BDC-team-1/Sport/Modelization/2_Modelization_sport.ipynb

339 lines
9.9 KiB
Plaintext
Raw Normal View History

2024-03-08 14:48:38 +01:00
{
"cells": [
{
"cell_type": "markdown",
"id": "3415114e-9577-4487-89eb-4931620ad9f0",
"metadata": {},
"source": [
"# Predict Sales"
]
},
{
"cell_type": "code",
2024-03-10 11:09:53 +01:00
"execution_count": 106,
2024-03-08 14:48:38 +01:00
"id": "f271eb45-1470-4764-8c2e-31374efa1fe5",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import s3fs\n",
"import re\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.metrics import accuracy_score, confusion_matrix, classification_report\n",
2024-03-10 11:09:53 +01:00
"from sklearn.utils import class_weight\n",
2024-03-08 14:48:38 +01:00
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.preprocessing import OneHotEncoder\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.model_selection import GridSearchCV\n",
"from sklearn.preprocessing import StandardScaler, MaxAbsScaler, MinMaxScaler\n",
"from sklearn.metrics import make_scorer, f1_score, balanced_accuracy_score\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score\n",
2024-03-10 11:09:53 +01:00
"from sklearn.exceptions import ConvergenceWarning, DataConversionWarning\n",
"\n",
2024-03-08 14:48:38 +01:00
"import pickle\n",
2024-03-10 11:09:53 +01:00
"import warnings\n",
2024-03-08 14:48:38 +01:00
"#import scikitplot as skplt"
]
},
2024-03-10 11:09:53 +01:00
{
"cell_type": "code",
"execution_count": 107,
"id": "3fecb606-22e5-4dee-8efa-f8dff0832299",
"metadata": {},
"outputs": [],
"source": [
"warnings.filterwarnings('ignore')\n",
"warnings.filterwarnings(\"ignore\", category=ConvergenceWarning)\n",
"warnings.filterwarnings(\"ignore\", category=DataConversionWarning)"
]
},
2024-03-08 14:48:38 +01:00
{
"cell_type": "markdown",
"id": "ae591854-3003-4c75-a0c7-5abf04246e81",
"metadata": {},
"source": [
"### Load Data"
]
},
{
"cell_type": "code",
2024-03-10 11:09:53 +01:00
"execution_count": 108,
2024-03-08 14:48:38 +01:00
"id": "59dd4694-a812-4923-b995-a2ee86c74f85",
"metadata": {},
"outputs": [],
"source": [
"# Create filesystem object\n",
"S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n",
"fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})"
]
},
{
"cell_type": "code",
2024-03-10 11:09:53 +01:00
"execution_count": 109,
2024-03-08 14:48:38 +01:00
"id": "017f7e9a-3ba0-40fa-bdc8-51b98cc1fdb3",
"metadata": {},
"outputs": [],
"source": [
"def load_train_test():\n",
2024-03-10 11:09:53 +01:00
" BUCKET = \"projet-bdc2324-team1/Generalization/sport\"\n",
" File_path_train = BUCKET + \"/\" + \"Train_set.csv\"\n",
" File_path_test = BUCKET + \"/\" + \"Test_set.csv\"\n",
2024-03-08 14:48:38 +01:00
" \n",
2024-03-10 11:09:53 +01:00
" with fs.open( File_path_train, mode=\"rb\") as file_in:\n",
2024-03-08 14:48:38 +01:00
" dataset_train = pd.read_csv(file_in, sep=\",\")\n",
" dataset_train['y_has_purchased'] = dataset_train['y_has_purchased'].fillna(0)\n",
"\n",
2024-03-10 11:09:53 +01:00
" with fs.open(File_path_test, mode=\"rb\") as file_in:\n",
2024-03-08 14:48:38 +01:00
" dataset_test = pd.read_csv(file_in, sep=\",\")\n",
" dataset_test['y_has_purchased'] = dataset_test['y_has_purchased'].fillna(0)\n",
" \n",
" return dataset_train, dataset_test"
]
},
{
"cell_type": "code",
2024-03-10 11:09:53 +01:00
"execution_count": 110,
2024-03-08 14:48:38 +01:00
"id": "825d14a3-6967-4733-bfd4-64bf61c2bd43",
"metadata": {},
"outputs": [],
"source": [
"def features_target_split(dataset_train, dataset_test):\n",
2024-03-10 11:09:53 +01:00
" features_l = ['nb_tickets', 'nb_purchases', 'total_amount',\n",
" 'nb_suppliers', 'nb_tickets_internet',\n",
" 'opt_in',\n",
" 'nb_campaigns', 'nb_campaigns_opened']\n",
" X_train = dataset_train[features_l]\n",
" y_train = dataset_train[['y_has_purchased']]\n",
2024-03-08 14:48:38 +01:00
"\n",
2024-03-10 11:09:53 +01:00
" X_test = dataset_test[features_l]\n",
" y_test = dataset_test[['y_has_purchased']]\n",
2024-03-08 14:48:38 +01:00
" return X_train, X_test, y_train, y_test"
]
},
2024-03-10 11:09:53 +01:00
{
"cell_type": "code",
"execution_count": null,
"id": "c479b230-b4bd-4cfb-b76b-d9faf6d95772",
"metadata": {},
"outputs": [],
"source": [
"dataset_train, dataset_test = load_train_test()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "69eaec12-b30f-4d30-a461-ea520d5cbf77",
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test, y_train, y_test = features_target_split(dataset_train, dataset_test)"
]
},
2024-03-08 14:48:38 +01:00
{
"cell_type": "markdown",
"id": "a1d6de94-4e11-481a-a0ce-412bf29f692c",
"metadata": {},
"source": [
"### Prepare preprocessing and Hyperparameters"
]
},
2024-03-10 11:09:53 +01:00
{
"cell_type": "code",
"execution_count": null,
"id": "b808da43-c444-4e94-995a-7ec6ccd01e2d",
"metadata": {},
"outputs": [],
"source": [
"# Compute Weights\n",
"weights = class_weight.compute_class_weight(class_weight = 'balanced', classes = np.unique(y_train['y_has_purchased']),\n",
" y = y_train['y_has_purchased'])\n",
"\n",
"weight_dict = {np.unique(y_train['y_has_purchased'])[i]: weights[i] for i in range(len(np.unique(y_train['y_has_purchased'])))}\n",
"weight_dict"
]
},
2024-03-08 14:48:38 +01:00
{
"cell_type": "code",
"execution_count": null,
"id": "b32a79ea-907f-4dfc-9832-6c74bef3200c",
"metadata": {},
"outputs": [],
"source": [
"numeric_features = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers',\n",
2024-03-10 11:09:53 +01:00
" 'nb_tickets_internet', 'nb_campaigns', 'nb_campaigns_opened']\n",
2024-03-08 14:48:38 +01:00
"\n",
"numeric_transformer = Pipeline(steps=[\n",
2024-03-10 11:09:53 +01:00
" #(\"imputer\", SimpleImputer(strategy=\"mean\")), \n",
" (\"scaler\", StandardScaler()) \n",
"])\n",
"\n",
"categorical_features = ['opt_in'] \n",
2024-03-08 14:48:38 +01:00
"\n",
2024-03-10 11:09:53 +01:00
"# Transformer for the categorical features\n",
"categorical_transformer = Pipeline(steps=[\n",
" #(\"imputer\", SimpleImputer(strategy=\"most_frequent\")), # Impute missing values with the most frequent\n",
" (\"onehot\", OneHotEncoder(handle_unknown='ignore', sparse_output=False))\n",
"])\n",
"\n",
"preproc = ColumnTransformer(\n",
" transformers=[\n",
" (\"num\", numeric_transformer, numeric_features),\n",
" (\"cat\", categorical_transformer, categorical_features)\n",
" ]\n",
")"
2024-03-08 14:48:38 +01:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9809a688-bfbc-4685-a77f-17a8b2b79ab3",
"metadata": {},
"outputs": [],
"source": [
"# Set loss\n",
"\n",
"balanced_scorer = make_scorer(balanced_accuracy_score)\n",
"f1_scorer = make_scorer(f1_score)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "206d9a95-7c37-4506-949b-e77d225e42c5",
"metadata": {},
"outputs": [],
"source": [
"# Hyperparameter\n",
"\n",
2024-03-10 11:09:53 +01:00
"param_grid = {'logreg__C': np.logspace(-10, 6, 17, base=2),\n",
" 'logreg__penalty': ['l2', 'L1'],\n",
" 'logreg__class_weight': ['balanced', weight_dict]} "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7ff2f7bd-efc1-4f7c-a3c9-caa916aa2f2b",
"metadata": {},
"outputs": [],
"source": [
"# Pipeline\n",
"\n",
"pipeline = Pipeline(steps=[\n",
" ('preprocessor', preproc),\n",
" ('logreg', LogisticRegression(solver='saga', max_iter=1000)) \n",
"])\n",
"\n",
"pipeline.set_output(transform=\"pandas\")"
2024-03-08 14:48:38 +01:00
]
2024-03-10 11:09:53 +01:00
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b467511-2ae5-4a16-a502-397c3460471d",
"metadata": {},
"outputs": [],
"source": [
"pipeline.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6356e870-0dfc-4e60-9e48-e2de5e7f9f87",
"metadata": {},
"outputs": [],
"source": [
"y_pred = pipeline.predict(X_test)\n",
"\n",
"# Calculate the F1 score\n",
"f1 = f1_score(y_test, y_pred)\n",
"print(f\"F1 Score: {f1}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "09387a09-0d53-4c54-baac-f3c2a57a629a",
"metadata": {},
"outputs": [],
"source": [
"conf_matrix = confusion_matrix(y_test, y_pred)\n",
"sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Class 0', 'Class 1'], yticklabels=['Class 0', 'Class 1'])\n",
"plt.xlabel('Predicted')\n",
"plt.ylabel('Actual')\n",
"plt.title('Confusion Matrix')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "ae8e9bd3-0f6a-4f82-bb4c-470cbdc8d6bb",
"metadata": {},
"source": [
"## Cross Validation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f7fca463-d7d6-493b-8329-fdfa92457f78",
"metadata": {},
"outputs": [],
"source": [
"# Cross validation\n",
"y_train = y_train['y_has_purchased']\n",
"grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring=f1_scorer, error_score='raise',\n",
" n_jobs=-1)\n",
"\n",
"grid_search.fit(X_train, y_train)\n",
"\n",
"# Print the best parameters and the best score\n",
"print(\"Best parameters found: \", grid_search.best_params_)\n",
"print(\"Best cross-validation score: {:.2f}\".format(grid_search.best_score_))\n",
"\n",
"# Evaluate the best model on the test set\n",
"test_score = grid_search.score(X_test, y_test)\n",
"print(\"Test set score: {:.2f}\".format(test_score))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56bd7828-4de1-4166-bea0-5d5e152b9d38",
"metadata": {},
"outputs": [],
"source": []
2024-03-08 14:48:38 +01:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}