Modification de la partie product purchased : ajout start et end date, open + cleaning de la base ticket_1 de l'entreprise 101

This commit is contained in:
Antoine JOUBREL 2024-02-27 21:01:20 +00:00
parent d0c980f788
commit 23981e3cbc
3 changed files with 112 additions and 77 deletions

View File

@ -30,33 +30,43 @@ def export_dataset(df, output_name):
df.to_csv(file_out, index = False)
## 1 - Cleaning of the datasets
for tenant_id in ("101"): #"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14",
for tenant_id in ("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "101"):
# Timer
start = time.time()
# Cleaning customerplus
df1_customerplus_clean = preprocessing_customerplus(directory_path = tenant_id)
# # Cleaning customerplus
# df1_customerplus_clean = preprocessing_customerplus(directory_path = tenant_id)
## Exportation
export_dataset(df = df1_customerplus_clean, output_name = "0_Input/Company_"+ tenant_id +"/customerplus_cleaned.csv")
# ## Exportation
# export_dataset(df = df1_customerplus_clean, output_name = "0_Input/Company_"+ tenant_id +"/customerplus_cleaned.csv")
# Cleaning target area
df1_target_information = preprocessing_target_area(directory_path = tenant_id)
## Exportation
export_dataset(df = df1_target_information, output_name = "0_Input/Company_"+ tenant_id +"/target_information.csv")
# # Cleaning target area
# df1_target_information = preprocessing_target_area(directory_path = tenant_id)
# ## Exportation
# export_dataset(df = df1_target_information, output_name = "0_Input/Company_"+ tenant_id +"/target_information.csv")
# Cleaning campaign area
df1_campaigns_information = preprocessing_campaigns_area(directory_path = tenant_id)
## Exportation
export_dataset(df = df1_campaigns_information, output_name = "0_Input/Company_"+ tenant_id +"/campaigns_information.csv")
# # Cleaning campaign area
# df1_campaigns_information = preprocessing_campaigns_area(directory_path = tenant_id)
# ## Exportation
# export_dataset(df = df1_campaigns_information, output_name = "0_Input/Company_"+ tenant_id +"/campaigns_information.csv")
## Exportation
# export_dataset(df = df1_campaigns_information, output_name = "1_Temp/Company 1 - Campaigns dataset clean.csv")
if tenant_id == "101":
# Cleaning product area
products_purchased_reduced, products_purchased_reduced_1 = uniform_product_df(directory_path = tenant_id)
# Exportation
export_dataset(df = products_purchased_reduced, output_name = "0_Input/Company_"+ tenant_id +"/products_purchased_reduced.csv")
export_dataset(df = products_purchased_reduced_1, output_name = "0_Input/Company_"+ tenant_id +"/products_purchased_reduced_1.csv")
else :
# Cleaning product area
products_purchased_reduced = uniform_product_df(directory_path = tenant_id)
# Exportation
export_dataset(df = products_purchased_reduced, output_name = "0_Input/Company_"+ tenant_id +"/products_purchased_reduced.csv")
# Cleaning product area
df1_products_purchased_reduced = uniform_product_df(directory_path = tenant_id)
## Exportation
export_dataset(df = df1_products_purchased_reduced, output_name = "0_Input/Company_"+ tenant_id +"/products_purchased_reduced.csv")
#Exportation
# export_dataset(df = df1_products_purchased_reduced, output_name = "1_Temp/Company 1 - Purchases.csv")
print("Time to run the cleaning of company ", tenant_id , " : " ,time.time() - start)

View File

@ -13,7 +13,7 @@ S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import cleaning and merge functions
# Import KPI construction functions
exec(open('0_KPI_functions.py').read())
# Ignore warning

View File

@ -79,48 +79,6 @@ def preprocessing_customerplus(directory_path):
return customerplus_copy
def preprocessing_tickets_area(directory_path):
# Datasets loading
tickets = load_dataset(directory_path, name = "tickets")
purchases = load_dataset(directory_path, name = "purchases")
suppliers = load_dataset(directory_path, name = "suppliers")
# type_ofs = load_dataset(directory_path, name = "type_ofs")
# Base des tickets
tickets = tickets[['id', 'purchase_id', 'product_id', 'is_from_subscription', 'type_of', 'supplier_id']]
tickets.rename(columns = {'id' : 'ticket_id'}, inplace = True)
# Base des fournisseurs
suppliers = suppliers[['id', 'name']]
suppliers.rename(columns = {'name' : 'supplier_name'}, inplace = True)
suppliers['supplier_name'] = suppliers['supplier_name'].fillna('')
# Base des types de billets
# type_ofs = type_ofs[['id', 'name', 'children']]
# type_ofs.rename(columns = {'name' : 'type_of_ticket_name'}, inplace = True)
# Base des achats
# Nettoyage de la date d'achat
# cleaning_date(purchases, 'purchase_date')
# Selection des variables
purchases = purchases[['id', 'purchase_date', 'customer_id']]
# Fusions
# Fusion avec fournisseurs
ticket_information = pd.merge(tickets, suppliers, left_on = 'supplier_id', right_on = 'id', how = 'inner')
ticket_information.drop(['supplier_id', 'id'], axis = 1, inplace=True)
# Fusion avec type de tickets
# ticket_information = pd.merge(ticket_information, type_ofs, left_on = 'type_of', right_on = 'id', how = 'inner')
# ticket_information.drop(['type_of', 'id'], axis = 1, inplace=True)
# Fusion avec achats
ticket_information = pd.merge(ticket_information, purchases, left_on = 'purchase_id', right_on = 'id', how = 'inner')
ticket_information.drop(['id'], axis = 1, inplace=True)
return ticket_information
def preprocessing_target_area(directory_path):
# Datasets loading
@ -169,6 +127,69 @@ def preprocessing_campaigns_area(directory_path):
return campaigns_full
def preprocessing_tickets_area(directory_path):
# Datasets loading
tickets = load_dataset(directory_path, name = "tickets")
# Supplementary tickets dataset for tenant 101
if directory_path == '101':
tickets_1 = load_dataset(directory_path, name = "tickets_1")
purchases = load_dataset(directory_path, name = "purchases")
suppliers = load_dataset(directory_path, name = "suppliers")
# type_ofs = load_dataset(directory_path, name = "type_ofs")
# Base des tickets
tickets = tickets[['id', 'purchase_id', 'product_id', 'is_from_subscription', 'type_of', 'supplier_id']]
tickets.rename(columns = {'id' : 'ticket_id'}, inplace = True)
if directory_path == '101':
tickets_1 = tickets[['id', 'purchase_id', 'product_id', 'is_from_subscription', 'type_of', 'supplier_id']]
tickets_1.rename(columns = {'id' : 'ticket_id'}, inplace = True)
# Base des fournisseurs
suppliers = suppliers[['id', 'name']]
suppliers.rename(columns = {'name' : 'supplier_name'}, inplace = True)
suppliers['supplier_name'] = suppliers['supplier_name'].fillna('')
# Base des types de billets
# type_ofs = type_ofs[['id', 'name', 'children']]
# type_ofs.rename(columns = {'name' : 'type_of_ticket_name'}, inplace = True)
# Base des achats
# Nettoyage de la date d'achat
# cleaning_date(purchases, 'purchase_date')
# Selection des variables
purchases = purchases[['id', 'purchase_date', 'customer_id']]
# Fusions
# Fusion avec fournisseurs
ticket_information = pd.merge(tickets, suppliers, left_on = 'supplier_id', right_on = 'id', how = 'inner')
ticket_information.drop(['supplier_id', 'id'], axis = 1, inplace=True)
# Fusion avec type de tickets
# ticket_information = pd.merge(ticket_information, type_ofs, left_on = 'type_of', right_on = 'id', how = 'inner')
# ticket_information.drop(['type_of', 'id'], axis = 1, inplace=True)
# Fusion avec achats
ticket_information = pd.merge(ticket_information, purchases, left_on = 'purchase_id', right_on = 'id', how = 'inner')
ticket_information.drop(['id'], axis = 1, inplace=True)
if directory_path == '101':
# Fusion avec fournisseurs
ticket_information_1 = pd.merge(tickets_1, suppliers, left_on = 'supplier_id', right_on = 'id', how = 'inner')
ticket_information_1.drop(['supplier_id', 'id'], axis = 1, inplace=True)
# Fusion avec achats
ticket_information_1 = pd.merge(ticket_information_1, purchases, left_on = 'purchase_id', right_on = 'id', how = 'inner')
ticket_information_1.drop(['id'], axis = 1, inplace=True)
return ticket_information, ticket_information_1
else :
return ticket_information
def create_products_table(directory_path):
# first merge products and categories
print("first merge products and categories")
@ -179,8 +200,7 @@ def create_products_table(directory_path):
categories = categories.drop(columns = ['extra_field', 'quota'])
#Merge
products_theme = products.merge(categories, how = 'left', left_on = 'category_id',
right_on = 'id', suffixes=('_products', '_categories'))
products_theme = products.merge(categories, how = 'left', left_on = 'category_id', right_on = 'id', suffixes=('_products', '_categories'))
products_theme = products_theme.rename(columns = {"name" : "name_categories"})
# Second merge products_theme and type of categories
@ -195,7 +215,6 @@ def create_products_table(directory_path):
products_theme = order_columns_id(products_theme)
return products_theme
def create_events_table(directory_path):
# first merge events and seasons :
print("first merge events and seasons : ")
@ -233,16 +252,12 @@ def create_events_table(directory_path):
def create_representations_table(directory_path):
representations = load_dataset(directory_path, name = "representations")
representations = representations.drop(columns = ['serial', 'open', 'satisfaction', 'is_display', 'expected_filling',
'max_filling', 'extra_field', 'start_date_time', 'end_date_time', 'name',
'representation_type_id'])
representations = representations.drop(columns = ['serial', 'satisfaction', 'is_display', 'expected_filling', 'max_filling', 'extra_field', 'name', 'representation_type_id']) # 'start_date_time', 'end_date_time', 'open'
representations_capacity = load_dataset(directory_path, name = "representation_category_capacities")
representations_capacity = representations_capacity.drop(columns = ['expected_filling', 'max_filling'])
representations_theme = representations.merge(representations_capacity, how='left',
left_on='id', right_on='representation_id',
suffixes=('_representation', '_representation_cap'))
representations_theme = representations.merge(representations_capacity, how='left', left_on='id', right_on='representation_id', suffixes=('_representation', '_representation_cap'))
# index cleaning
representations_theme = representations_theme.drop(columns = ["id_representation"])
representations_theme = order_columns_id(representations_theme)
@ -255,20 +270,30 @@ def uniform_product_df(directory_path):
products_theme = create_products_table(directory_path)
representation_theme = create_representations_table(directory_path)
events_theme = create_events_table(directory_path)
ticket_information = preprocessing_tickets_area(directory_path)
if directory_path == '101':
ticket_information, ticket_information_1 = preprocessing_tickets_area(directory_path)
else :
ticket_information = preprocessing_tickets_area(directory_path)
print("Products theme columns : ", products_theme.columns)
print("\n Representation theme columns : ", representation_theme.columns)
print("\n Events theme columns : ", events_theme.columns)
products_global = pd.merge(products_theme, representation_theme, how='left',
on= ["representation_id", "category_id"])
products_global = pd.merge(products_theme, representation_theme, how='left', on= ["representation_id", "category_id"])
products_global = pd.merge(products_global, events_theme, how='left', on='event_id',
suffixes = ("_representation", "_event"))
products_global = pd.merge(products_global, events_theme, how='left', on='event_id', suffixes = ("_representation", "_event"))
products_purchased = pd.merge(ticket_information, products_global, left_on = 'product_id', right_on = 'id_products', how = 'inner')
products_purchased_reduced = products_purchased[['ticket_id', 'customer_id', 'purchase_id' ,'event_type_id', 'supplier_name', 'purchase_date', 'amount', 'is_full_price', 'name_event_types', 'name_facilities', 'name_categories', 'name_events', 'name_seasons']] # 'type_of_ticket_name', 'children',
return products_purchased_reduced
products_purchased_reduced = products_purchased[['ticket_id', 'customer_id', 'purchase_id' ,'event_type_id', 'supplier_name', 'purchase_date', 'amount', 'is_full_price', 'name_event_types', 'name_facilities', 'name_categories', 'name_events', 'name_seasons', 'start_date_time', 'end_date_time', 'open']] # 'type_of_ticket_name', 'children',
if directory_path == '101':
products_purchased_1 = pd.merge(ticket_information_1, products_global, left_on = 'product_id', right_on = 'id_products', how = 'inner')
products_purchased_reduced_1 = products_purchased_1[['ticket_id', 'customer_id', 'purchase_id' ,'event_type_id', 'supplier_name', 'purchase_date', 'amount', 'is_full_price', 'name_event_types', 'name_facilities', 'name_categories', 'name_events', 'name_seasons', 'start_date_time', 'end_date_time', 'open']] # 'type_of_ticket_name', 'children',
return products_purchased_reduced, products_purchased_reduced_1
else :
return products_purchased_reduced