diff --git a/0_4_Generate_stat_desc.py b/0_4_Generate_stat_desc.py index 6dc3695..6266060 100644 --- a/0_4_Generate_stat_desc.py +++ b/0_4_Generate_stat_desc.py @@ -17,7 +17,7 @@ S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"] fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL}) companies = {'musee' : ['1', '2', '3', '4'], # , '101' - 'sport': ['5'], + 'sport': ['5', '6', '7', '8', '9'], 'musique' : ['10', '11', '12', '13', '14']} diff --git a/utils_stat_desc.py b/utils_stat_desc.py index f8d33ad..add280b 100644 --- a/utils_stat_desc.py +++ b/utils_stat_desc.py @@ -19,10 +19,10 @@ def load_files(nb_compagnie): # début de la boucle permettant de générer des datasets agrégés pour les 5 compagnies de spectacle for directory_path in nb_compagnie: - df_customerplus_clean_0 = display_databases(directory_path, file_name = "customerplus_cleaned") - df_campaigns_brut = display_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at']) - df_products_purchased_reduced = display_databases(directory_path, file_name = "products_purchased_reduced", datetime_col = ['purchase_date']) - df_target_information = display_databases(directory_path, file_name = "target_information") + df_customerplus_clean_0 = display_input_databases(directory_path, file_name = "customerplus_cleaned") + df_campaigns_brut = display_input_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at']) + df_products_purchased_reduced = display_input_databases(directory_path, file_name = "products_purchased_reduced", datetime_col = ['purchase_date']) + df_target_information = display_input_databases(directory_path, file_name = "target_information") df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_brut) df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_reduced)