diff --git a/Traitement_Fanta.ipynb b/Traitement_Fanta.ipynb index a456ad0..c373bd7 100644 --- a/Traitement_Fanta.ipynb +++ b/Traitement_Fanta.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "id": "ae3af8e6-ced8-4994-8877-fa98d4297cc0", "metadata": {}, "outputs": [], @@ -29,7 +29,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "b6035982-9ff4-4013-9792-2d50e10db3d1", "metadata": {}, "outputs": [ @@ -66,7 +66,7 @@ " 'bdc2324-data/1/1type_ofs.csv']" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -84,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "b86c935d-124f-453f-80dd-83ea6770d09c", "metadata": {}, "outputs": [], @@ -94,7 +94,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 6, "id": "f6d0b27c-0ecd-406b-b042-6c3802dd68fd", "metadata": {}, "outputs": [ @@ -102,7 +102,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_1054/1008972637.py:5: DtypeWarning: Columns (1) have mixed types. Specify dtype option on import or set low_memory=False.\n", + "/tmp/ipykernel_432/1008972637.py:5: DtypeWarning: Columns (1) have mixed types. Specify dtype option on import or set low_memory=False.\n", " globals()[nom_base] = pd.read_csv(file_in, sep=\",\")\n" ] } @@ -117,7 +117,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 7, "id": "2a6b5e22-3370-457f-83b7-dd1e13663229", "metadata": {}, "outputs": [ @@ -127,7 +127,7 @@ "'bdc2324-data/1/1type_ofs.csv'" ] }, - "execution_count": 11, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -136,6 +136,22 @@ "FILE_PATH_S3_fanta" ] }, + { + "cell_type": "markdown", + "id": "79012186-ea51-4252-843e-36a9bbe3847e", + "metadata": {}, + "source": [ + "# Analyse exploratoire " + ] + }, + { + "cell_type": "markdown", + "id": "1a365f29-4766-47d8-9796-24a5271867b2", + "metadata": {}, + "source": [ + "## I. Base type_of_pricing_formulas" + ] + }, { "cell_type": "markdown", "id": "bcc14f93-2289-44eb-816b-a51049b258df", @@ -145,21 +161,17 @@ ] }, { - "cell_type": "code", - "execution_count": 12, - "id": "7f8083ec-3d08-4c4e-8d26-a5a4948c1c02", + "cell_type": "raw", + "id": "ab2ec4c4-9d38-4aeb-8202-9116df3cdd66", "metadata": {}, - "outputs": [], "source": [ "dic_prod_princing=['type_of_pricing_formulas','products_groups','pricing_formulas','product_packs','products']" ] }, { - "cell_type": "code", - "execution_count": 16, - "id": "a6de36fa-3d35-4b20-97f2-3e24d54c7f99", + "cell_type": "markdown", + "id": "88759b4a-2633-478d-abce-29abeac376d1", "metadata": {}, - "outputs": [], "source": [ "def verifier_donnees_manquantes(base):\n", " donnees_manquantes = base.isna().sum()\n", @@ -168,24 +180,9 @@ ] }, { - "cell_type": "code", - "execution_count": 17, - "id": "1c261736-11fb-44f4-a4b1-830cae755a65", + "cell_type": "markdown", + "id": "df3075b4-1490-4cf2-a3fe-c6d4e2144ae3", "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "'str' object has no attribute 'isna'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[17], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m nom_base \u001b[38;5;129;01min\u001b[39;00m dic_prod_princing:\n\u001b[0;32m----> 2\u001b[0m \u001b[43mverifier_donnees_manquantes\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnom_base\u001b[49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[16], line 2\u001b[0m, in \u001b[0;36mverifier_donnees_manquantes\u001b[0;34m(base)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mverifier_donnees_manquantes\u001b[39m(base):\n\u001b[0;32m----> 2\u001b[0m donnees_manquantes \u001b[38;5;241m=\u001b[39m \u001b[43mbase\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43misna\u001b[49m()\u001b[38;5;241m.\u001b[39msum()\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDonnées manquantes pour la base :\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m(donnees_manquantes)\n", - "\u001b[0;31mAttributeError\u001b[0m: 'str' object has no attribute 'isna'" - ] - } - ], "source": [ "for nom_base in dic_prod_princing:\n", " verifier_donnees_manquantes(nom_base)" @@ -193,7 +190,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 8, "id": "e0c67c01-e837-4772-b070-d1be0d895a36", "metadata": {}, "outputs": [ @@ -209,19 +206,942 @@ "dtype: int64" ] }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#detection des Nan d\n", + "\n", + "type_of_pricing_formulas.isna().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "3eaffaa6-1164-4ee9-a671-8b5eb3df797d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtype_of_idpricing_formula_idcreated_atupdated_atidentifier
0111272021-01-05 11:55:51.226960+01:002021-01-05 11:55:51.226960+01:00cf2918b25e6dcf8c30798ca05c8ec8ed
12124252021-01-05 11:55:51.235606+01:002021-01-05 11:55:51.235606+01:002c8ee3f7c1487d792b6c946314e681f2
23129372021-01-05 11:55:51.240114+01:002021-01-05 11:55:51.240114+01:0044e55c85e4eb59b3c3c01c137a6b25fc
341482021-01-05 11:55:51.244638+01:002021-01-05 11:55:51.244638+01:00ee3bb93b7e2217cd86a49d547fedf6c6
45172021-01-05 11:55:51.249409+01:002021-01-05 11:55:51.249409+01:00ae701668574f1a653d2b21ddfd250620
.....................
563564466562022-02-18 16:15:58.872249+01:002022-02-18 16:15:58.872249+01:00f669824cdca9de9697f07ff3ba365a8d
564565466072022-02-18 16:15:59.231018+01:002022-02-18 16:15:59.231018+01:006421c8146a598758139153b0e7b921ea
565566467002022-02-18 16:15:59.724812+01:002022-02-18 16:15:59.724812+01:006823f6d4d80b322fbfb8b83545a9f96d
566567481182022-02-18 16:16:00.163381+01:002022-02-18 16:16:00.163381+01:0035cfc12584b4d1b94795d97fd0aa56e8
5675697481572023-03-13 11:30:29.480161+01:002023-03-13 11:30:29.480161+01:0055863541f33fd229ac9b54d9ec1f4874
\n", + "

568 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " id type_of_id pricing_formula_id created_at \\\n", + "0 1 1 127 2021-01-05 11:55:51.226960+01:00 \n", + "1 2 1 2425 2021-01-05 11:55:51.235606+01:00 \n", + "2 3 1 2937 2021-01-05 11:55:51.240114+01:00 \n", + "3 4 1 48 2021-01-05 11:55:51.244638+01:00 \n", + "4 5 1 7 2021-01-05 11:55:51.249409+01:00 \n", + ".. ... ... ... ... \n", + "563 564 4 6656 2022-02-18 16:15:58.872249+01:00 \n", + "564 565 4 6607 2022-02-18 16:15:59.231018+01:00 \n", + "565 566 4 6700 2022-02-18 16:15:59.724812+01:00 \n", + "566 567 4 8118 2022-02-18 16:16:00.163381+01:00 \n", + "567 569 7 48157 2023-03-13 11:30:29.480161+01:00 \n", + "\n", + " updated_at identifier \n", + "0 2021-01-05 11:55:51.226960+01:00 cf2918b25e6dcf8c30798ca05c8ec8ed \n", + "1 2021-01-05 11:55:51.235606+01:00 2c8ee3f7c1487d792b6c946314e681f2 \n", + "2 2021-01-05 11:55:51.240114+01:00 44e55c85e4eb59b3c3c01c137a6b25fc \n", + "3 2021-01-05 11:55:51.244638+01:00 ee3bb93b7e2217cd86a49d547fedf6c6 \n", + "4 2021-01-05 11:55:51.249409+01:00 ae701668574f1a653d2b21ddfd250620 \n", + ".. ... ... \n", + "563 2022-02-18 16:15:58.872249+01:00 f669824cdca9de9697f07ff3ba365a8d \n", + "564 2022-02-18 16:15:59.231018+01:00 6421c8146a598758139153b0e7b921ea \n", + "565 2022-02-18 16:15:59.724812+01:00 6823f6d4d80b322fbfb8b83545a9f96d \n", + "566 2022-02-18 16:16:00.163381+01:00 35cfc12584b4d1b94795d97fd0aa56e8 \n", + "567 2023-03-13 11:30:29.480161+01:00 55863541f33fd229ac9b54d9ec1f4874 \n", + "\n", + "[568 rows x 6 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type_of_pricing_formulas" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "57298669-8d55-40d5-a5aa-4c5df984eec7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "id int64\n", + "type_of_id int64\n", + "pricing_formula_id int64\n", + "created_at object\n", + "updated_at object\n", + "identifier object\n", + "dtype: object" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#type des variables\n", + "\n", + "type_of_pricing_formulas.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c11850cb-8833-44c0-a11d-9695d620a42b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtype_of_idpricing_formula_idcreated_atupdated_atidentifier
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [id, type_of_id, pricing_formula_id, created_at, updated_at, identifier]\n", + "Index: []" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Identification des doublons\n", + "type_of_pricing_formulas.loc[type_of_pricing_formulas['id'].duplicated(keep=False),:]" + ] + }, + { + "cell_type": "markdown", + "id": "7a40de03-5e18-4d3d-a0f8-da960c29fad8", + "metadata": {}, + "source": [ + "## II.products_groups" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "89909175-6734-4e8e-8632-d6f8ca812388", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "id 0\n", + "percent_price 0\n", + "max_price 0\n", + "min_price 0\n", + "category_id 0\n", + "pricing_formula_id 0\n", + "representation_id 0\n", + "created_at 0\n", + "updated_at 0\n", + "dtype: int64" + ] + }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "type_of_pricing_formulas.isna().sum()" + "#detection des Nan \n", + "\n", + "products_groups.isna().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "6a187170-96c4-48d2-9568-b270f67e2c27", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "id int64\n", + "percent_price float64\n", + "max_price float64\n", + "min_price float64\n", + "category_id int64\n", + "pricing_formula_id int64\n", + "representation_id int64\n", + "created_at object\n", + "updated_at object\n", + "dtype: object" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#type des variables\n", + "\n", + "products_groups.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "2fba2cb0-a6a4-43b2-a854-3be07939c28b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idpercent_pricemax_pricemin_pricecategory_idpricing_formula_idrepresentation_idcreated_atupdated_at
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [id, percent_price, max_price, min_price, category_id, pricing_formula_id, representation_id, created_at, updated_at]\n", + "Index: []" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Identification des doublons\n", + "products_groups.loc[products_groups[['id','pricing_formula_id','representation_id']].duplicated(keep=False),:]" + ] + }, + { + "cell_type": "markdown", + "id": "5312ac13-8fbd-4c3f-a98a-8c28f079a599", + "metadata": {}, + "source": [ + "## III.pricing_formulas" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "3383a773-0817-4b23-84e7-8d5d0c74b179", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idnamecreated_atupdated_atextra_fieldidentifier
041909visite mécènes 1h302022-07-08 07:08:26.802266+02:002022-07-08 07:08:26.802266+02:00NaN21d4b0043c12b21952b0797d140991a1
1502entree mucem tp( expo picasso)2020-09-03 13:43:59.816765+02:002022-02-18 15:57:55.792581+01:00NaN223b09e6c3f1f75dbf8df019af97a555
2504nombre de personnes cinema2020-09-03 13:43:59.818198+02:002021-01-25 19:16:05.187114+01:00NaNba33b7b6d225a75d713a356b49c4d915
3117spectacle tarif e famille tr2020-09-03 13:21:21.400249+02:002023-03-13 11:30:29.525335+01:00NaNa00b61ad933518856f86e63ca91a5750
41496billet nb famille mecene 1a2020-09-03 14:29:33.320952+02:002021-01-25 19:23:06.816402+01:00NaN7f6013803c242253a5ccde80f780984f
.....................
551529billet nb expo gr2020-09-03 13:43:59.835944+02:002022-02-18 15:57:55.792581+01:00NaN7d888e42abe101fc8b21dc88948c8b74
5523153nb pers visite scolaire rep2020-09-03 16:32:37.068864+02:002022-02-18 15:57:55.792581+01:00NaN3cf21731c25eee650d5b232ee4780563
5535847visite scolaire rep1h002021-06-09 18:10:49.742531+02:002022-02-18 15:55:03.576236+01:00NaNa7bb5a6892d55f0d5ee4ce5786ae5fc6
5545840france billet - entree ts2021-06-09 18:10:49.737576+02:002022-02-18 16:16:00.199543+01:00NaN4c53016fc65847646f600eff853593e5
5555863france billet - entree tp2021-06-09 18:12:49.269924+02:002022-02-18 16:16:00.199543+01:00NaN90e642c0e1ef6bc9f2bc43089798de00
\n", + "

556 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " id name created_at \\\n", + "0 41909 visite mécènes 1h30 2022-07-08 07:08:26.802266+02:00 \n", + "1 502 entree mucem tp( expo picasso) 2020-09-03 13:43:59.816765+02:00 \n", + "2 504 nombre de personnes cinema 2020-09-03 13:43:59.818198+02:00 \n", + "3 117 spectacle tarif e famille tr 2020-09-03 13:21:21.400249+02:00 \n", + "4 1496 billet nb famille mecene 1a 2020-09-03 14:29:33.320952+02:00 \n", + ".. ... ... ... \n", + "551 529 billet nb expo gr 2020-09-03 13:43:59.835944+02:00 \n", + "552 3153 nb pers visite scolaire rep 2020-09-03 16:32:37.068864+02:00 \n", + "553 5847 visite scolaire rep1h00 2021-06-09 18:10:49.742531+02:00 \n", + "554 5840 france billet - entree ts 2021-06-09 18:10:49.737576+02:00 \n", + "555 5863 france billet - entree tp 2021-06-09 18:12:49.269924+02:00 \n", + "\n", + " updated_at extra_field \\\n", + "0 2022-07-08 07:08:26.802266+02:00 NaN \n", + "1 2022-02-18 15:57:55.792581+01:00 NaN \n", + "2 2021-01-25 19:16:05.187114+01:00 NaN \n", + "3 2023-03-13 11:30:29.525335+01:00 NaN \n", + "4 2021-01-25 19:23:06.816402+01:00 NaN \n", + ".. ... ... \n", + "551 2022-02-18 15:57:55.792581+01:00 NaN \n", + "552 2022-02-18 15:57:55.792581+01:00 NaN \n", + "553 2022-02-18 15:55:03.576236+01:00 NaN \n", + "554 2022-02-18 16:16:00.199543+01:00 NaN \n", + "555 2022-02-18 16:16:00.199543+01:00 NaN \n", + "\n", + " identifier \n", + "0 21d4b0043c12b21952b0797d140991a1 \n", + "1 223b09e6c3f1f75dbf8df019af97a555 \n", + "2 ba33b7b6d225a75d713a356b49c4d915 \n", + "3 a00b61ad933518856f86e63ca91a5750 \n", + "4 7f6013803c242253a5ccde80f780984f \n", + ".. ... \n", + "551 7d888e42abe101fc8b21dc88948c8b74 \n", + "552 3cf21731c25eee650d5b232ee4780563 \n", + "553 a7bb5a6892d55f0d5ee4ce5786ae5fc6 \n", + "554 4c53016fc65847646f600eff853593e5 \n", + "555 90e642c0e1ef6bc9f2bc43089798de00 \n", + "\n", + "[556 rows x 6 columns]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pricing_formulas" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "d8130c73-6c5f-45b1-93ae-db7679c8ca56", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "id 0.0\n", + "name 0.0\n", + "created_at 0.0\n", + "updated_at 0.0\n", + "extra_field 1.0\n", + "identifier 0.0\n", + "dtype: float64" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#detection des Nan \n", + "\n", + "pricing_formulas.isna().sum()/pricing_formulas.shape[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "44f1dbfd-c3cf-464b-9877-f37fcc61da92", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "id int64\n", + "name object\n", + "created_at object\n", + "updated_at object\n", + "extra_field float64\n", + "identifier object\n", + "dtype: object" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#type des variables\n", + "\n", + "pricing_formulas.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "6784b41b-da74-4fae-832e-16641ae710c1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idnamecreated_atupdated_atextra_fieldidentifier
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [id, name, created_at, updated_at, extra_field, identifier]\n", + "Index: []" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Identification des doublons\n", + "pricing_formulas.loc[pricing_formulas[['id']].duplicated(keep=False),:]" + ] + }, + { + "cell_type": "markdown", + "id": "2145b0a4-b73d-4530-8c12-a78b1cf86eae", + "metadata": {}, + "source": [ + "## IV. product_packs" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "e36b07a7-4f0b-4711-86a0-12a1d8158eef", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "id 0.0\n", + "name 1.0\n", + "type_of 0.0\n", + "created_at 0.0\n", + "updated_at 0.0\n", + "identifier 0.0\n", + "dtype: float64" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#detection des Nan \n", + "\n", + "product_packs.isna().sum()/product_packs.shape[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "8707396a-f86b-476d-a9f9-c39f8de1d02e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "id int64\n", + "name float64\n", + "type_of int64\n", + "created_at object\n", + "updated_at object\n", + "identifier object\n", + "dtype: object" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#type des variables\n", + "\n", + "product_packs.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "4b102bd3-924b-43da-8915-be7664c23f97", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idnametype_ofcreated_atupdated_atidentifier
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [id, name, type_of, created_at, updated_at, identifier]\n", + "Index: []" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Identification des doublons\n", + "product_packs.loc[product_packs[['id']].duplicated(keep=False),:]" + ] + }, + { + "cell_type": "markdown", + "id": "cfe0c525-896b-4731-b38e-306ff6ea0c65", + "metadata": {}, + "source": [ + "## V.products" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "968beb24-f70c-4eb6-8b1e-4b04bc7fe9c9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "id 0.0\n", + "amount 0.0\n", + "is_full_price 0.0\n", + "representation_id 0.0\n", + "pricing_formula_id 0.0\n", + "created_at 0.0\n", + "updated_at 0.0\n", + "category_id 0.0\n", + "apply_price 0.0\n", + "products_group_id 0.0\n", + "product_pack_id 0.0\n", + "extra_field 1.0\n", + "amount_consumption 1.0\n", + "identifier 0.0\n", + "dtype: float64" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#detection des Nan \n", + "\n", + "products.isna().sum()/products.shape[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "15bc6ac6-67e8-4e2c-9641-7ee8bb2581a3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "id int64\n", + "amount float64\n", + "is_full_price bool\n", + "representation_id int64\n", + "pricing_formula_id int64\n", + "created_at object\n", + "updated_at object\n", + "category_id int64\n", + "apply_price float64\n", + "products_group_id int64\n", + "product_pack_id int64\n", + "extra_field float64\n", + "amount_consumption float64\n", + "identifier object\n", + "dtype: object" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#type des variables\n", + "\n", + "products.dtypes" + ] + }, + { + "cell_type": "markdown", + "id": "46aad10f-8530-410e-872b-bb253c553a46", + "metadata": {}, + "source": [ + "# jointure entre les bases" ] }, { "cell_type": "code", "execution_count": null, - "id": "57298669-8d55-40d5-a5aa-4c5df984eec7", + "id": "eac537e1-bbad-45bc-a85c-12b675da1088", "metadata": {}, "outputs": [], "source": []