fix errors

This commit is contained in:
Alexis REVELLE 2024-03-14 23:02:50 +00:00
parent db6eaaaa8d
commit 15c102682a
3 changed files with 121 additions and 58 deletions

File diff suppressed because one or more lines are too long

View File

@ -1,6 +1,7 @@
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import warnings
@ -16,7 +17,7 @@ S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
'sport': ['5', '6'],
'sport': ['5'],
'musique' : ['10', '11', '12', '13', '14']}
@ -32,17 +33,17 @@ outlier_list = outlier_detection(tickets, list_of_comp)
# Identify valid customer (customer who bought tickets after starting date or received mails after starting date)
customer_valid_list = valid_customer_detection(products, campaigns_brut)
# Identify customer who bought during the period of y
consumer_target_period = identify_purchase_during_target_periode(products)
databases = [customer, campaigns_kpi, campaigns_brut, tickets, products]
for dataset in databases:
dataset['customer_id'] = dataset['customer_id'].apply(lambda x: remove_elements(x, outlier_list))# remove outlier
dataset['customer_id'] = dataset['customer_id'].isin(customer_valid_list) # keep only valid customer
dataset['has_purchased_target_period'] = np.where(dataset['customer_id'].isin(customer_valid_list), 1, 0)
dataset = dataset[dataset['customer_id'].isin(customer_valid_list)] # keep only valid customer
#print(f'shape of {dataset} : ', dataset.shape)
# Identify customer who bought during the period of y
customer_target_period = identify_purchase_during_target_periode(products)
customer['has_purchased_target_period'] = np.where(customer['customer_id'].isin(customer_target_period), 1, 0)
# Generate graph and automatically saved them in the bucket
compute_nb_clients(customer, type_of_activity)
@ -52,16 +53,16 @@ mailing_consent(customer, type_of_activity)
mailing_consent_by_target(customer)
#gender_bar(customer, type_of_activity)
gender_bar(customer, type_of_activity)
#country_bar(customer, type_of_activity)
country_bar(customer, type_of_activity)
#lazy_customer_plot(campaigns_kpi, type_of_activity)
lazy_customer_plot(campaigns_kpi, type_of_activity)
#campaigns_effectiveness(customer, type_of_activity)
#sale_dynamics(products, campaigns_brut, type_of_activity)
sale_dynamics(products, campaigns_brut, type_of_activity)
#tickets_internet(tickets, type_of_activity)
tickets_internet(tickets, type_of_activity)
#box_plot_price_tickets(tickets, type_of_activity)
box_plot_price_tickets(tickets, type_of_activity)

View File

@ -1,6 +1,7 @@
import pandas as pd
import os
import s3fs
import io
import warnings
from datetime import date, timedelta, datetime
import numpy as np
@ -53,10 +54,14 @@ def load_files(nb_compagnie):
def save_file_s3(File_name, type_of_activity):
image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png')
image_buffer.seek(0)
FILE_PATH = f"projet-bdc2324-team1/stat_desc/{type_of_activity}/"
FILE_PATH_OUT_S3 = FILE_PATH + File_name + type_of_activity + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as file_out:
plt.savefig(file_out)
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read())
plt.close()
def outlier_detection(tickets, company_list, show_diagram=False):
@ -72,7 +77,7 @@ def outlier_detection(tickets, company_list, show_diagram=False):
df_circulaire = total_amount_share_index['total_amount'].sort_values(axis = 0, ascending = False)
#print('df circulaire : ', df_circulaire.head())
top = df_circulaire[:1]
print('top : ', top)
#print('top : ', top)
outlier_list.append(top.index[0])
rest = df_circulaire[1:]
@ -101,9 +106,10 @@ def valid_customer_detection(products, campaigns_brut):
def identify_purchase_during_target_periode(products):
products_target_period = products[(products['purchase_date']>="2022-11-01") & (products['purchase_date']<="2023-11-01")]
consumer_target_period = products_target_period['customer_id'].to_list()
return consumer_target_period
products_target_period = products[(products['purchase_date']>="2022-11-01")
& (products['purchase_date']<="2023-11-01")]
customer_target_period = products_target_period['customer_id'].to_list()
return customer_target_period
def remove_elements(lst, elements_to_remove):
@ -117,7 +123,7 @@ def compute_nb_clients(customer, type_of_activity):
plt.xlabel('Company')
plt.ylabel("Number of clients (thousands)")
plt.title(f"Number of clients for {type_of_activity}")
plt.xticks(company_nb_clients["number_company"], ["{}".format(i) for i in company_nb_clients["number_company"]])
plt.show()
save_file_s3("nb_clients_", type_of_activity)
@ -129,7 +135,7 @@ def maximum_price_paid(customer, type_of_activity):
plt.xlabel('Company')
plt.ylabel("Maximal price of a ticket Prix")
plt.title(f"Maximal price of a ticket for {type_of_activity}")
plt.xticks(company_max_price["number_company"], ["{}".format(i) for i in company_max_price["number_company"]])
plt.show()
save_file_s3("Maximal_price_", type_of_activity)
@ -140,9 +146,9 @@ def mailing_consent(customer, type_of_activity):
plt.bar(mailing_consent["number_company"], mailing_consent["opt_in"])
plt.xlabel('Company')
plt.ylabel('Company')
plt.ylabel('Consent')
plt.title(f'Consent of mailing for {type_of_activity}')
plt.xticks(mailing_consent["number_company"], ["{}".format(i) for i in mailing_consent["number_company"]])
plt.show()
save_file_s3("mailing_consent_", type_of_activity)
@ -169,7 +175,7 @@ def mailing_consent_by_target(customer):
# Ajout des étiquettes, de la légende, etc.
ax.set_xlabel('Company')
ax.set_ylabel('Company')
ax.set_ylabel('Consent')
ax.set_title(f'Consent of mailing according to target for {type_of_activity}')
ax.set_xticks([pos + bar_width / 2 for pos in np.arange(len(categories))])
ax.set_xticklabels(categories)
@ -183,6 +189,7 @@ def mailing_consent_by_target(customer):
def gender_bar(customer, type_of_activity):
company_genders = customer.groupby("number_company")[["gender_male", "gender_female", "gender_other"]].mean().reset_index()
# Création du barplot
plt.bar(company_genders["number_company"], company_genders["gender_male"], label = "Homme")
plt.bar(company_genders["number_company"], company_genders["gender_female"],
bottom = company_genders["gender_male"], label = "Femme")
@ -193,12 +200,10 @@ def gender_bar(customer, type_of_activity):
plt.ylabel("Gender")
plt.title(f"Gender of Customer for {type_of_activity}")
plt.legend()
plt.xticks(company_genders["number_company"], ["{}".format(i) for i in company_genders["number_company"]])
plt.show()
save_file_s3("gender_bar_", type_of_activity)
def country_bar(customer, type_of_activity):
company_country_fr = customer.groupby("number_company")["country_fr"].mean().reset_index()
@ -207,7 +212,7 @@ def country_bar(customer, type_of_activity):
plt.xlabel('Company')
plt.ylabel("Share of French Customer")
plt.title(f"Share of French Customer for {type_of_activity}")
plt.xticks(company_country_fr["number_company"], ["{}".format(i) for i in company_country_fr["number_company"]])
plt.show()
save_file_s3("country_bar_", type_of_activity)
@ -219,7 +224,7 @@ def lazy_customer_plot(campaigns_kpi, type_of_activity):
plt.xlabel('Company')
plt.ylabel("Share of Customers who did not open mail")
plt.title(f"Share of Customers who did not open mail for {type_of_activity}")
plt.xticks(company_lazy_customers["number_company"], ["{}".format(i) for i in company_lazy_customers["number_company"]])
plt.show()
save_file_s3("lazy_customer_", type_of_activity)
@ -234,6 +239,7 @@ def campaigns_effectiveness(customer, type_of_activity):
plt.ylabel("Number of Customers (thousands)")
plt.title(f"Number of Customers of have bought or have received mails for {type_of_activity}")
plt.legend()
plt.xticks(campaigns_effectiveness["number_company"], ["{}".format(i) for i in campaigns_effectiveness["number_company"]])
plt.show()
save_file_s3("campaigns_effectiveness_", type_of_activity)
@ -243,45 +249,56 @@ def sale_dynamics(products, campaigns_brut, type_of_activity):
purchase_min.rename(columns = {'purchase_date' : 'first_purchase_event'}, inplace = True)
purchase_min['first_purchase_event'] = pd.to_datetime(purchase_min['first_purchase_event'])
purchase_min['first_purchase_month'] = pd.to_datetime(purchase_min['first_purchase_event'].dt.strftime('%Y-%m'))
# Mois du premier mails
first_mail_received = campaigns_brut.groupby('customer_id')['sent_at'].min().reset_index()
first_mail_received.rename(columns = {'sent_at' : 'first_email_reception'}, inplace = True)
first_mail_received['first_email_reception'] = pd.to_datetime(first_mail_received['first_email_reception'])
first_mail_received['first_email_month'] = pd.to_datetime(first_mail_received['first_email_reception'].dt.strftime('%Y-%m'))
# Fusion
known_customer = pd.merge(purchase_min[['customer_id', 'first_purchase_month']],
first_mail_received[['customer_id', 'first_email_month']], on = 'customer_id', how = 'outer')
first_mail_received[['customer_id', 'first_email_month']], on = 'customer_id', how = 'outer')
# Mois à partir duquel le client est considere comme connu
known_customer['known_date'] = pd.to_datetime(known_customer[['first_email_month', 'first_purchase_month']].min(axis = 1), utc = True, format = 'ISO8601')
# Nombre de commande par mois
purchases_count = pd.merge(products[['customer_id', 'purchase_id', 'purchase_date']].drop_duplicates(), known_customer[['customer_id', 'known_date']], on = ['customer_id'], how = 'inner')
purchases_count['is_customer_known'] = purchases_count['purchase_date'] > purchases_count['known_date'] + pd.DateOffset(months=1)
purchases_count['purchase_date_month'] = pd.to_datetime(purchases_count['purchase_date'].dt.strftime('%Y-%m'))
purchases_count = purchases_count[purchases_count['customer_id'] != 1]
# Nombre de commande par mois par type de client
nb_purchases_graph = purchases_count.groupby(['purchase_date_month', 'is_customer_known'])['purchase_id'].count().reset_index()
nb_purchases_graph.rename(columns = {'purchase_id' : 'nb_purchases'}, inplace = True)
nb_purchases_graph_2 = purchases_count.groupby(['purchase_date_month', 'is_customer_known'])['customer_id'].nunique().reset_index()
nb_purchases_graph_2.rename(columns = {'customer_id' : 'nb_new_customer'}, inplace = True)
# Graphique en nombre de commande
purchases_graph = nb_purchases_graph
purchases_graph_used = purchases_graph[purchases_graph["purchase_date_month"] >= datetime(2021,3,1)]
purchases_graph_used_0 = purchases_graph_used[purchases_graph_used["is_customer_known"]==False]
purchases_graph_used_1 = purchases_graph_used[purchases_graph_used["is_customer_known"]==True]
plt.bar(purchases_graph_used_0["purchase_date_month"], purchases_graph_used_0["nb_purchases"], width=12, label = "Nouveau client")
plt.bar(purchases_graph_used_0["purchase_date_month"], purchases_graph_used_1["nb_purchases"],
bottom = purchases_graph_used_0["nb_purchases"], width=12, label = "Ancien client")
merged_data = pd.merge(purchases_graph_used_0, purchases_graph_used_1, on="purchase_date_month", suffixes=("_new", "_old"))
plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_new"], width=12, label="Nouveau client")
plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_old"],
bottom=merged_data["nb_purchases_new"], width=12, label="Ancien client")
# commande pr afficher slt
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%b%y'))
plt.xlabel('Month')
plt.ylabel("Number of Sales")
plt.title(f"Number of Sales for {type_of_activity}")
plt.legend()
plt.show()
save_file_s3("sale_dynamics_", type_of_activity)
@ -295,7 +312,7 @@ def tickets_internet(tickets, type_of_activity):
plt.xlabel('Company')
plt.ylabel("Share of Tickets Bought Online")
plt.title(f"Share of Tickets Bought Online for {type_of_activity}")
plt.xticks(nb_tickets_internet["number_company"], ["{}".format(i) for i in nb_tickets_internet["number_company"]])
plt.show()
save_file_s3("tickets_internet_", type_of_activity)
@ -304,7 +321,7 @@ def box_plot_price_tickets(tickets, type_of_activity):
price_tickets = tickets[(tickets['total_amount'] > 0)]
sns.boxplot(data=price_tickets, y="total_amount", x="number_company", showfliers=False, showmeans=True)
plt.title(f"Box plot of price tickets for {type_of_activity}")
plt.xticks(price_tickets["number_company"], ["{}".format(i) for i in price_tickets["number_company"]])
plt.show()
save_file_s3("box_plot_price_tickets_", type_of_activity)