_score)), \n",
|
|||
|
" y_objective = y_train[\"y_has_purchased\"].sum(),\n",
|
|||
|
" initial_guess=6)\n",
|
|||
|
"bias_train_set"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 103,
|
|||
|
"id": "fff6cbe6-7bb3-4732-9b81-b9ac5383bbcf",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"betâ test - betâ train = 0.016642008368292337\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(\"betâ test - betâ train = \",np.log(bias_test_set/bias_train_set))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 116,
|
|||
|
"id": "f506870d-4a8a-4b2c-8f0b-e0789080b20c",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"mean absolute erreur 0.001409799678121875\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# impact of considering a bias computed on train set instead of test set - totally neglectable\n",
|
|||
|
"\n",
|
|||
|
"score_adjusted_test = adjusted_score(odd_ratio(adjust_score_1(X_test_segment[\"score\"])), bias = bias_test_set)\n",
|
|||
|
"score_adjusted_train = adjusted_score(odd_ratio(adjust_score_1(X_test_segment[\"score\"])), bias = bias_train_set)\n",
|
|||
|
"\n",
|
|||
|
"print(\"mean absolute erreur\",abs(score_adjusted_test-score_adjusted_train).mean())"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 117,
|
|||
|
"id": "8213d0e4-063b-49fa-90b7-677fc34f4c01",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/tmp/ipykernel_620/1825363704.py:7: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" X_test_segment[\"score_adjusted\"] = score_adjusted_train\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# adjust scores accordingly \n",
|
|||
|
"\n",
|
|||
|
"# X_test_segment[\"score_adjusted\"] = adjusted_score(odd_ratio(adjust_score_1(X_test_segment[\"score\"])), bias = bias_test_set)\n",
|
|||
|
"\n",
|
|||
|
"# actually, we are not supposed to have X_test, so the biais is estimated on X_train\n",
|
|||
|
"# X_test_segment[\"score_adjusted\"] = adjusted_score(odd_ratio(adjust_score_1(X_test_segment[\"score\"])), bias = bias_train_set)\n",
|
|||
|
"X_test_segment[\"score_adjusted\"] = score_adjusted_train"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 118,
|
|||
|
"id": "834d3723-2e72-4c65-9c62-e2d595c69461",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"MSE for score : 0.15494387585189107\n",
|
|||
|
"MSE for ajusted score : 0.08851697393139933\n",
|
|||
|
"sum of y_has_purchased : 13690.0\n",
|
|||
|
"sum of adjusted scores : 13825.476109871417\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# check \n",
|
|||
|
"\n",
|
|||
|
"MSE_score = ((X_test_segment[\"score\"]-X_test_segment[\"has_purchased\"])**2).mean()\n",
|
|||
|
"MSE_ajusted_score = ((X_test_segment[\"score_adjusted\"]-X_test_segment[\"has_purchased\"])**2).mean()\n",
|
|||
|
"print(f\"MSE for score : {MSE_score}\")\n",
|
|||
|
"print(f\"MSE for ajusted score : {MSE_ajusted_score}\")\n",
|
|||
|
"\n",
|
|||
|
"print(\"sum of y_has_purchased :\",y_test[\"y_has_purchased\"].sum())\n",
|
|||
|
"print(\"sum of adjusted scores :\", X_test_segment[\"score_adjusted\"].sum())"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 130,
|
|||
|
"id": "ed27a165-68d2-44f8-8cec-b12dad2cca5d",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"29169.0"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 130,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test_segment[\"has_purchased_estim\"].sum()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "761146b7-3d0d-44b1-8b91-87e6d54f1626",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 119,
|
|||
|
"id": "9f30a4dd-a9d8-405a-a7d5-5324ae88cf70",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"MAE for score : 0.32116357895490416\n",
|
|||
|
"MAE for adjusted score : 0.17359227315595824\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# mean absolute error - divided by 2 with out method\n",
|
|||
|
"\n",
|
|||
|
"MAE_score = abs(X_test_segment[\"score\"]-X_test_segment[\"has_purchased\"]).mean()\n",
|
|||
|
"MAE_ajusted_score = abs(X_test_segment[\"score_adjusted\"]-X_test_segment[\"has_purchased\"]).mean()\n",
|
|||
|
"print(f\"MAE for score : {MAE_score}\")\n",
|
|||
|
"print(f\"MAE for adjusted score : {MAE_ajusted_score}\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 208,
|
|||
|
"id": "6f9396db-e213-408c-a596-eaeec3bc79f3",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHFCAYAAADv8c1wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABh7ElEQVR4nO3deVgVZf8/8PdhFRCOyo6SYiGK4IaJSIoruOCSmRaFa7igIgpqPj4mmo/mrmmpWS65hOaWphK4kYgLoriBS0qKCWKyKSIg3L8//DHfBhAHRBZ7v67rXHVmPjNzz32Gc97eZ2aOSgghQEREREQl0qjsBhARERFVBwxNRERERAowNBEREREpwNBEREREpABDExEREZECDE1ERERECjA0ERERESnA0ERERESkAEMTERERkQIMTaTYxYsXMWzYMNjY2KBGjRqoWbMmWrVqhQULFiAlJaWym/faDR06FA0aNKjsZhRrw4YNUKlUOHv2bLmtMzIyEkFBQUhLSyu3dVL1duzYMahUKhw7dqzCt/O6//62bt2KZcuWvZZ1N2jQAEOHDn0t66aKxdBEiqxduxZOTk6IiorC5MmTERISgt27d+PDDz/E6tWrMWLEiMpu4ms3Y8YM7N69u7KbUWEiIyMxa9YshiaqEl7339/rDE305tCq7AZQ1Xfy5EmMGTMG3bp1w549e6CrqyvN69atGwICAhASElKJLXy9njx5An19fbz99tuV3RR6wwgh8PTpU+jp6VV2U6o8/v29fnl5eXj27JnsPZ7kONJELzV37lyoVCp89913xf4x6ejooE+fPtLz/Px8LFiwAI0bN4auri7MzMwwePBg3L17V7Zcx44d4eDggJMnT6Jdu3bQ09NDgwYNsH79egDA/v370apVK+jr68PR0bFIMAsKCoJKpcL58+fRv39/GBkZQa1W49NPP8WDBw9ktdu2bYO7uzssLS2hp6eHJk2a4PPPP0dmZqasbujQoahZsyYuXboEd3d3GBoaokuXLtK8wl8P/Pzzz3B2doZarYa+vj4aNmyI4cOHy2ru3LmDTz/9FGZmZtDV1UWTJk2wePFi5OfnSzV//vknVCoVFi1ahCVLlsDGxgY1a9aEi4sLTp06VdLLI5Oamophw4ahTp06MDAwQO/evXHr1q0idYcOHUKXLl1gZGQEfX19uLq64vDhw7K+nTx5MgDAxsYGKpVK+rpk8uTJUKvVyMvLk+rHjx8PlUqFhQsXStMePnwIDQ0NrFixQpqWkZGBwMBA2NjYQEdHB3Xr1oW/v3+R10EIgW+//RYtWrSAnp4eateujQEDBhTZl4JjKCoqCu3bt5deg6+++krWvy+i5PVLS0tDQEAAGjZsKB3PPXv2xNWrV6WalJQU+Pr6om7dutDR0UHDhg0xffp0ZGdny9alUqkwbtw4rF69Gk2aNIGuri42btwIALhx4wa8vLxkx8k333zz0n0AgG+++QYdOnSAmZkZDAwM4OjoiAULFiA3N7fM/XX16lV0794d+vr6MDExwejRo/Ho0SNF7fnjjz8wbNgw2NraQl9fH3Xr1kXv3r1x6dKlIrVKt1P476/gb2bDhg1FalUqFYKCgqTnDx48wMiRI2FtbQ1dXV2YmprC1dUVhw4dkvpl//79uH37tnSsq1QqafmcnBzMmTNHek8zNTXFsGHDirzP5ObmYsqUKbCwsIC+vj7ee+89nDlzRlGfAcCqVavQvHlz1KxZE4aGhmjcuDH+85//yGr++usvaV90dHRgZWWFAQMG4P79+1JNad5zFixYgDlz5sDGxga6uro4evQoAODs2bPo06cP6tSpgxo1aqBly5bYvn274n15YwmiEjx79kzo6+sLZ2dnxcuMHDlSABDjxo0TISEhYvXq1cLU1FRYW1uLBw8eSHVubm7C2NhY2NnZiR9++EH89ttvwtPTUwAQs2bNEo6OjuKnn34SBw4cEG3bthW6urrir7/+kpafOXOmACDq168vJk+eLH777TexZMkSYWBgIFq2bClycnKk2i+//FIsXbpU7N+/Xxw7dkysXr1a2NjYiE6dOsnaPmTIEKGtrS0aNGgg5s2bJw4fPix+++03aV79+vWl2sjISKFSqcRHH30kDhw4II4cOSLWr18vvL29pZrk5GRRt25dYWpqKlavXi1CQkLEuHHjBAAxZswYqS4+Pl4AEA0aNBDdu3cXe/bsEXv27BGOjo6idu3aIi0trcQ+X79+vQAgrK2txfDhw8XBgwfFd999J8zMzIS1tbVITU2Vajdt2iRUKpXo16+f2LVrl9i3b5/w9PQUmpqa4tChQ0IIIRISEsT48eMFALFr1y5x8uRJcfLkSZGeni5CQkIEABEZGSmts3HjxkJPT09069ZNmrZt2zYBQMTGxgohhMjMzBQtWrQQJiYmYsmSJeLQoUNi+fLlQq1Wi86dO4v8/HxpWR8fH6GtrS0CAgJESEiI2Lp1q2jcuLEwNzcXSUlJRY4hW1tbsXr1ahEWFiZ8fX0FALFx48YS+0zJ65eRkSGaNm0qDAwMxOzZs8Vvv/0mdu7cKSZMmCCOHDkihBAiKytLNGvWTBgYGIhFixaJ0NBQMWPGDKGlpSV69uwp2yYAUbduXdGsWTOxdetWceTIEXH58mVx5coVoVarhaOjo/jxxx9FaGioCAgIEBoaGiIoKKjE/RBCiIkTJ4pVq1aJkJAQceTIEbF06VJhYmIihg0bJqtT2l9JSUnCzMxM1K1bV6xfv14cOHBAfPLJJ+Ktt94SAMTRo0dLbE94eLgICAgQO3bsEOHh4WL37t2iX79+Qk9PT1y9erVM2yn891fwN7N+/foi2wcgZs6cKT338PAQpqam4rvvvhPHjh0Te/bsEV988YUIDg4WQghx5coV4erqKiwsLKRj/eTJk0IIIfLy8kT37t2FgYGBmDVrlggLCxPff/+9qFu3rrC3txdPnjyRtVGlUonJkyeL0NBQsWTJElG3bl1hZGQkhgwZUmKf/fTTTwKAGD9+vAgNDRWHDh0Sq1evFn5+flLN3bt3haWlpexvaNu2bWL48OEiLi5OCFH695y6deuKTp06iR07dojQ0FARHx8vjhw5InR0dET79u3Ftm3bREhIiBg6dOgL+/vfhKGJSpSUlCQAiI8++khRfVxcnAAgfH19ZdNPnz4tAIj//Oc/0jQ3NzcBQJw9e1aa9vDhQ6GpqSn09PRkASkmJkYAEF9//bU0rSA0TZw4UbatLVu2CABi8+bNxbYxPz9f5ObmivDwcAFAXLhwQZo3ZMgQAUCsW7euyHKF37QXLVokAJQYaD7//HMBQJw+fVo2fcyYMUKlUolr164JIf7vDczR0VE8e/ZMqjtz5owAIH766acXbkOI/wtN77//vmz6iRMnBAAxZ84cIcTz4FKnTh3Ru3dvWV1eXp5o3ry5aNOmjTRt4cKFAoCIj4+X1WZmZgodHR0xe/ZsIcTzN3IAYurUqUJPT088ffpUCPE8+FhZWUnLzZs3T2hoaIioqCjZ+nbs2CEAiAMHDgghhDh58qQAIBYvXiyrS0hIEHp6emLKlCnStIJjqHD/2tvbCw8PjxL7TMnrN3v2bAFAhIWFvbBm9erVAoDYvn27bPr8+fMFABEaGipNAyDUarVISUmR1Xp4eIh69eqJ9PR02fRx48aJGjVqFKkvSV5ensjNzRU//vij0NTUlC2rtL+mTp0qVCqViImJkdV169ZNUWgq7NmzZyInJ0fY2trK/l5Ls51XCU01a9YU/v7+JbaxV69esvUXKAgzO3fulE2PiooSAMS3334rhPi/974XvR+9LDSNGzdO1KpVq8Sa4cOHC21tbekfIsUp7XvO22+/LfsHphDP/xHUsmVLkZubK5vu6ekpLC0tRV5eXontfJPx6zkqVwVDu4WvFGnTpg2aNGki+woIACwtLeHk5CQ9r1OnDszMzNCiRQtYWVlJ05s0aQIAuH37dpFtfvLJJ7LnAwcOhJaWltQWALh16xa8vLxgYWEBTU1NaGtrw83NDQAQFxdXZJ0ffPDBS/f13Xfflba3fft2/PXXX0Vqjhw5Ant7e7Rp00Y2fej
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# visualization\n",
|
|||
|
"\n",
|
|||
|
"# histogramme des probas et des probas ajustées\n",
|
|||
|
"\n",
|
|||
|
"def plot_comp_scores(df, score, score_adjusted) :\n",
|
|||
|
"\n",
|
|||
|
" plt.figure()\n",
|
|||
|
" plt.hist(df[score], label = \"score\", alpha=0.6)\n",
|
|||
|
" plt.hist(df[score_adjusted], label=\"adjusted score\", alpha=0.6)\n",
|
|||
|
" plt.legend()\n",
|
|||
|
" plt.xlabel(\"probability of a future purchase\")\n",
|
|||
|
" plt.ylabel(\"count\")\n",
|
|||
|
" plt.title(\"Comparison between score and adjusted score\")\n",
|
|||
|
" plt.show()\n",
|
|||
|
"\n",
|
|||
|
"plot_comp_scores(X_test_segment, score = \"score\", score_adjusted = \"score_adjusted\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "e6fae260-fab8-4f51-90dc-9b6d7314c77b",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Compute number of tickets and CA by segment with the recalibrated score"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 121,
|
|||
|
"id": "c618cebc-c295-47f7-bd76-b7e18778a17c",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>nb_tickets</th>\n",
|
|||
|
" <th>nb_purchases</th>\n",
|
|||
|
" <th>total_amount</th>\n",
|
|||
|
" <th>nb_suppliers</th>\n",
|
|||
|
" <th>vente_internet_max</th>\n",
|
|||
|
" <th>purchase_date_min</th>\n",
|
|||
|
" <th>purchase_date_max</th>\n",
|
|||
|
" <th>time_between_purchase</th>\n",
|
|||
|
" <th>nb_tickets_internet</th>\n",
|
|||
|
" <th>fidelity</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>gender_female</th>\n",
|
|||
|
" <th>gender_male</th>\n",
|
|||
|
" <th>gender_other</th>\n",
|
|||
|
" <th>nb_campaigns</th>\n",
|
|||
|
" <th>nb_campaigns_opened</th>\n",
|
|||
|
" <th>has_purchased</th>\n",
|
|||
|
" <th>has_purchased_estim</th>\n",
|
|||
|
" <th>score</th>\n",
|
|||
|
" <th>quartile</th>\n",
|
|||
|
" <th>score_adjusted</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>100.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.657671</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.240397</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>55.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.266538</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>0.056482</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>17.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>80.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.214668</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.043089</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>120.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.657770</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.240478</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>34.0</td>\n",
|
|||
|
" <td>2.0</td>\n",
|
|||
|
" <td>416.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>478.693148</td>\n",
|
|||
|
" <td>115.631470</td>\n",
|
|||
|
" <td>363.061678</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.894173</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>0.581920</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>5 rows × 22 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" nb_tickets nb_purchases total_amount nb_suppliers vente_internet_max \\\n",
|
|||
|
"0 4.0 1.0 100.0 1.0 0.0 \n",
|
|||
|
"1 1.0 1.0 55.0 1.0 0.0 \n",
|
|||
|
"2 17.0 1.0 80.0 1.0 0.0 \n",
|
|||
|
"3 4.0 1.0 120.0 1.0 0.0 \n",
|
|||
|
"4 34.0 2.0 416.0 1.0 0.0 \n",
|
|||
|
"\n",
|
|||
|
" purchase_date_min purchase_date_max time_between_purchase \\\n",
|
|||
|
"0 5.177187 5.177187 0.000000 \n",
|
|||
|
"1 426.265613 426.265613 0.000000 \n",
|
|||
|
"2 436.033437 436.033437 0.000000 \n",
|
|||
|
"3 5.196412 5.196412 0.000000 \n",
|
|||
|
"4 478.693148 115.631470 363.061678 \n",
|
|||
|
"\n",
|
|||
|
" nb_tickets_internet fidelity ... gender_female gender_male \\\n",
|
|||
|
"0 0.0 1 ... 1 0 \n",
|
|||
|
"1 0.0 2 ... 0 1 \n",
|
|||
|
"2 0.0 2 ... 1 0 \n",
|
|||
|
"3 0.0 1 ... 1 0 \n",
|
|||
|
"4 0.0 4 ... 1 0 \n",
|
|||
|
"\n",
|
|||
|
" gender_other nb_campaigns nb_campaigns_opened has_purchased \\\n",
|
|||
|
"0 0 0.0 0.0 0.0 \n",
|
|||
|
"1 0 0.0 0.0 1.0 \n",
|
|||
|
"2 0 0.0 0.0 0.0 \n",
|
|||
|
"3 0 0.0 0.0 0.0 \n",
|
|||
|
"4 0 0.0 0.0 1.0 \n",
|
|||
|
"\n",
|
|||
|
" has_purchased_estim score quartile score_adjusted \n",
|
|||
|
"0 1.0 0.657671 3 0.240397 \n",
|
|||
|
"1 0.0 0.266538 2 0.056482 \n",
|
|||
|
"2 0.0 0.214668 1 0.043089 \n",
|
|||
|
"3 1.0 0.657770 3 0.240478 \n",
|
|||
|
"4 1.0 0.894173 4 0.581920 \n",
|
|||
|
"\n",
|
|||
|
"[5 rows x 22 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 121,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test_segment.head()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 156,
|
|||
|
"id": "29633dd2-8b4b-48dc-be02-52f4015e686d",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>score</th>\n",
|
|||
|
" <th>score_adjusted</th>\n",
|
|||
|
" <th>has_purchased</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>quartile</th>\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th></th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>0.132457</td>\n",
|
|||
|
" <td>0.025105</td>\n",
|
|||
|
" <td>0.015691</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>0.338914</td>\n",
|
|||
|
" <td>0.079990</td>\n",
|
|||
|
" <td>0.098486</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>0.630647</td>\n",
|
|||
|
" <td>0.225757</td>\n",
|
|||
|
" <td>0.214729</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>0.905216</td>\n",
|
|||
|
" <td>0.661997</td>\n",
|
|||
|
" <td>0.650133</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" score score_adjusted has_purchased\n",
|
|||
|
"quartile \n",
|
|||
|
"1 0.132457 0.025105 0.015691\n",
|
|||
|
"2 0.338914 0.079990 0.098486\n",
|
|||
|
"3 0.630647 0.225757 0.214729\n",
|
|||
|
"4 0.905216 0.661997 0.650133"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 156,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test_segment.groupby(\"quartile\")[[\"score\",\"score_adjusted\", \"has_purchased\"]].mean()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "9c64085e-51f2-4bad-8a37-274905bbed2e",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "e29be2a8-ef9f-4004-ae67-cab66eea0013",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"X_test_segment[\"nb_tickets_projected\"] = X_test_segment[\"nb_tickets\"] / 1.5\n",
|
|||
|
"X_test_segment[\"total_amount_projected\"] = X_test_segment[\"total_amount\"] / 1.5\n",
|
|||
|
"\n",
|
|||
|
"X_test_segment[\"nb_tickets_expected\"] = X_test_segment[\"score_adjusted\"] * X_test_segment[\"nb_tickets_projected\"]\n",
|
|||
|
"X_test_segment[\"total_amount_expected\"] = X_test_segment[\"score_adjusted\"] * X_test_segment[\"total_amount_projected\"]\n",
|
|||
|
"\n",
|
|||
|
"X_test_segment"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 123,
|
|||
|
"id": "a974589f-7952-4db2-bebf-7b69c6b09372",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def project_tickets_CA (df, nb_tickets, total_amount, score_adjusted, duration_ref, duration_projection) :\n",
|
|||
|
" \n",
|
|||
|
" duration_ratio = duration_ref/duration_projection\n",
|
|||
|
"\n",
|
|||
|
" df_output = df\n",
|
|||
|
"\n",
|
|||
|
" df_output[\"nb_tickets_projected\"] = df_output[nb_tickets] / duration_ratio\n",
|
|||
|
" df_output[\"total_amount_projected\"] = df_output[total_amount] / duration_ratio\n",
|
|||
|
" \n",
|
|||
|
" df_output[\"nb_tickets_expected\"] = df_output[score_adjusted] * df_output[\"nb_tickets_projected\"]\n",
|
|||
|
" df_output[\"total_amount_expected\"] = df_output[score_adjusted] * df_output[\"total_amount_projected\"]\n",
|
|||
|
"\n",
|
|||
|
" return df_output\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 124,
|
|||
|
"id": "1e000901-717d-4851-9db2-df90998d35ed",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>nb_tickets</th>\n",
|
|||
|
" <th>nb_purchases</th>\n",
|
|||
|
" <th>total_amount</th>\n",
|
|||
|
" <th>nb_suppliers</th>\n",
|
|||
|
" <th>vente_internet_max</th>\n",
|
|||
|
" <th>purchase_date_min</th>\n",
|
|||
|
" <th>purchase_date_max</th>\n",
|
|||
|
" <th>time_between_purchase</th>\n",
|
|||
|
" <th>nb_tickets_internet</th>\n",
|
|||
|
" <th>fidelity</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>gender_female</th>\n",
|
|||
|
" <th>gender_male</th>\n",
|
|||
|
" <th>gender_other</th>\n",
|
|||
|
" <th>nb_campaigns</th>\n",
|
|||
|
" <th>nb_campaigns_opened</th>\n",
|
|||
|
" <th>has_purchased</th>\n",
|
|||
|
" <th>has_purchased_estim</th>\n",
|
|||
|
" <th>score</th>\n",
|
|||
|
" <th>quartile</th>\n",
|
|||
|
" <th>score_adjusted</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>100.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.657671</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.240397</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>55.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.266538</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>0.056482</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>17.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>80.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.214668</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.043089</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>120.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.657770</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.240478</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>34.0</td>\n",
|
|||
|
" <td>2.0</td>\n",
|
|||
|
" <td>416.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>478.693148</td>\n",
|
|||
|
" <td>115.631470</td>\n",
|
|||
|
" <td>363.061678</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.894173</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>0.581920</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96091</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>67.31</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>278.442257</td>\n",
|
|||
|
" <td>278.442257</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>15.0</td>\n",
|
|||
|
" <td>5.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.623551</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.214369</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96092</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>61.41</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>189.207373</td>\n",
|
|||
|
" <td>189.207373</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>12.0</td>\n",
|
|||
|
" <td>9.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.682521</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.261526</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96093</th>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.00</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>-1.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>29.0</td>\n",
|
|||
|
" <td>3.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.117192</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.021400</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96094</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>79.43</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>279.312905</td>\n",
|
|||
|
" <td>279.312905</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>20.0</td>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.625185</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.215545</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96095</th>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.00</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>-1.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0</td>\n",
|
|||
|
" <td>31.0</td>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.319585</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>0.071817</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>96096 rows × 22 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" nb_tickets nb_purchases total_amount nb_suppliers \\\n",
|
|||
|
"0 4.0 1.0 100.00 1.0 \n",
|
|||
|
"1 1.0 1.0 55.00 1.0 \n",
|
|||
|
"2 17.0 1.0 80.00 1.0 \n",
|
|||
|
"3 4.0 1.0 120.00 1.0 \n",
|
|||
|
"4 34.0 2.0 416.00 1.0 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 1.0 1.0 67.31 1.0 \n",
|
|||
|
"96092 1.0 1.0 61.41 1.0 \n",
|
|||
|
"96093 0.0 0.0 0.00 0.0 \n",
|
|||
|
"96094 1.0 1.0 79.43 1.0 \n",
|
|||
|
"96095 0.0 0.0 0.00 0.0 \n",
|
|||
|
"\n",
|
|||
|
" vente_internet_max purchase_date_min purchase_date_max \\\n",
|
|||
|
"0 0.0 5.177187 5.177187 \n",
|
|||
|
"1 0.0 426.265613 426.265613 \n",
|
|||
|
"2 0.0 436.033437 436.033437 \n",
|
|||
|
"3 0.0 5.196412 5.196412 \n",
|
|||
|
"4 0.0 478.693148 115.631470 \n",
|
|||
|
"... ... ... ... \n",
|
|||
|
"96091 1.0 278.442257 278.442257 \n",
|
|||
|
"96092 1.0 189.207373 189.207373 \n",
|
|||
|
"96093 0.0 550.000000 550.000000 \n",
|
|||
|
"96094 1.0 279.312905 279.312905 \n",
|
|||
|
"96095 0.0 550.000000 550.000000 \n",
|
|||
|
"\n",
|
|||
|
" time_between_purchase nb_tickets_internet fidelity ... \\\n",
|
|||
|
"0 0.000000 0.0 1 ... \n",
|
|||
|
"1 0.000000 0.0 2 ... \n",
|
|||
|
"2 0.000000 0.0 2 ... \n",
|
|||
|
"3 0.000000 0.0 1 ... \n",
|
|||
|
"4 363.061678 0.0 4 ... \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 0.000000 1.0 2 ... \n",
|
|||
|
"96092 0.000000 1.0 1 ... \n",
|
|||
|
"96093 -1.000000 0.0 1 ... \n",
|
|||
|
"96094 0.000000 1.0 1 ... \n",
|
|||
|
"96095 -1.000000 0.0 2 ... \n",
|
|||
|
"\n",
|
|||
|
" gender_female gender_male gender_other nb_campaigns \\\n",
|
|||
|
"0 1 0 0 0.0 \n",
|
|||
|
"1 0 1 0 0.0 \n",
|
|||
|
"2 1 0 0 0.0 \n",
|
|||
|
"3 1 0 0 0.0 \n",
|
|||
|
"4 1 0 0 0.0 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 0 1 0 15.0 \n",
|
|||
|
"96092 0 1 0 12.0 \n",
|
|||
|
"96093 1 0 0 29.0 \n",
|
|||
|
"96094 0 1 0 20.0 \n",
|
|||
|
"96095 0 1 0 31.0 \n",
|
|||
|
"\n",
|
|||
|
" nb_campaigns_opened has_purchased has_purchased_estim score \\\n",
|
|||
|
"0 0.0 0.0 1.0 0.657671 \n",
|
|||
|
"1 0.0 1.0 0.0 0.266538 \n",
|
|||
|
"2 0.0 0.0 0.0 0.214668 \n",
|
|||
|
"3 0.0 0.0 1.0 0.657770 \n",
|
|||
|
"4 0.0 1.0 1.0 0.894173 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 5.0 1.0 1.0 0.623551 \n",
|
|||
|
"96092 9.0 0.0 1.0 0.682521 \n",
|
|||
|
"96093 3.0 0.0 0.0 0.117192 \n",
|
|||
|
"96094 4.0 0.0 1.0 0.625185 \n",
|
|||
|
"96095 4.0 0.0 0.0 0.319585 \n",
|
|||
|
"\n",
|
|||
|
" quartile score_adjusted \n",
|
|||
|
"0 3 0.240397 \n",
|
|||
|
"1 2 0.056482 \n",
|
|||
|
"2 1 0.043089 \n",
|
|||
|
"3 3 0.240478 \n",
|
|||
|
"4 4 0.581920 \n",
|
|||
|
"... ... ... \n",
|
|||
|
"96091 3 0.214369 \n",
|
|||
|
"96092 3 0.261526 \n",
|
|||
|
"96093 1 0.021400 \n",
|
|||
|
"96094 3 0.215545 \n",
|
|||
|
"96095 2 0.071817 \n",
|
|||
|
"\n",
|
|||
|
"[96096 rows x 22 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 124,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test_segment"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 127,
|
|||
|
"id": "dd8a52e1-d06e-4790-8687-8e58e3e6b84e",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/tmp/ipykernel_620/3599949626.py:7: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" df_output[\"nb_tickets_projected\"] = df_output[nb_tickets] / duration_ratio\n",
|
|||
|
"/tmp/ipykernel_620/3599949626.py:8: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" df_output[\"total_amount_projected\"] = df_output[total_amount] / duration_ratio\n",
|
|||
|
"/tmp/ipykernel_620/3599949626.py:10: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" df_output[\"nb_tickets_expected\"] = df_output[score_adjusted] * df_output[\"nb_tickets_projected\"]\n",
|
|||
|
"/tmp/ipykernel_620/3599949626.py:11: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" df_output[\"total_amount_expected\"] = df_output[score_adjusted] * df_output[\"total_amount_projected\"]\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>nb_tickets</th>\n",
|
|||
|
" <th>nb_purchases</th>\n",
|
|||
|
" <th>total_amount</th>\n",
|
|||
|
" <th>nb_suppliers</th>\n",
|
|||
|
" <th>vente_internet_max</th>\n",
|
|||
|
" <th>purchase_date_min</th>\n",
|
|||
|
" <th>purchase_date_max</th>\n",
|
|||
|
" <th>time_between_purchase</th>\n",
|
|||
|
" <th>nb_tickets_internet</th>\n",
|
|||
|
" <th>fidelity</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>nb_campaigns_opened</th>\n",
|
|||
|
" <th>has_purchased</th>\n",
|
|||
|
" <th>has_purchased_estim</th>\n",
|
|||
|
" <th>score</th>\n",
|
|||
|
" <th>quartile</th>\n",
|
|||
|
" <th>score_adjusted</th>\n",
|
|||
|
" <th>nb_tickets_projected</th>\n",
|
|||
|
" <th>total_amount_projected</th>\n",
|
|||
|
" <th>nb_tickets_expected</th>\n",
|
|||
|
" <th>total_amount_expected</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>100.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.657671</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.240397</td>\n",
|
|||
|
" <td>2.666667</td>\n",
|
|||
|
" <td>66.666667</td>\n",
|
|||
|
" <td>0.641059</td>\n",
|
|||
|
" <td>16.026472</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>55.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.266538</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>0.056482</td>\n",
|
|||
|
" <td>0.666667</td>\n",
|
|||
|
" <td>36.666667</td>\n",
|
|||
|
" <td>0.037655</td>\n",
|
|||
|
" <td>2.071006</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>17.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>80.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.214668</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.043089</td>\n",
|
|||
|
" <td>11.333333</td>\n",
|
|||
|
" <td>53.333333</td>\n",
|
|||
|
" <td>0.488340</td>\n",
|
|||
|
" <td>2.298068</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>120.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.657770</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.240478</td>\n",
|
|||
|
" <td>2.666667</td>\n",
|
|||
|
" <td>80.000000</td>\n",
|
|||
|
" <td>0.641273</td>\n",
|
|||
|
" <td>19.238202</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>34.0</td>\n",
|
|||
|
" <td>2.0</td>\n",
|
|||
|
" <td>416.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>478.693148</td>\n",
|
|||
|
" <td>115.631470</td>\n",
|
|||
|
" <td>363.061678</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.894173</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>0.581920</td>\n",
|
|||
|
" <td>22.666667</td>\n",
|
|||
|
" <td>277.333333</td>\n",
|
|||
|
" <td>13.190183</td>\n",
|
|||
|
" <td>161.385771</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96091</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>67.31</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>278.442257</td>\n",
|
|||
|
" <td>278.442257</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>5.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.623551</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.214369</td>\n",
|
|||
|
" <td>0.666667</td>\n",
|
|||
|
" <td>44.873333</td>\n",
|
|||
|
" <td>0.142913</td>\n",
|
|||
|
" <td>9.619467</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96092</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>61.41</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>189.207373</td>\n",
|
|||
|
" <td>189.207373</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>9.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.682521</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.261526</td>\n",
|
|||
|
" <td>0.666667</td>\n",
|
|||
|
" <td>40.940000</td>\n",
|
|||
|
" <td>0.174351</td>\n",
|
|||
|
" <td>10.706885</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96093</th>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.00</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>-1.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>3.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.117192</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.021400</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96094</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>79.43</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>279.312905</td>\n",
|
|||
|
" <td>279.312905</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.625185</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.215545</td>\n",
|
|||
|
" <td>0.666667</td>\n",
|
|||
|
" <td>52.953333</td>\n",
|
|||
|
" <td>0.143697</td>\n",
|
|||
|
" <td>11.413840</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96095</th>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.00</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>-1.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.319585</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>0.071817</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>96096 rows × 26 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" nb_tickets nb_purchases total_amount nb_suppliers \\\n",
|
|||
|
"0 4.0 1.0 100.00 1.0 \n",
|
|||
|
"1 1.0 1.0 55.00 1.0 \n",
|
|||
|
"2 17.0 1.0 80.00 1.0 \n",
|
|||
|
"3 4.0 1.0 120.00 1.0 \n",
|
|||
|
"4 34.0 2.0 416.00 1.0 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 1.0 1.0 67.31 1.0 \n",
|
|||
|
"96092 1.0 1.0 61.41 1.0 \n",
|
|||
|
"96093 0.0 0.0 0.00 0.0 \n",
|
|||
|
"96094 1.0 1.0 79.43 1.0 \n",
|
|||
|
"96095 0.0 0.0 0.00 0.0 \n",
|
|||
|
"\n",
|
|||
|
" vente_internet_max purchase_date_min purchase_date_max \\\n",
|
|||
|
"0 0.0 5.177187 5.177187 \n",
|
|||
|
"1 0.0 426.265613 426.265613 \n",
|
|||
|
"2 0.0 436.033437 436.033437 \n",
|
|||
|
"3 0.0 5.196412 5.196412 \n",
|
|||
|
"4 0.0 478.693148 115.631470 \n",
|
|||
|
"... ... ... ... \n",
|
|||
|
"96091 1.0 278.442257 278.442257 \n",
|
|||
|
"96092 1.0 189.207373 189.207373 \n",
|
|||
|
"96093 0.0 550.000000 550.000000 \n",
|
|||
|
"96094 1.0 279.312905 279.312905 \n",
|
|||
|
"96095 0.0 550.000000 550.000000 \n",
|
|||
|
"\n",
|
|||
|
" time_between_purchase nb_tickets_internet fidelity ... \\\n",
|
|||
|
"0 0.000000 0.0 1 ... \n",
|
|||
|
"1 0.000000 0.0 2 ... \n",
|
|||
|
"2 0.000000 0.0 2 ... \n",
|
|||
|
"3 0.000000 0.0 1 ... \n",
|
|||
|
"4 363.061678 0.0 4 ... \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 0.000000 1.0 2 ... \n",
|
|||
|
"96092 0.000000 1.0 1 ... \n",
|
|||
|
"96093 -1.000000 0.0 1 ... \n",
|
|||
|
"96094 0.000000 1.0 1 ... \n",
|
|||
|
"96095 -1.000000 0.0 2 ... \n",
|
|||
|
"\n",
|
|||
|
" nb_campaigns_opened has_purchased has_purchased_estim score \\\n",
|
|||
|
"0 0.0 0.0 1.0 0.657671 \n",
|
|||
|
"1 0.0 1.0 0.0 0.266538 \n",
|
|||
|
"2 0.0 0.0 0.0 0.214668 \n",
|
|||
|
"3 0.0 0.0 1.0 0.657770 \n",
|
|||
|
"4 0.0 1.0 1.0 0.894173 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 5.0 1.0 1.0 0.623551 \n",
|
|||
|
"96092 9.0 0.0 1.0 0.682521 \n",
|
|||
|
"96093 3.0 0.0 0.0 0.117192 \n",
|
|||
|
"96094 4.0 0.0 1.0 0.625185 \n",
|
|||
|
"96095 4.0 0.0 0.0 0.319585 \n",
|
|||
|
"\n",
|
|||
|
" quartile score_adjusted nb_tickets_projected total_amount_projected \\\n",
|
|||
|
"0 3 0.240397 2.666667 66.666667 \n",
|
|||
|
"1 2 0.056482 0.666667 36.666667 \n",
|
|||
|
"2 1 0.043089 11.333333 53.333333 \n",
|
|||
|
"3 3 0.240478 2.666667 80.000000 \n",
|
|||
|
"4 4 0.581920 22.666667 277.333333 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 3 0.214369 0.666667 44.873333 \n",
|
|||
|
"96092 3 0.261526 0.666667 40.940000 \n",
|
|||
|
"96093 1 0.021400 0.000000 0.000000 \n",
|
|||
|
"96094 3 0.215545 0.666667 52.953333 \n",
|
|||
|
"96095 2 0.071817 0.000000 0.000000 \n",
|
|||
|
"\n",
|
|||
|
" nb_tickets_expected total_amount_expected \n",
|
|||
|
"0 0.641059 16.026472 \n",
|
|||
|
"1 0.037655 2.071006 \n",
|
|||
|
"2 0.488340 2.298068 \n",
|
|||
|
"3 0.641273 19.238202 \n",
|
|||
|
"4 13.190183 161.385771 \n",
|
|||
|
"... ... ... \n",
|
|||
|
"96091 0.142913 9.619467 \n",
|
|||
|
"96092 0.174351 10.706885 \n",
|
|||
|
"96093 0.000000 0.000000 \n",
|
|||
|
"96094 0.143697 11.413840 \n",
|
|||
|
"96095 0.000000 0.000000 \n",
|
|||
|
"\n",
|
|||
|
"[96096 rows x 26 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 127,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test_segment = project_tickets_CA (X_test_segment, \"nb_tickets\", \"total_amount\", \"score_adjusted\", duration_ref=1.5, duration_projection=1)\n",
|
|||
|
"X_test_segment"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 135,
|
|||
|
"id": "5bf8def7-d6f3-4b5b-a656-d61f6dca9536",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>nb_tickets</th>\n",
|
|||
|
" <th>nb_purchases</th>\n",
|
|||
|
" <th>total_amount</th>\n",
|
|||
|
" <th>nb_suppliers</th>\n",
|
|||
|
" <th>vente_internet_max</th>\n",
|
|||
|
" <th>purchase_date_min</th>\n",
|
|||
|
" <th>purchase_date_max</th>\n",
|
|||
|
" <th>time_between_purchase</th>\n",
|
|||
|
" <th>nb_tickets_internet</th>\n",
|
|||
|
" <th>fidelity</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>nb_campaigns_opened</th>\n",
|
|||
|
" <th>has_purchased</th>\n",
|
|||
|
" <th>has_purchased_estim</th>\n",
|
|||
|
" <th>score</th>\n",
|
|||
|
" <th>quartile</th>\n",
|
|||
|
" <th>score_adjusted</th>\n",
|
|||
|
" <th>nb_tickets_projected</th>\n",
|
|||
|
" <th>total_amount_projected</th>\n",
|
|||
|
" <th>nb_tickets_expected</th>\n",
|
|||
|
" <th>total_amount_expected</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>100.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>5.177187</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.657671</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.240397</td>\n",
|
|||
|
" <td>2.666667</td>\n",
|
|||
|
" <td>66.666667</td>\n",
|
|||
|
" <td>0.641059</td>\n",
|
|||
|
" <td>16.026472</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>55.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>426.265613</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.266538</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>0.056482</td>\n",
|
|||
|
" <td>0.666667</td>\n",
|
|||
|
" <td>36.666667</td>\n",
|
|||
|
" <td>0.037655</td>\n",
|
|||
|
" <td>2.071006</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>17.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>80.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>436.033437</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.214668</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.043089</td>\n",
|
|||
|
" <td>11.333333</td>\n",
|
|||
|
" <td>53.333333</td>\n",
|
|||
|
" <td>0.488340</td>\n",
|
|||
|
" <td>2.298068</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>120.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>5.196412</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.657770</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.240478</td>\n",
|
|||
|
" <td>2.666667</td>\n",
|
|||
|
" <td>80.000000</td>\n",
|
|||
|
" <td>0.641273</td>\n",
|
|||
|
" <td>19.238202</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>34.0</td>\n",
|
|||
|
" <td>2.0</td>\n",
|
|||
|
" <td>416.00</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>478.693148</td>\n",
|
|||
|
" <td>115.631470</td>\n",
|
|||
|
" <td>363.061678</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.894173</td>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>0.581920</td>\n",
|
|||
|
" <td>22.666667</td>\n",
|
|||
|
" <td>277.333333</td>\n",
|
|||
|
" <td>13.190183</td>\n",
|
|||
|
" <td>161.385771</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96091</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>67.31</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>278.442257</td>\n",
|
|||
|
" <td>278.442257</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>5.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.623551</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.214369</td>\n",
|
|||
|
" <td>0.666667</td>\n",
|
|||
|
" <td>44.873333</td>\n",
|
|||
|
" <td>0.142913</td>\n",
|
|||
|
" <td>9.619467</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96092</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>61.41</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>189.207373</td>\n",
|
|||
|
" <td>189.207373</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>9.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.682521</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.261526</td>\n",
|
|||
|
" <td>0.666667</td>\n",
|
|||
|
" <td>40.940000</td>\n",
|
|||
|
" <td>0.174351</td>\n",
|
|||
|
" <td>10.706885</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96093</th>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.00</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>-1.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>3.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.117192</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.021400</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96094</th>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>79.43</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>279.312905</td>\n",
|
|||
|
" <td>279.312905</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>1.0</td>\n",
|
|||
|
" <td>0.625185</td>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>0.215545</td>\n",
|
|||
|
" <td>0.666667</td>\n",
|
|||
|
" <td>52.953333</td>\n",
|
|||
|
" <td>0.143697</td>\n",
|
|||
|
" <td>11.413840</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>96095</th>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.00</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>550.000000</td>\n",
|
|||
|
" <td>-1.000000</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>4.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.0</td>\n",
|
|||
|
" <td>0.319585</td>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>0.071817</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>96096 rows × 26 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" nb_tickets nb_purchases total_amount nb_suppliers \\\n",
|
|||
|
"0 4.0 1.0 100.00 1.0 \n",
|
|||
|
"1 1.0 1.0 55.00 1.0 \n",
|
|||
|
"2 17.0 1.0 80.00 1.0 \n",
|
|||
|
"3 4.0 1.0 120.00 1.0 \n",
|
|||
|
"4 34.0 2.0 416.00 1.0 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 1.0 1.0 67.31 1.0 \n",
|
|||
|
"96092 1.0 1.0 61.41 1.0 \n",
|
|||
|
"96093 0.0 0.0 0.00 0.0 \n",
|
|||
|
"96094 1.0 1.0 79.43 1.0 \n",
|
|||
|
"96095 0.0 0.0 0.00 0.0 \n",
|
|||
|
"\n",
|
|||
|
" vente_internet_max purchase_date_min purchase_date_max \\\n",
|
|||
|
"0 0.0 5.177187 5.177187 \n",
|
|||
|
"1 0.0 426.265613 426.265613 \n",
|
|||
|
"2 0.0 436.033437 436.033437 \n",
|
|||
|
"3 0.0 5.196412 5.196412 \n",
|
|||
|
"4 0.0 478.693148 115.631470 \n",
|
|||
|
"... ... ... ... \n",
|
|||
|
"96091 1.0 278.442257 278.442257 \n",
|
|||
|
"96092 1.0 189.207373 189.207373 \n",
|
|||
|
"96093 0.0 550.000000 550.000000 \n",
|
|||
|
"96094 1.0 279.312905 279.312905 \n",
|
|||
|
"96095 0.0 550.000000 550.000000 \n",
|
|||
|
"\n",
|
|||
|
" time_between_purchase nb_tickets_internet fidelity ... \\\n",
|
|||
|
"0 0.000000 0.0 1 ... \n",
|
|||
|
"1 0.000000 0.0 2 ... \n",
|
|||
|
"2 0.000000 0.0 2 ... \n",
|
|||
|
"3 0.000000 0.0 1 ... \n",
|
|||
|
"4 363.061678 0.0 4 ... \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 0.000000 1.0 2 ... \n",
|
|||
|
"96092 0.000000 1.0 1 ... \n",
|
|||
|
"96093 -1.000000 0.0 1 ... \n",
|
|||
|
"96094 0.000000 1.0 1 ... \n",
|
|||
|
"96095 -1.000000 0.0 2 ... \n",
|
|||
|
"\n",
|
|||
|
" nb_campaigns_opened has_purchased has_purchased_estim score \\\n",
|
|||
|
"0 0.0 0.0 1.0 0.657671 \n",
|
|||
|
"1 0.0 1.0 0.0 0.266538 \n",
|
|||
|
"2 0.0 0.0 0.0 0.214668 \n",
|
|||
|
"3 0.0 0.0 1.0 0.657770 \n",
|
|||
|
"4 0.0 1.0 1.0 0.894173 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 5.0 1.0 1.0 0.623551 \n",
|
|||
|
"96092 9.0 0.0 1.0 0.682521 \n",
|
|||
|
"96093 3.0 0.0 0.0 0.117192 \n",
|
|||
|
"96094 4.0 0.0 1.0 0.625185 \n",
|
|||
|
"96095 4.0 0.0 0.0 0.319585 \n",
|
|||
|
"\n",
|
|||
|
" quartile score_adjusted nb_tickets_projected total_amount_projected \\\n",
|
|||
|
"0 3 0.240397 2.666667 66.666667 \n",
|
|||
|
"1 2 0.056482 0.666667 36.666667 \n",
|
|||
|
"2 1 0.043089 11.333333 53.333333 \n",
|
|||
|
"3 3 0.240478 2.666667 80.000000 \n",
|
|||
|
"4 4 0.581920 22.666667 277.333333 \n",
|
|||
|
"... ... ... ... ... \n",
|
|||
|
"96091 3 0.214369 0.666667 44.873333 \n",
|
|||
|
"96092 3 0.261526 0.666667 40.940000 \n",
|
|||
|
"96093 1 0.021400 0.000000 0.000000 \n",
|
|||
|
"96094 3 0.215545 0.666667 52.953333 \n",
|
|||
|
"96095 2 0.071817 0.000000 0.000000 \n",
|
|||
|
"\n",
|
|||
|
" nb_tickets_expected total_amount_expected \n",
|
|||
|
"0 0.641059 16.026472 \n",
|
|||
|
"1 0.037655 2.071006 \n",
|
|||
|
"2 0.488340 2.298068 \n",
|
|||
|
"3 0.641273 19.238202 \n",
|
|||
|
"4 13.190183 161.385771 \n",
|
|||
|
"... ... ... \n",
|
|||
|
"96091 0.142913 9.619467 \n",
|
|||
|
"96092 0.174351 10.706885 \n",
|
|||
|
"96093 0.000000 0.000000 \n",
|
|||
|
"96094 0.143697 11.413840 \n",
|
|||
|
"96095 0.000000 0.000000 \n",
|
|||
|
"\n",
|
|||
|
"[96096 rows x 26 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 135,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test_segment"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 169,
|
|||
|
"id": "78d12889-b310-4eca-8a2a-8f2535c7b2e5",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>quartile</th>\n",
|
|||
|
" <th>size</th>\n",
|
|||
|
" <th>size_perct</th>\n",
|
|||
|
" <th>nb_tickets_expected</th>\n",
|
|||
|
" <th>total_amount_expected</th>\n",
|
|||
|
" <th>perct_revenue_recovered</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>37410</td>\n",
|
|||
|
" <td>38.929820</td>\n",
|
|||
|
" <td>84.764915</td>\n",
|
|||
|
" <td>1.867190e+03</td>\n",
|
|||
|
" <td>4.384354</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>29517</td>\n",
|
|||
|
" <td>30.716159</td>\n",
|
|||
|
" <td>2899.288091</td>\n",
|
|||
|
" <td>7.446102e+04</td>\n",
|
|||
|
" <td>9.854069</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>20137</td>\n",
|
|||
|
" <td>20.955087</td>\n",
|
|||
|
" <td>10876.786661</td>\n",
|
|||
|
" <td>3.442867e+05</td>\n",
|
|||
|
" <td>22.842135</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>9032</td>\n",
|
|||
|
" <td>9.398934</td>\n",
|
|||
|
" <td>215194.829104</td>\n",
|
|||
|
" <td>9.899418e+06</td>\n",
|
|||
|
" <td>90.107285</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" quartile size size_perct nb_tickets_expected total_amount_expected \\\n",
|
|||
|
"0 1 37410 38.929820 84.764915 1.867190e+03 \n",
|
|||
|
"1 2 29517 30.716159 2899.288091 7.446102e+04 \n",
|
|||
|
"2 3 20137 20.955087 10876.786661 3.442867e+05 \n",
|
|||
|
"3 4 9032 9.398934 215194.829104 9.899418e+06 \n",
|
|||
|
"\n",
|
|||
|
" perct_revenue_recovered \n",
|
|||
|
"0 4.384354 \n",
|
|||
|
"1 9.854069 \n",
|
|||
|
"2 22.842135 \n",
|
|||
|
"3 90.107285 "
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 169,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# compute nb tickets estimated and total amount expected\n",
|
|||
|
"X_test_expected_CA = X_test_segment.groupby(\"quartile\")[[\"nb_tickets_expected\", \"total_amount_expected\"]].sum().reset_index()\n",
|
|||
|
"\n",
|
|||
|
"# number of customers by segment\n",
|
|||
|
"X_test_expected_CA.insert(1, \"size\", X_test_segment.groupby(\"quartile\").size().values)\n",
|
|||
|
"\n",
|
|||
|
"# size in percent of all customers\n",
|
|||
|
"X_test_expected_CA.insert(2, \"size_perct\", 100 * X_test_expected_CA[\"size\"]/X_test_expected_CA[\"size\"].sum())\n",
|
|||
|
"\n",
|
|||
|
"# compute share of CA recovered\n",
|
|||
|
"duration_ref=1.5\n",
|
|||
|
"duration_projection=1\n",
|
|||
|
"duration_ratio=duration_ref/duration_projection\n",
|
|||
|
"\n",
|
|||
|
"X_test_expected_CA[\"perct_revenue_recovered\"] = 100 * duration_ratio * X_test_expected_CA[\"total_amount_expected\"] / \\\n",
|
|||
|
"X_test_segment.groupby(\"quartile\")[\"total_amount\"].sum().values\n",
|
|||
|
"\n",
|
|||
|
"X_test_expected_CA"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "9c471bdd-25c2-420a-a8a1-3add9f003cbc",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Just to try, same computation with score instead of score adjusted\n",
|
|||
|
"\n",
|
|||
|
"seems overestimated : if only 14% of customers come back, how can we recover 22% of the revenue from the segment that is least likely to buy ?? ..."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 201,
|
|||
|
"id": "53684a24-1809-465f-8e21-b9295e34582a",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/tmp/ipykernel_620/3599949626.py:7: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" df_output[\"nb_tickets_projected\"] = df_output[nb_tickets] / duration_ratio\n",
|
|||
|
"/tmp/ipykernel_620/3599949626.py:8: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" df_output[\"total_amount_projected\"] = df_output[total_amount] / duration_ratio\n",
|
|||
|
"/tmp/ipykernel_620/3599949626.py:10: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" df_output[\"nb_tickets_expected\"] = df_output[score_adjusted] * df_output[\"nb_tickets_projected\"]\n",
|
|||
|
"/tmp/ipykernel_620/3599949626.py:11: SettingWithCopyWarning: \n",
|
|||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
|||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
|||
|
"\n",
|
|||
|
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|||
|
" df_output[\"total_amount_expected\"] = df_output[score_adjusted] * df_output[\"total_amount_projected\"]\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>quartile</th>\n",
|
|||
|
" <th>size</th>\n",
|
|||
|
" <th>size_perct</th>\n",
|
|||
|
" <th>nb_tickets_expected</th>\n",
|
|||
|
" <th>total_amount_expected</th>\n",
|
|||
|
" <th>perct_revenue_recovered</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>37410</td>\n",
|
|||
|
" <td>38.929820</td>\n",
|
|||
|
" <td>419.757918</td>\n",
|
|||
|
" <td>9.245081e+03</td>\n",
|
|||
|
" <td>21.708404</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>2</td>\n",
|
|||
|
" <td>29517</td>\n",
|
|||
|
" <td>30.716159</td>\n",
|
|||
|
" <td>11549.060736</td>\n",
|
|||
|
" <td>2.965220e+05</td>\n",
|
|||
|
" <td>39.241320</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>3</td>\n",
|
|||
|
" <td>20137</td>\n",
|
|||
|
" <td>20.955087</td>\n",
|
|||
|
" <td>29997.854731</td>\n",
|
|||
|
" <td>9.547519e+05</td>\n",
|
|||
|
" <td>63.344224</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>4</td>\n",
|
|||
|
" <td>9032</td>\n",
|
|||
|
" <td>9.398934</td>\n",
|
|||
|
" <td>244655.821195</td>\n",
|
|||
|
" <td>1.073601e+07</td>\n",
|
|||
|
" <td>97.722201</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" quartile size size_perct nb_tickets_expected total_amount_expected \\\n",
|
|||
|
"0 1 37410 38.929820 419.757918 9.245081e+03 \n",
|
|||
|
"1 2 29517 30.716159 11549.060736 2.965220e+05 \n",
|
|||
|
"2 3 20137 20.955087 29997.854731 9.547519e+05 \n",
|
|||
|
"3 4 9032 9.398934 244655.821195 1.073601e+07 \n",
|
|||
|
"\n",
|
|||
|
" perct_revenue_recovered \n",
|
|||
|
"0 21.708404 \n",
|
|||
|
"1 39.241320 \n",
|
|||
|
"2 63.344224 \n",
|
|||
|
"3 97.722201 "
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 201,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test_segment_bis = project_tickets_CA (X_test_segment, \"nb_tickets\", \"total_amount\", \"score\", duration_ref=1.5, duration_projection=1)\n",
|
|||
|
"\n",
|
|||
|
"# compute nb tickets estimated and total amount expected\n",
|
|||
|
"X_test_expected_CA_bis = X_test_segment_bis.groupby(\"quartile\")[[\"nb_tickets_expected\", \"total_amount_expected\"]].sum().reset_index()\n",
|
|||
|
"\n",
|
|||
|
"# number of customers by segment\n",
|
|||
|
"X_test_expected_CA_bis.insert(1, \"size\", X_test_segment_bis.groupby(\"quartile\").size().values)\n",
|
|||
|
"\n",
|
|||
|
"# size in percent of all customers\n",
|
|||
|
"X_test_expected_CA_bis.insert(2, \"size_perct\", 100 * X_test_expected_CA_bis[\"size\"]/X_test_expected_CA_bis[\"size\"].sum())\n",
|
|||
|
"\n",
|
|||
|
"# compute share of CA recovered\n",
|
|||
|
"duration_ref=1.5\n",
|
|||
|
"duration_projection=1\n",
|
|||
|
"duration_ratio=duration_ref/duration_projection\n",
|
|||
|
"\n",
|
|||
|
"X_test_expected_CA_bis[\"perct_revenue_recovered\"] = 100 * duration_ratio * X_test_expected_CA_bis[\"total_amount_expected\"] / \\\n",
|
|||
|
"X_test_segment_bis.groupby(\"quartile\")[\"total_amount\"].sum().values\n",
|
|||
|
"\n",
|
|||
|
"X_test_expected_CA_bis"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 203,
|
|||
|
"id": "7dc66d1e-da03-4513-96e4-d9a43ac0a2c8",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"overall share of revenue recovered : 90.26 %\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(\"overall share of revenue recovered : \", round(100 * duration_ratio * X_test_expected_CA_bis[\"total_amount_expected\"].sum() / \\\n",
|
|||
|
"X_test_segment_bis[\"total_amount\"].sum(),2), \"%\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "67cc9c5c-fff2-4d3c-8bfc-b59e06fa6e3a",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "aab045f6-81a1-4c02-9724-eec32b30a355",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "673f2969-7b9a-44c1-abf5-5679fca877ce",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Last pieces of analysis"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 161,
|
|||
|
"id": "2365bb13-0f3f-49d5-bf91-52c92abebcee",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"overall share of revenue recovered : 77.64%\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# global revenue recovered\n",
|
|||
|
"global_revenue_recovered = round(100 * duration_ratio * X_test_expected_CA[\"total_amount_expected\"].sum() / \\\n",
|
|||
|
"X_test_segment[\"total_amount\"].sum(),2)\n",
|
|||
|
"print(f\"overall share of revenue recovered : {global_revenue_recovered}%\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 163,
|
|||
|
"id": "16b17f35-57dd-459a-8989-129143dc0952",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"0 0.018093\n",
|
|||
|
"1 0.721519\n",
|
|||
|
"2 3.336101\n",
|
|||
|
"3 95.924287\n",
|
|||
|
"Name: total_amount_expected, dtype: float64"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 163,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"100 * X_test_expected_CA[\"total_amount_expected\"]/X_test_expected_CA[\"total_amount_expected\"].sum()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 166,
|
|||
|
"id": "dee4a200-eefe-4377-8e80-59ad33edd3c0",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"quartile\n",
|
|||
|
"1 0.320407\n",
|
|||
|
"2 5.685020\n",
|
|||
|
"3 11.339715\n",
|
|||
|
"4 82.654858\n",
|
|||
|
"Name: total_amount, dtype: float64"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 166,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# le segment 4 représente 83% du CA actuel et 96% du CA lié aux anciens clients pour l'année prochaine\n",
|
|||
|
"100 * X_test_segment.groupby(\"quartile\")[\"total_amount\"].sum()/X_test_segment[\"total_amount\"].sum()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"id": "6a30506c-2175-4efd-b3cb-349ad3aaa3e3",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# graphique - loi de Pareto sur le CA généré\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 177,
|
|||
|
"id": "c1e6f020-ef18-40b4-bfc1-19f98cb2796e",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"count 96096.000000\n",
|
|||
|
"mean 207.475735\n",
|
|||
|
"std 4720.046248\n",
|
|||
|
"min -48831.800000\n",
|
|||
|
"25% 0.000000\n",
|
|||
|
"50% 0.000000\n",
|
|||
|
"75% 60.000000\n",
|
|||
|
"max 624890.000000\n",
|
|||
|
"Name: total_amount, dtype: float64"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 177,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test_segment[\"total_amount\"].describe() # total amount négatif ???\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 184,
|
|||
|
"id": "d301a50e-7c68-40f0-9245-a4eea64c387b",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"0 -4.883180e+04\n",
|
|||
|
"1 -6.483180e+04\n",
|
|||
|
"2 -7.683860e+04\n",
|
|||
|
"3 -8.683860e+04\n",
|
|||
|
"4 -9.683860e+04\n",
|
|||
|
" ... \n",
|
|||
|
"96091 1.802247e+07\n",
|
|||
|
"96092 1.839238e+07\n",
|
|||
|
"96093 1.877219e+07\n",
|
|||
|
"96094 1.931270e+07\n",
|
|||
|
"96095 1.993759e+07\n",
|
|||
|
"Name: total_amount, Length: 96096, dtype: float64"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 184,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"np.cumsum(X_test_segment[\"total_amount\"].sort_values()).reset_index()[\"total_amount\"]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 200,
|
|||
|
"id": "864d0206-7f5e-4d33-8f4b-fe685c3bd916",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHRElEQVR4nO3de1xUdf4/8NdwmeE+yh0EQRQMNDVhvWBmWmBabuq2umveLxvdvJBarLtZVl9LV8Xylq2XdTPTTFvrRyZp3lBLELQUFQVBZJBA5SJym/n8/iDGRkBmcIbDDK/n4zGPmjPn8p7j1Hn5+XzO58iEEAJEREREFsJK6gKIiIiIjInhhoiIiCwKww0RERFZFIYbIiIisigMN0RERGRRGG6IiIjIojDcEBERkUWxkbqAlqbRaJCXlwdnZ2fIZDKpyyEiIiI9CCFQWloKX19fWFndv22mzYWbvLw8+Pv7S10GERERNcPVq1fh5+d333XaXLhxdnYGUHtyXFxcJK6GiIiI9FFSUgJ/f3/tdfx+2ly4qeuKcnFxYbghIiIyM/oMKeGAYiIiIrIoDDdERERkURhuiIiIyKIw3BAREZFFYbghIiIii8JwQ0RERBaF4YaIiIgsCsMNERERWRSGGyIiIrIoDDdERERkURhuiIiIyKIw3BAREZFFaXMPziQi/QghUFmjQWW1BhU1alSrNVKX1KimHqTX1GP29HgOH2RN7KWpfTR5iCa3b7rIB63B1OdRn+/Q5HmQ+DvqV8OD/VZMfXz99tHU9o2vIQNgZfWAX/IBSRpuDh8+jKVLlyIlJQUqlQq7d+/GyJEj77vNoUOHEBsbi7Nnz8LX1xfz589HTExMyxRMZCaq1RrcuF2FW+XVKL5zz6u8qt6yssoaVFRrUFGtRmXN3X8SERlKJgNmDgnGnKgQyWqQNNzcvn0bPXv2xJQpU/CnP/2pyfWzsrIwfPhwzJgxA59++imSkpLw0ksvwcPDQ6/ticxdjVqDottVuF5SgYKSSlwvrcD1kkoUlFTULiutxPWSShTdroQQxjuuTAbYWlvp9bfalqbX12xiJaHHXpo6n/rUIZrYiX770GMlIgkJAfwv7VrbDTfDhg3DsGHD9F5/3bp16NixI+Lj4wEAoaGhSE5Oxr/+9a9Gw01lZSUqKyu170tKSh6oZiJTEkLg17JKXL1Rjqs37iDnRjmu3ihHzo1y5N68A1XxHWj0vLhZyQClve3dl4P8t3+30V1ubwtnO1vY2VpDYWOl8087WysobKxhay1rsjmfzEeTIUuP31hTqzR1DP32oU8dD/5dmjxGWwrHD3jOf7lWgvEbfkRFtbQtv2Y15ub48eOIjo7WWTZ06FBs2LAB1dXVsLW1rbfN4sWL8fbbb7dUiUR6qahW40rRbVwuuI3MX8tw+dcyZBbeRuavt1FWWXPfba1kgIezAl4udvB0toOniwJeznbwcqldVveZq6Mc1hL3e1Pr1OS4E6P8bPjba4tcHeUAALXETYxmFW7y8/Ph5eWls8zLyws1NTUoLCyEj49PvW3i4uIQGxurfV9SUgJ/f3+T10oE1IaYi9dLcV5VivP5pb+FmDLk3rzT6N+grGSAj9Ie/q728G/vgI6uDujo5gC/9g7wb28PNycFQwsRtUr+rvb4ZGIE7GylvRnbrMINUP9vHHXNdI39TUShUEChUJi8LmrbhBBQFVfgfH4J0lWlSFeVIF1VgqzC2412I7nY2aCzpxOC3J0Q5OGIzh5O6OzhiI5uDlDYWLfsFyAiMgJnO1tEhXk1vaKJmVW48fb2Rn5+vs6ygoIC2NjYwM3NTaKqqK0RQuDarTs4k1uM01dv4UxuMc6pSlB8p7rB9V0d5Qj1cUZXLxcEezkhyN0RnT2d4OYo5zgWIiITMKtw079/f3z99dc6y/bt24eIiIgGx9sQGcON21U4nXtLG2ROX72FottV9daztpKhs4cjQn1c8JC3C0J9nBHm4wIPZwVDDBFRC5I03JSVleHSpUva91lZWUhLS4Orqys6duyIuLg4XLt2DVu2bAEAxMTEYNWqVYiNjcWMGTNw/PhxbNiwAdu2bZPqK5CFqVFrcD6/FKdybiIl+yZO5dzE1Rt36q1nYyVDV29n9PRvh55+SnTzVaKLpxPsbNmdREQkNUnDTXJyMgYPHqx9Xzfwd9KkSdi8eTNUKhVycnK0n3fq1AkJCQmYM2cOVq9eDV9fX3z44Yec44aa7VZ5FVJzbiEluzbMnM69hfIqdb31gtwd0dO/HXr4KdHTvx3CfFwYZIiIWimZ0GcyAgtSUlICpVKJ4uJiuLi4SF0OtbAbt6twIrMIxy8X4URmETIKyuqt46ywwSMB7RHesT16B7RDD792UNqz25OISEqGXL/NaswNkaFulVfhROYNnMisDTPn80vrrdPJ3RG9O7ZHeEDtK9jTSfLnohARUfMx3JBFKa+qwfHLRTh2ubZ1Jj2/pN58Ml29nNG/sxv6BbniD4GucHPiVAFERJaE4YbMmhAClwrKcOjirzh44Vf8lHUDVfc8vbqLpxP6B7mhX5Ab+ga5wp1hhojIojHckNkpq6xB0qVCHLr4Kw5d+BXXbunezeTX3h4Dgz20rTOeznYSVUpERFJguKFWTwiBjIIyHDhfgEMXfkVy9g1Uq+/2NcltrNAvyA2DQjzweFcPBLk7cl4ZIqI2jOGGWqUatQbJ2Tfx/bnrSEy/juyicp3PA90c8HhXTwwK8UC/IDfYy3lbNhER1WK4oVajolqNIxmF+PYXFX44X4Cb5XcfZyC3sUJkZzcM/i3QBLo7SlgpERG1Zgw3JKnKGjWOZhTi/51RIfHcdZRW1mg/a+dgiyEPeSI6zAsDgz3gqODPlYiImsarBbW4arUGRzMK8c0ZFfady0dpxd1A4+1ih2EPe2NoN29EBLSHjbWVhJUSEZE5YrihFnM2rxhfplzDntPXUFh298GTXi4KDH/YB8/08MEj/u05gR4RET0QhhsyqYLSCvwvNQ9fnsrVmR3Y3UmOpx/2wTM9fRHekYGGiIiMh+GGjK5GrcH+8wX4/KccHM4ohFpTe9u23NoKUWFeGN27Ax4L8YAtu5yIiMgEGG7IaPJu3cHnJ69i+8kcXC+p1C7v3bEdRvf2w4gevlA68AGURERkWgw39EDUGoHDF3/F1h+zceB8AX5rpIGboxx/jvDHmAg/BHk4SVskERG1KQw31CylFdXYkZyLzceycPXG3ccf9A9yw7i+HTG0mzfkNux2IiKilsdwQwa5eqMcm49dwfaTV1H225w0SntbPBfuh7/26YgunmylISIiaTHckF5Ssm/ik8OZ2HcuX9v11NnDEVMf7YTRj/jx8QdERNRqMNxQo4QQOH65CB8duITjmUXa5QOD3THt0U54LNiDt3ATEVGrw3BD9Qgh8MOFAqw6cAmncm4BAGytZRj9iB+mDeyEEC9naQskIiK6D4Yb0hJC4ODFX7F830X8fK0YAKCwscJf+3TE3x4Lgm87e4krJCIiahrDDQEATmQW4V/fXUBy9k0AgIPcGhP6BWDawE7wdLaTuDoiIiL9Mdy0cT/nFmPJd+dxJKMQQG1LzcT+AYgZ1BluTgqJqyMiIjIcw00bdb2kAku/u4AvT+VCCMDGSoa/9PHHK4OD4a1kSw0REZkvhps2pqJajQ1Hs7D6h0sor1IDAJ7t5YvXorqio5uDxNURERE9OIabNkIIgb2/5OPd/5eOa7dqZxTu5d8Ob44IQ++O7SWujoiIyHgYbtqAvFt38M+vfsH+8wUAAG8XO7wx7CH8sacv56khIiKLw3BjwdQagU9PZGPJ3vO4XaWGrbUMLw7qjJjHO8NBzj96IiKyTLzCWaiL10vxxpdntJPwhQe0x/ujH0YwJ+AjIiILx3BjYTQagY1JWViy9wKq1Bo4KWzw+lNd8XzfAHZBERFRm8BwY0Gul1Rg7hentXPWDHnIE++N6g4fJWcWJiKitoPhxkLsO5uP1788g5vl1bCztcI/nwnDuD4dIZOxtYaIiNoWhhszV6PWYOl3F/Dx4UwAQDdfF6z8yyPo4ukkcWVERETSYLgxY4VllXj
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# graphic for cumulated revenue\n",
|
|||
|
"\n",
|
|||
|
"plt.figure()\n",
|
|||
|
"plt.plot(X_test_segment.index/X_test_segment.index.max(), \n",
|
|||
|
" np.cumsum(X_test_segment[\"total_amount\"].sort_values(ascending=False)).values/ \\\n",
|
|||
|
" np.sum(X_test_segment[\"total_amount\"]))\n",
|
|||
|
"plt.xlabel(\"fraction of customers considered\")\n",
|
|||
|
"plt.ylabel(\"cumulated revenue\")\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 198,
|
|||
|
"id": "67981e78-d7a5-432e-b93b-9d0d189f4e5d",
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"96095"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 198,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"X_test_segment.index.max()"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3 (ipykernel)",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.11.6"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 5
|
|||
|
}
|