fix errors
This commit is contained in:
parent
db6eaaaa8d
commit
15c102682a
File diff suppressed because one or more lines are too long
|
@ -1,6 +1,7 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
import io
|
||||
import s3fs
|
||||
import re
|
||||
import warnings
|
||||
|
@ -16,7 +17,7 @@ S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
|
|||
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
|
||||
|
||||
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
|
||||
'sport': ['5', '6'],
|
||||
'sport': ['5'],
|
||||
'musique' : ['10', '11', '12', '13', '14']}
|
||||
|
||||
|
||||
|
@ -32,17 +33,17 @@ outlier_list = outlier_detection(tickets, list_of_comp)
|
|||
# Identify valid customer (customer who bought tickets after starting date or received mails after starting date)
|
||||
customer_valid_list = valid_customer_detection(products, campaigns_brut)
|
||||
|
||||
# Identify customer who bought during the period of y
|
||||
consumer_target_period = identify_purchase_during_target_periode(products)
|
||||
|
||||
databases = [customer, campaigns_kpi, campaigns_brut, tickets, products]
|
||||
|
||||
for dataset in databases:
|
||||
dataset['customer_id'] = dataset['customer_id'].apply(lambda x: remove_elements(x, outlier_list))# remove outlier
|
||||
dataset['customer_id'] = dataset['customer_id'].isin(customer_valid_list) # keep only valid customer
|
||||
dataset['has_purchased_target_period'] = np.where(dataset['customer_id'].isin(customer_valid_list), 1, 0)
|
||||
dataset = dataset[dataset['customer_id'].isin(customer_valid_list)] # keep only valid customer
|
||||
#print(f'shape of {dataset} : ', dataset.shape)
|
||||
|
||||
|
||||
# Identify customer who bought during the period of y
|
||||
customer_target_period = identify_purchase_during_target_periode(products)
|
||||
customer['has_purchased_target_period'] = np.where(customer['customer_id'].isin(customer_target_period), 1, 0)
|
||||
|
||||
# Generate graph and automatically saved them in the bucket
|
||||
compute_nb_clients(customer, type_of_activity)
|
||||
|
||||
|
@ -52,16 +53,16 @@ mailing_consent(customer, type_of_activity)
|
|||
|
||||
mailing_consent_by_target(customer)
|
||||
|
||||
#gender_bar(customer, type_of_activity)
|
||||
gender_bar(customer, type_of_activity)
|
||||
|
||||
#country_bar(customer, type_of_activity)
|
||||
country_bar(customer, type_of_activity)
|
||||
|
||||
#lazy_customer_plot(campaigns_kpi, type_of_activity)
|
||||
lazy_customer_plot(campaigns_kpi, type_of_activity)
|
||||
|
||||
#campaigns_effectiveness(customer, type_of_activity)
|
||||
|
||||
#sale_dynamics(products, campaigns_brut, type_of_activity)
|
||||
sale_dynamics(products, campaigns_brut, type_of_activity)
|
||||
|
||||
#tickets_internet(tickets, type_of_activity)
|
||||
tickets_internet(tickets, type_of_activity)
|
||||
|
||||
#box_plot_price_tickets(tickets, type_of_activity)
|
||||
box_plot_price_tickets(tickets, type_of_activity)
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import pandas as pd
|
||||
import os
|
||||
import s3fs
|
||||
import io
|
||||
import warnings
|
||||
from datetime import date, timedelta, datetime
|
||||
import numpy as np
|
||||
|
@ -53,10 +54,14 @@ def load_files(nb_compagnie):
|
|||
|
||||
|
||||
def save_file_s3(File_name, type_of_activity):
|
||||
image_buffer = io.BytesIO()
|
||||
plt.savefig(image_buffer, format='png')
|
||||
image_buffer.seek(0)
|
||||
FILE_PATH = f"projet-bdc2324-team1/stat_desc/{type_of_activity}/"
|
||||
FILE_PATH_OUT_S3 = FILE_PATH + File_name + type_of_activity + '.png'
|
||||
with fs.open(FILE_PATH_OUT_S3, 'wb') as file_out:
|
||||
plt.savefig(file_out)
|
||||
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
|
||||
s3_file.write(image_buffer.read())
|
||||
plt.close()
|
||||
|
||||
|
||||
def outlier_detection(tickets, company_list, show_diagram=False):
|
||||
|
@ -72,7 +77,7 @@ def outlier_detection(tickets, company_list, show_diagram=False):
|
|||
df_circulaire = total_amount_share_index['total_amount'].sort_values(axis = 0, ascending = False)
|
||||
#print('df circulaire : ', df_circulaire.head())
|
||||
top = df_circulaire[:1]
|
||||
print('top : ', top)
|
||||
#print('top : ', top)
|
||||
outlier_list.append(top.index[0])
|
||||
rest = df_circulaire[1:]
|
||||
|
||||
|
@ -101,9 +106,10 @@ def valid_customer_detection(products, campaigns_brut):
|
|||
|
||||
|
||||
def identify_purchase_during_target_periode(products):
|
||||
products_target_period = products[(products['purchase_date']>="2022-11-01") & (products['purchase_date']<="2023-11-01")]
|
||||
consumer_target_period = products_target_period['customer_id'].to_list()
|
||||
return consumer_target_period
|
||||
products_target_period = products[(products['purchase_date']>="2022-11-01")
|
||||
& (products['purchase_date']<="2023-11-01")]
|
||||
customer_target_period = products_target_period['customer_id'].to_list()
|
||||
return customer_target_period
|
||||
|
||||
|
||||
def remove_elements(lst, elements_to_remove):
|
||||
|
@ -117,7 +123,7 @@ def compute_nb_clients(customer, type_of_activity):
|
|||
plt.xlabel('Company')
|
||||
plt.ylabel("Number of clients (thousands)")
|
||||
plt.title(f"Number of clients for {type_of_activity}")
|
||||
|
||||
plt.xticks(company_nb_clients["number_company"], ["{}".format(i) for i in company_nb_clients["number_company"]])
|
||||
plt.show()
|
||||
save_file_s3("nb_clients_", type_of_activity)
|
||||
|
||||
|
@ -129,7 +135,7 @@ def maximum_price_paid(customer, type_of_activity):
|
|||
plt.xlabel('Company')
|
||||
plt.ylabel("Maximal price of a ticket Prix")
|
||||
plt.title(f"Maximal price of a ticket for {type_of_activity}")
|
||||
|
||||
plt.xticks(company_max_price["number_company"], ["{}".format(i) for i in company_max_price["number_company"]])
|
||||
plt.show()
|
||||
save_file_s3("Maximal_price_", type_of_activity)
|
||||
|
||||
|
@ -140,9 +146,9 @@ def mailing_consent(customer, type_of_activity):
|
|||
plt.bar(mailing_consent["number_company"], mailing_consent["opt_in"])
|
||||
|
||||
plt.xlabel('Company')
|
||||
plt.ylabel('Company')
|
||||
plt.ylabel('Consent')
|
||||
plt.title(f'Consent of mailing for {type_of_activity}')
|
||||
|
||||
plt.xticks(mailing_consent["number_company"], ["{}".format(i) for i in mailing_consent["number_company"]])
|
||||
plt.show()
|
||||
save_file_s3("mailing_consent_", type_of_activity)
|
||||
|
||||
|
@ -169,7 +175,7 @@ def mailing_consent_by_target(customer):
|
|||
|
||||
# Ajout des étiquettes, de la légende, etc.
|
||||
ax.set_xlabel('Company')
|
||||
ax.set_ylabel('Company')
|
||||
ax.set_ylabel('Consent')
|
||||
ax.set_title(f'Consent of mailing according to target for {type_of_activity}')
|
||||
ax.set_xticks([pos + bar_width / 2 for pos in np.arange(len(categories))])
|
||||
ax.set_xticklabels(categories)
|
||||
|
@ -183,6 +189,7 @@ def mailing_consent_by_target(customer):
|
|||
def gender_bar(customer, type_of_activity):
|
||||
company_genders = customer.groupby("number_company")[["gender_male", "gender_female", "gender_other"]].mean().reset_index()
|
||||
|
||||
# Création du barplot
|
||||
plt.bar(company_genders["number_company"], company_genders["gender_male"], label = "Homme")
|
||||
plt.bar(company_genders["number_company"], company_genders["gender_female"],
|
||||
bottom = company_genders["gender_male"], label = "Femme")
|
||||
|
@ -193,12 +200,10 @@ def gender_bar(customer, type_of_activity):
|
|||
plt.ylabel("Gender")
|
||||
plt.title(f"Gender of Customer for {type_of_activity}")
|
||||
plt.legend()
|
||||
|
||||
plt.xticks(company_genders["number_company"], ["{}".format(i) for i in company_genders["number_company"]])
|
||||
|
||||
plt.show()
|
||||
save_file_s3("gender_bar_", type_of_activity)
|
||||
|
||||
|
||||
|
||||
def country_bar(customer, type_of_activity):
|
||||
company_country_fr = customer.groupby("number_company")["country_fr"].mean().reset_index()
|
||||
|
@ -207,7 +212,7 @@ def country_bar(customer, type_of_activity):
|
|||
plt.xlabel('Company')
|
||||
plt.ylabel("Share of French Customer")
|
||||
plt.title(f"Share of French Customer for {type_of_activity}")
|
||||
|
||||
plt.xticks(company_country_fr["number_company"], ["{}".format(i) for i in company_country_fr["number_company"]])
|
||||
plt.show()
|
||||
save_file_s3("country_bar_", type_of_activity)
|
||||
|
||||
|
@ -219,7 +224,7 @@ def lazy_customer_plot(campaigns_kpi, type_of_activity):
|
|||
plt.xlabel('Company')
|
||||
plt.ylabel("Share of Customers who did not open mail")
|
||||
plt.title(f"Share of Customers who did not open mail for {type_of_activity}")
|
||||
|
||||
plt.xticks(company_lazy_customers["number_company"], ["{}".format(i) for i in company_lazy_customers["number_company"]])
|
||||
plt.show()
|
||||
save_file_s3("lazy_customer_", type_of_activity)
|
||||
|
||||
|
@ -234,6 +239,7 @@ def campaigns_effectiveness(customer, type_of_activity):
|
|||
plt.ylabel("Number of Customers (thousands)")
|
||||
plt.title(f"Number of Customers of have bought or have received mails for {type_of_activity}")
|
||||
plt.legend()
|
||||
plt.xticks(campaigns_effectiveness["number_company"], ["{}".format(i) for i in campaigns_effectiveness["number_company"]])
|
||||
plt.show()
|
||||
save_file_s3("campaigns_effectiveness_", type_of_activity)
|
||||
|
||||
|
@ -243,45 +249,56 @@ def sale_dynamics(products, campaigns_brut, type_of_activity):
|
|||
purchase_min.rename(columns = {'purchase_date' : 'first_purchase_event'}, inplace = True)
|
||||
purchase_min['first_purchase_event'] = pd.to_datetime(purchase_min['first_purchase_event'])
|
||||
purchase_min['first_purchase_month'] = pd.to_datetime(purchase_min['first_purchase_event'].dt.strftime('%Y-%m'))
|
||||
|
||||
|
||||
# Mois du premier mails
|
||||
first_mail_received = campaigns_brut.groupby('customer_id')['sent_at'].min().reset_index()
|
||||
first_mail_received.rename(columns = {'sent_at' : 'first_email_reception'}, inplace = True)
|
||||
first_mail_received['first_email_reception'] = pd.to_datetime(first_mail_received['first_email_reception'])
|
||||
first_mail_received['first_email_month'] = pd.to_datetime(first_mail_received['first_email_reception'].dt.strftime('%Y-%m'))
|
||||
|
||||
|
||||
# Fusion
|
||||
known_customer = pd.merge(purchase_min[['customer_id', 'first_purchase_month']],
|
||||
first_mail_received[['customer_id', 'first_email_month']], on = 'customer_id', how = 'outer')
|
||||
|
||||
first_mail_received[['customer_id', 'first_email_month']], on = 'customer_id', how = 'outer')
|
||||
|
||||
# Mois à partir duquel le client est considere comme connu
|
||||
|
||||
known_customer['known_date'] = pd.to_datetime(known_customer[['first_email_month', 'first_purchase_month']].min(axis = 1), utc = True, format = 'ISO8601')
|
||||
|
||||
|
||||
# Nombre de commande par mois
|
||||
purchases_count = pd.merge(products[['customer_id', 'purchase_id', 'purchase_date']].drop_duplicates(), known_customer[['customer_id', 'known_date']], on = ['customer_id'], how = 'inner')
|
||||
purchases_count['is_customer_known'] = purchases_count['purchase_date'] > purchases_count['known_date'] + pd.DateOffset(months=1)
|
||||
purchases_count['purchase_date_month'] = pd.to_datetime(purchases_count['purchase_date'].dt.strftime('%Y-%m'))
|
||||
purchases_count = purchases_count[purchases_count['customer_id'] != 1]
|
||||
|
||||
# Nombre de commande par mois par type de client
|
||||
nb_purchases_graph = purchases_count.groupby(['purchase_date_month', 'is_customer_known'])['purchase_id'].count().reset_index()
|
||||
nb_purchases_graph.rename(columns = {'purchase_id' : 'nb_purchases'}, inplace = True)
|
||||
|
||||
nb_purchases_graph_2 = purchases_count.groupby(['purchase_date_month', 'is_customer_known'])['customer_id'].nunique().reset_index()
|
||||
nb_purchases_graph_2.rename(columns = {'customer_id' : 'nb_new_customer'}, inplace = True)
|
||||
|
||||
|
||||
# Graphique en nombre de commande
|
||||
purchases_graph = nb_purchases_graph
|
||||
|
||||
purchases_graph_used = purchases_graph[purchases_graph["purchase_date_month"] >= datetime(2021,3,1)]
|
||||
purchases_graph_used_0 = purchases_graph_used[purchases_graph_used["is_customer_known"]==False]
|
||||
purchases_graph_used_1 = purchases_graph_used[purchases_graph_used["is_customer_known"]==True]
|
||||
|
||||
plt.bar(purchases_graph_used_0["purchase_date_month"], purchases_graph_used_0["nb_purchases"], width=12, label = "Nouveau client")
|
||||
plt.bar(purchases_graph_used_0["purchase_date_month"], purchases_graph_used_1["nb_purchases"],
|
||||
bottom = purchases_graph_used_0["nb_purchases"], width=12, label = "Ancien client")
|
||||
|
||||
merged_data = pd.merge(purchases_graph_used_0, purchases_graph_used_1, on="purchase_date_month", suffixes=("_new", "_old"))
|
||||
|
||||
plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_new"], width=12, label="Nouveau client")
|
||||
plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_old"],
|
||||
bottom=merged_data["nb_purchases_new"], width=12, label="Ancien client")
|
||||
|
||||
|
||||
# commande pr afficher slt
|
||||
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%b%y'))
|
||||
|
||||
plt.xlabel('Month')
|
||||
plt.ylabel("Number of Sales")
|
||||
plt.title(f"Number of Sales for {type_of_activity}")
|
||||
plt.legend()
|
||||
|
||||
plt.show()
|
||||
save_file_s3("sale_dynamics_", type_of_activity)
|
||||
|
||||
|
@ -295,7 +312,7 @@ def tickets_internet(tickets, type_of_activity):
|
|||
plt.xlabel('Company')
|
||||
plt.ylabel("Share of Tickets Bought Online")
|
||||
plt.title(f"Share of Tickets Bought Online for {type_of_activity}")
|
||||
|
||||
plt.xticks(nb_tickets_internet["number_company"], ["{}".format(i) for i in nb_tickets_internet["number_company"]])
|
||||
plt.show()
|
||||
save_file_s3("tickets_internet_", type_of_activity)
|
||||
|
||||
|
@ -304,7 +321,7 @@ def box_plot_price_tickets(tickets, type_of_activity):
|
|||
price_tickets = tickets[(tickets['total_amount'] > 0)]
|
||||
sns.boxplot(data=price_tickets, y="total_amount", x="number_company", showfliers=False, showmeans=True)
|
||||
plt.title(f"Box plot of price tickets for {type_of_activity}")
|
||||
|
||||
plt.xticks(price_tickets["number_company"], ["{}".format(i) for i in price_tickets["number_company"]])
|
||||
plt.show()
|
||||
save_file_s3("box_plot_price_tickets_", type_of_activity)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user