From 2bf81015ac40fee7a7204628279395310e68cda0 Mon Sep 17 00:00:00 2001 From: frodrigue-ensae Date: Tue, 5 Mar 2024 02:51:39 +0000 Subject: [PATCH] stat --- Spectacle/Stat_desc.ipynb | 103 +++++++++++++++++++++++++++++++++++++- 1 file changed, 101 insertions(+), 2 deletions(-) diff --git a/Spectacle/Stat_desc.ipynb b/Spectacle/Stat_desc.ipynb index 4172196..a1b04cc 100644 --- a/Spectacle/Stat_desc.ipynb +++ b/Spectacle/Stat_desc.ipynb @@ -4203,7 +4203,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 61, "id": "eb6355e0-3f8c-47d9-a5ee-d349040dcf51", "metadata": {}, "outputs": [ @@ -4213,7 +4213,7 @@ "Text(0.5, 1.0, \"Boite à moustache du chiffre d'affaire selon les compagnies de spectacles\")" ] }, - "execution_count": 46, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" }, @@ -4360,6 +4360,105 @@ "plt.show()" ] }, + { + "cell_type": "code", + "execution_count": 65, + "id": "254875ac-95e4-44fa-9f02-6cec144e4bde", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "la p-value associé à la stat de fisher est superieure à 5% donc il n y a pas de lien entre les entreprise et le taux de ticket acheté en ligne\n" + ] + } + ], + "source": [ + "#test anova entre les entreprise de spectacle et taux d'achat de ticket en ligne\n", + "import statsmodels.api as sm\n", + "from statsmodels.formula.api import ols\n", + "model = ols('Taux_ticket_internet ~ number_compagny', data=purchase_spectacle).fit()\n", + "anova_table = sm.stats.anova_lm(model, typ=2)\n", + "print(\"la p-value associé à la stat de fisher est superieure à 5% donc il n y a pas de lien entre les entreprise et le taux de ticket acheté en ligne\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "59a95248-0261-4970-9e91-e43d50cf4d69", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Boite à moustache du temps ecoulés entre le premier et le dernier achat selon les compagnies de spectacles')" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAHGCAYAAACM3i2bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvz0lEQVR4nO3dd3gUVfv/8c+SnhAWkpCGSei9g9JUQGpoYkNAKYJgRRGw8KACPhRFaV9QEaUJEbAAKiBIVwggVYqIoFQhBCkJoYSQnN8f/rIPSxJIINmhvF/XtRfMmTMz95Sd2Ttn5ozNGGMEAAAAAIAF8lkdAAAAAADgzkVSCgAAAACwDEkpAAAAAMAyJKUAAAAAAMuQlAIAAAAALENSCgAAAACwDEkpAAAAAMAyJKUAAAAAAMuQlAIAAAAALHPHJaVbt26V3W7X//3f/1kdCoBckJqaqvr16+vee+/VhQsXrA4HAAAAOZSjpHTq1Kmy2WxOn8KFC6tBgwaaP3/+dQdRtGhRde3a1TF85MgRDRo0SFu3br3ueWalatWqmjt3rgYMGKC1a9fm+vxvRsOGDdO8efPyfDk2m00vvvhini/nassfNGhQrs3viy++0JgxY3Jtfrg+V54frjRgwADFx8fru+++k7e3t+sCy4G8PKdlZdCgQbLZbC5b3s2ma9euKlq0qNVhOPntt980aNAg7d+/P1v106+52a1/vVauXCmbzaaVK1fm6XJu1uXfiKJFi6pVq1a5Nr9z585p0KBBlmyL/fv3y2azaerUqS5f9p1+vrpVWHmMXOlWPm/kVGxsrAYNGqTTp0/n6XJcdc3JynW1lE6ZMkVr165VbGysJk6cKDc3N7Vu3Vrff//9dQUxd+5cvfXWW47hI0eOaPDgwXn2A+6BBx7Qp59+qvbt2+v48eN5soybiauS0tsNSenNb8GCBZo+fboWLVqkgIAAq8PJUl6f05DRW2+9pblz51odhpPffvtNgwcPtuyCf7OqXr261q5dq+rVq1sdiuXOnTunwYMH3xE/tHHrCQsL09q1a9WyZUurQ7mjxMbGavDgwXmelFrN/XomqlixomrWrOkYbt68uQoVKqSZM2eqdevWOZ5ftWrVrieMG9K+fXu1b9/e5csFkHtatmypv//+2+owct25c+fk6+trdRi5ytXrVKJEiVyd3+24T/JKTrdVgQIFVLt27Vxb/vnz5+Xt7U3LG5DLvLy8cvW7ClwuV54p9fb2lqenpzw8PJzKT548qeeff15FihSRp6enihcvrgEDBig5Odmp3uW3561cuVJ33323JOmpp55y3CZ8+W2ZGzduVJs2bRQQECBvb29Vq1ZNX375ZbZiHTx4sGrVqqWAgAAVKFBA1atX16RJk2SMuea0Xbt2Vf78+fX777+rWbNm8vPzU1hYmN59911J0rp163TvvffKz89PpUuX1rRp0zLMY8eOHXrwwQdVqFAheXt7q2rVqhnqZdV8ntmtClu2bFGrVq0UHBwsLy8vhYeHq2XLljp8+LCkf29pPXv2rKZNm+bYlg0aNJAkHT9+XM8//7zKly+v/PnzKzg4WA888IB+/vnnDHEnJyfrnXfeUbly5eTt7a3AwEA1bNhQsbGxGepOnz5d5cqVk6+vr6pUqZLprd179uxRx44dHXGXK1dOH3744VW3f7rExET16NFDgYGByp8/v5o3b64//vgjQ72sbt/Lzm1CDRo00IIFC3TgwAGn29XTXbx4UUOGDFHZsmXl5eWlwoUL66mnnsrQ8p5+a9f8+fNVrVo1+fj4qFy5co5tMnXqVJUrV05+fn665557tHHjxgzrkD9/fu3cuVONGjWSn5+fChcurBdffFHnzp1zqvvVV1+pVq1astvt8vX1VfHixdWtW7errqckGWP00UcfqWrVqvLx8VGhQoX06KOP6q+//spQd9GiRWrUqJFjGeXKldPw4cOd6nz33XeqU6eOfH195e/vryZNmmS4Vf5G9o307zHQr18/FStWTJ6enipSpIh69+6ts2fPunSbNGjQQBUrVtSGDRt03333OZbx7rvvKi0tTdK1z2np+3j79u1q2rSp/P391ahRI0nZP85yYvbs2apTp478/PyUP39+NWvWTFu2bLnmdOnnpSVLluipp55SQECA/Pz81Lp16yy3y08//aS6devK19fXsd2zu+/SHweYMmWKypQpIx8fH9WsWVPr1q2TMUbvv/++ihUrpvz58+uBBx7Q3r17nabP7BjL6X7NLP6sXOu6NHXqVD322GOSpIYNGzqOg+u5DW7p0qVq1KiRChQoIF9fX9WrV0/Lli3L1rS///67mjdvLl9fXwUFBenZZ5/VmTNnrns56d/ZzZs369FHH1WhQoUcfxBIP/8tWrRI1atXl4+Pj8qWLavJkyc7zSOr2/Cyc61PPy5//PFHdevWTYULF5avr2+G3xnpLly4oL59+6pq1aqy2+0KCAhQnTp19O2332aom5aWpnHjxjmOl4IFC6p27dr67rvvMtS91jpm53q7f/9+FS5cWNK/v1XSj5GrPb6QlpamIUOGOL4jBQsWVOXKlTV27FinejdyzV29erUaNWokf39/+fr6qm7dulqwYIFTnfT9sGLFCj333HMKCgpSYGCgHn74YR05ciRby8lMds5Xf/31l9q3b6/w8HB5eXkpJCREjRo1ytadKevXr1fr1q0VGBgob29vlShRQr17977u9V++fLnj90mBAgXUuXNnnT17VnFxcWrXrp0KFiyosLAw9evXTykpKY7p02+LHTFihIYOHarIyEh5e3urZs2aGb5ze/fu1VNPPaVSpUrJ19dXRYoUUevWrbV9+/YM67dz5041bdpUvr6+Kly4sF544QUtWLAgw/ctO9eyy+O88ryVneMru8dqZnL7vJWZ7MSXfr7bsmWLHn74YRUoUEB2u11PPvlkptfl7F5vr3YcDho0SK+++qokqVixYo7zQvr+mz17tpo2baqwsDDHb8w33ngjwzX1Wsu5muxs0+PHj6tnz56KiIhw/F6pV6+eli5des35O5gcmDJlipFk1q1bZ1JSUszFixfNoUOHzEsvvWTy5ctnFi1a5Kh7/vx5U7lyZePn52c++OAD8+OPP5q33nrLuLu7mxYtWjjNNyoqynTp0sUYY0xCQoJjOW+++aZZu3atWbt2rTl06JAxxpjly5cbT09Pc99995nZs2ebRYsWma5duxpJZsqUKddch65du5pJkyaZJUuWmCVLlpj//ve/xsfHxwwePPia03bp0sV4enqacuXKmbFjx5olS5aYp556ykgy/fv3N6VLlzaTJk0yixcvNq1atTKSzMaNGx3T//7778bf39+UKFHCfP7552bBggWmQ4cORpJ57733Mmznffv2OS1/xYoVRpJZsWKFMcaYpKQkExgYaGrWrGm+/PJLs2rVKjN79mzz7LPPmt9++80YY8zatWuNj4+PadGihWNb7ty50xHPc889Z2bNmmVWrlxp5s+fb7p3727y5cvnWIYxxqSkpJiGDRsad3d3069fP7Nw4ULz3Xffmf/85z9m5syZjnqSTNGiRc0999xjvvzyS7Nw4ULToEED4+7ubv78809HvZ07dxq73W4qVapkPv/8c/Pjjz+avn37mnz58plBgwZddR+kpaWZhg0bGi8vLzN06FDz448/moEDB5rixYsbSWbgwIFO+ysqKirDPAYOHGiudejv3LnT1KtXz4SGhjq229q1a40xxqSmpprmzZsbPz8/M3jwYLNkyRLz2WefmSJFipjy5cubc+fOOeYTFRVl7rrrLlOxYkUzc+ZMs3DhQlOrVi3j4eFh3n77bVOvXj0zZ84cM3fuXFO6dGkTEhLiNH36MRcZGelY30GDBhl3d3fTqlUrR73Y2Fhjs9lM+/btzcKFC83y5cvNlClTTKdOna66nsYY06NHD+Ph4WH69u1rFi1aZL744gtTtmxZExISYuLi4hz1PvvsM2Oz2UyDBg3MF198YZYuXWo++ugj8/zzzzvqxMTEGEmmadOmZt68eWb27NmmRo0axtPT0/z888/XtW8uPz8YY8zZs2dN1apVTVBQkBk1apRZunSpGTt2rLHb7eaBBx4waWlpLtsm9evXN4GBgaZUqVJmwoQJZsmSJeb55583ksy0adOMMdc+p3Xp0sV4eHiYokWLmuHDh5tly5aZxYsX5+g4y0xm23Lo0KHGZrOZbt26mfnz55s5c+aYOnXqGD8/P8d5ISvp6xAREWG6detmfvjhBzNx4kQTHBxsIiIizKlTp5y2S0BAgImIiDDjxo0zK1asMKtWrcr2vjPm3/NJVFSUqVu3rtN3JCAgwLzyyivmwQcfNPPnzzcxMTEmJCTEVK5c2Wn6zI6xnOzXzOLPSnauS/Hx8WbYsGFGkvnwww8dx0F8fPw1t/nl14Lp06cbm81m2rZta+bMmWO+//5706pVK+Pm5maWLl161X0YFxdngoODTZEiRcyUKVPMwoULzRNPPGEiIyOdri05WU76cRYVFWVef/11s2TJEjNv3jxjzP/Of+XLlzeff/65Wbx4sXnssceMJKfteeW1Lbvb9PJtVKRIEdOzZ0/zww8/mK+//tpcunQp021w+vRp07VrVzN9+nSzfPlys2jRItOvXz+TL18+x3c2XadOnYzNZjNPP/20+fbbb80PP/xghg4dasaOHeuok911zM719sKFC2bRokVGkunevbvjGNm7d2+W+3T48OHGzc3NDBw40CxbtswsWrTIjBkzxulamt1r7r59+zJs35UrVxoPDw9To0YNM3v2bDNv3jzTtGlTY7PZzKxZszLsh+LFi5tevXqZxYsXm88++8wUKlTINGzYMMv4093I+apMmTKmZMmSZvr06WbVqlXmm2++MX379nU6njKzaNEi4+HhYSpXrmymTp1qli9fbiZPnmzat29/3etfrFgx07dvX/Pjjz+a9957z7i5uZkOHTqY6tWrmyFDhpglS5aY119/3UgyI0eOzLDtIyIizL333mu++eYb89VXX5m7777beHh4mNjYWEfdVatWmb59+5qvv/7arFq1ysydO9e0bdvW+Pj4mN9//91R78iRIyYwMNBERkaaqVOnmoULF5pOnTqZokWLZvi+Zedadnmclx8j2T2+snOsZiYvzluZyU58l5/vXn31VbN48WIzatQo4+fnZ6pVq2YuXrzoqJvd4/dax+GhQ4dMr169jCQzZ84cx3khISHBGGPMf//7XzN69GizYMECs3LlSjNhwgRTrFixDN+77BzvN3LNadasmSlcuLCZOHGiWblypZk3b555++23nb4n13JdSemVHy8vL/PRRx851Z0wYYKRZL788kun8vfee89IMj/++KOj7MofnRs2bMgyySxbtqypVq2aSUlJcSpv1aqVCQsLM6mpqdlen9TUVJOSkmLeeecdExgY6PSDJjNdunQxksw333zjKEtJSTGFCxc2kszmzZsd5SdOnDBubm6mT58+jrL27dsbLy8vc/DgQaf5RkdHG19fX3P69GljTPaT0o0bNxpJjh8AWfHz83Pavlm5dOmSSUlJMY0aNTIPPfSQo/zzzz83ksynn3561eklmZCQEJOYmOgoi4uLM/ny5TPDhw93lDVr1szcddddji9UuhdffNF4e3ubkydPZrmMH374wUhy+lFgzL9f/txMSo0xpmXLlplOP3PmzAzHgTH/O24v/y5ERUUZHx8fc/jwYUfZ1q1bjSQTFhZmzp496yifN2+ekWS+++47p3W42vquXr3aGGPMBx98YCQ5jqHsWrt2bYaLozH/ngR9fHzMa6+9Zowx5syZM6ZAgQLm3nvvzfJ7kpqaasLDw02lSpWcvodnzpwxwcHBpm7duk7rdb1J6fDhw02+fPnMhg0bnOp9/fXXRpJZuHChMSbvt4kx/17IJZn169c71S1fvrxp1qyZY/hq57T0fTx58mSn8pwcZ5m5clsePHjQuLu7m169ejnVO3PmjAkNDTXt2rW76vzSz0uXnxuMMWbNmjVGkhkyZIijLH27LFu2zKludvedMf+eT0JDQ01SUpKjLP07UrVqVafjcMyYMUaS2bZtm6PsymPsevbrlfFnJbvXpa+++irDj6irufJacPbsWRMQEGBat27tVC81NdVUqVLF3HPPPVed3+uvv25sNpvZunWrU3mTJk2c4srJctKPs7fffjvD8qKiooy3t7c5cOCAo+z8+fMmICDAPPPMM46yzJLS7G7T9G3UuXPnq657VtKve927dzfVqlVzlP/0009GkhkwYMBVp8/uOma13Cuvt8ePH89wLbuaVq1amapVq161TnavuZklHLVr1zbBwcHmzJkzTrFXrFjR3HXXXY7vYfp+uPyPlMYYM2LECCPJHD169KoxXu/56p9//jGSzJgxY646/8yUKFHClChRwpw/fz7LOjld/yvjbdu2rZFkRo0a5VRetWpVU716dcdw+rYPDw93iicxMdEEBASYxo0bZxnjpUuXzMWLF02pUqXMK6+84ih/9dVXjc1my/AHx2bNmmWalGbnWpbZMZLd4ys7x2pm8uK8lZnsxJd+nF6+nY353x/kZ8yYYYzJ2fU2O8fh+++/n2lecKW0tDSTkpJiVq1aZSSZX3/9NUfLuZFrTv78+U3v3r2vGt+1XNftu59//rk2bNigDRs26IcfflCXLl30wgsvaPz48Y46y5cvl5+fnx599FGnadNvQ8nurUaX27t3r37//Xc98cQTkqRLly45Pi1atNDRo0e1e/fuq85j+fLlaty4sex2u9zc3OTh4aG3335bJ06cUHx8/DVjsNlsatGihWPY3d1dJUuWVFhYmNOzsQEBAQoODtaBAweclt2oUSNFREQ4zbNr1646d+5cjnsDLlmypAoVKqTXX39dEyZM0G+//Zaj6SVpwoQJql69ury9veXu7i4PDw8tW7ZMu3btctT54Ycf5O3tna3bHhs2bCh/f3/HcEhIiNN2uHDhgpYtW6aHHnpIvr6+GfbhhQsXtG7duiznv2LFCklyHAPpOnbsmKP1vhHz589XwYIF1bp1a6f4q1atqtDQ0Ay3oFWtWlVFihRxDJcrV07Sv7fLXP7cVXr55cdMuqzWN317pN8e2q5dO3355ZfZfs5y/vz5stlsevLJJ53WJTQ0VFWqVHGsS2xsrBITE/X8889neXvt7t27deTIEXXq1En58v3v1JI/f3498sgjWrduXYZbjq/H/PnzVbFiRVWtWtUp5mbNmjnd0pLX2yRdaGio7rnnHqeyypUrZ7ofr+aRRx7JEEdOjrNrWbx4sS5duqTOnTs7zc/b21v169fP9vyuPBbr1q2rqKgox7GYrlChQnrggQcyrFN29l26hg0bys/PzzGc/h2Jjo52Og6v9t25fNk52a+ZxZ+Z3LguZVdsbKxOnjypLl26OC0nLS1NzZs314YNGzK9ZSvdihUrVKFCBVWpUsWp/Mrz5/Us58rjN13VqlUVGRnpGPb29lbp0qWvuq+uZ5tmtfzMfPXVV6pXr57y58/vuO5NmjQpw3VPkl544YVrzi+765id621O3XPPPfr111/1/PPPa/HixUpMTHQafyPX3LNnz2r9+vV69NFHlT9/fke5m5ubOnXqpMOHD2fYD23atHEarly5sqSrfzczk93zVUBAgEqUKKH3339fo0aN0pYtW5xuN83KH3/8oT///FPdu3fPstf261n/K3tiTj83XdkxULly5TLdJg8//LBTPP7+/mrdurV++uknpaamSvr3+zBs2DCVL19enp6ecnd3l6enp/bs2eN0LK1atUoVK1ZU+fLlnZbRoUOHTNf3eq5lOTm+rnWsZiUvz1uXy0l8V14H27VrJ3d3d8d1MLvHb3aOw2v566+/1LFjR4WGhjrymvr160uS43i43uXkZJvec889mjp1qoYMGaJ169Y53Z6eXdeVlJYrV041a9ZUzZo11bx5c33yySdq2rSpXnvtNUfPUCdOnFBoaGiGH7DBwcFyd3fXiRMncrzcY8eOSZL69esnDw8Pp8/zzz8vSfrnn3+ynP6XX35R06ZNJUmffvqp1qxZow0bNmjAgAGS/u0c4Vp8fX0z7FBPT89Me/709PR0em/iiRMnFBYWlqFeeHi4Y3xO2O12rVq1SlWrVtV//vMfVahQQeHh4Ro4cGC2DoZRo0bpueeeU61atfTNN99o3bp12rBhg5o3b+60LY4fP67w8HCnRCMrgYGBGcq8vLwc8ztx4oQuXbqkcePGZdiH6cn+1fbhiRMn5O7unmE5oaGh14wttxw7dkynT592PEd9+ScuLi5D/FceG56enlctv/Jdm1db3/Rj5v7779e8efMcJ8G77rpLFStW1MyZM6+5LsYYhYSEZFiXdevWOdYl/VmJu+66K8t5pceS1TGelpamU6dOXTWe7Dh27Ji2bduWIV5/f38ZYxwx5/U2SXetYz47fH19VaBAgQxx5OQ4u5b08+fdd9+dYX6zZ8/O9vwy+66FhoZmOH9ldhxkd9+lu9HvzpXLzsl+zSz+rOYrXf91KSfSl/Xoo49mWNZ7770nY4xOnjyZ5fTp1+UrXVl2PcvJantdz/fjerZpdvfXnDlz1K5dOxUpUkQzZszQ2rVrtWHDBnXr1s3p+Dl+/Ljc3NyydW3Jzjpm93qbU/3799cHH3ygdevWKTo6WoGBgWrUqJGjf4IbueaeOnVKxpgc/W65clt4eXlJyt7vq8tl93xls9m0bNkyNWvWTCNGjFD16tVVuHBhvfTSS1k+cyhl75p2Peufk3NWZuerrL6fFy9eVFJSkiSpT58+euutt9S2bVt9//33Wr9+vTZs2KAqVao4becTJ04oJCQkw/wyK5Ou77uak+PrWsfq1ZaRV+ety+UkviuXnf47Lf14yO7xm53j8GqSkpJ03333af369RoyZIhWrlypDRs2aM6cOZL+97273uXkZJvOnj1bXbp00WeffaY6deooICBAnTt3VlxcXLaXd12972amcuXKWrx4sf744w/dc889CgwM1Pr162WMcUpM4+PjdenSJQUFBeV4GenT9O/fXw8//HCmdcqUKZPl9LNmzZKHh4fmz5/vlFi66nUpgYGBOnr0aIby9E4A0tcvPbYrO2rI7MJRqVIlzZo1S8YYbdu2TVOnTtU777wjHx8fvfHGG1eNZ8aMGWrQoIE+/vhjp/IrT+SFCxfW6tWrlZaWlq3E9GoKFSrk+CtjVn+BLlasWJbTBwYG6tKlSzpx4oTTCTSzg97b2zvTzi5u9AdiegcOixYtynT85S3FueFq63t52YMPPqgHH3xQycnJWrdunYYPH66OHTuqaNGiqlOnTqbzDgoKks1m088//+z48XC59LL0zjfSO9DKTHosWR3j+fLlU6FChSTd2L4JCgqSj49Pho5ELh+fLi+3SW7KrPU5t4+z9O3y9ddfKyoqKudB/n+Zfdfi4uJUsmRJp7Ks1im7+y635XS/Zrfn1hu9LuVE+rLGjRuXZQ+YWf3glP79jma1/250ObnZ0+31bNPsLn/GjBkqVqyYZs+e7TTNleejwoULKzU1VXFxcdlOeK+13Oxcb3PK3d1dffr0UZ8+fXT69GktXbpU//nPf9SsWTMdOnTohq65hQoVUr58+bL1uyW35eR8FRUVpUmTJkn6t0Xoyy+/1KBBg3Tx4kVNmDAh02myc02zYv2z+n56eno6WmtnzJihzp07a9iwYU71/vnnHxUsWNAxHBgY6EgqrrWM65WT4+tax2pWPXbn5XnrcjmJLy4uzukOuCt/p2X3+M3OcXg1y5cv15EjR7Ry5UpH66ikDK+Oud7l5GSbBgUFacyYMRozZowOHjyo7777Tm+88Ybi4+Oz/B1zpVxLStN7OUtf8UaNGunLL7/UvHnz9NBDDznqff75547xWcnqL2tlypRRqVKl9Ouvv2b4MmaHzWaTu7u73NzcHGXnz5/X9OnTczyv69GoUSPNnTtXR44ccfyVTfp3m/j6+jp2eHqPkdu2bXO68GbW4186m82mKlWqaPTo0Zo6dao2b97sGJfVX7psNluGH2Lbtm3T2rVrnW4xjo6O1syZMzV16tRs3cJ7Nb6+vmrYsKG2bNmiypUrO/6KmF0NGzbUiBEjFBMTo5deeslR/sUXX2SoW7RoUcXHx+vYsWOOL83Fixe1ePHibC0rq+3WqlUrzZo1S6mpqapVq1aO4r9eWa1vek/Kl/Py8lL9+vVVsGBBLV68WFu2bMkyAWvVqpXeffdd/f3332rXrl2Wy69bt67sdrsmTJig9u3bZ/oDsEyZMipSpIi++OIL9evXz1Hn7Nmz+uabbxw98ko3tm9atWqlYcOGKTAw8Kp/wLhcXmyTnLie1oLcPs6aNWsmd3d3/fnnnzm61fFKMTExTtPHxsbqwIEDevrpp6857fXsu9ySF/tVytl16XpbjdLVq1dPBQsW1G+//aYXX3wxx9Onnz9//fVXp1vhrjx/3uhybtSNXuuvxmazydPT0+kcFhcXl6H33ejoaA0fPlwff/yx3nnnnVxZbnautzdyjBQsWFCPPvqo/v77b/Xu3Vv79+9X+fLlr/ua6+fnp1q1amnOnDn64IMP5OPjI+nfXkpnzJihu+66S6VLl85xnNlxveer0qVL680339Q333zj9Dsos3olSpTQ5MmT1adPn0z/UGXF+s+ZM0fvv/++o3HizJkz+v7773Xfffc5frtmdiwtWLBAf//9t9MfB+vXr68PPvhAv/32m9MtvLNmzcq1eK/3N11Wx2pmrDhvXSu+mJgY1ahRwzH85Zdf6tKlS47fZNk9frNzHEpZnxfSz2NXTvfJJ59c13KudL3bNDIyUi+++KKWLVumNWvWZHu660pKd+zYoUuXLkn6t1l9zpw5WrJkiR566CHHD43OnTvrww8/VJcuXbR//35VqlRJq1ev1rBhw9SiRQs1btw4y/mXKFFCPj4+iomJUbly5ZQ/f36Fh4crPDxcn3zyiaKjo9WsWTN17dpVRYoU0cmTJ7Vr1y5t3rxZX331VZbzbdmypUaNGqWOHTuqZ8+eOnHihD744IM8afnIzMCBAzV//nw1bNhQb7/9tgICAhQTE6MFCxZoxIgRstvtkv5t7i9Tpoz69eunS5cuqVChQpo7d65Wr17tNL/58+fro48+Utu2bVW8eHEZYzRnzhydPn1aTZo0cdSrVKmSVq5cqe+//15hYWHy9/dXmTJl1KpVK/33v//VwIEDVb9+fe3evVvvvPOOihUr5ti/0r/PH0yZMkXPPvusdu/erYYNGyotLU3r169XuXLlcvy+17Fjx+ree+/Vfffdp+eee05FixbVmTNntHfvXn3//fdavnx5ltM2bdpU999/v1577TWdPXtWNWvW1Jo1azL9w8Ljjz+ut99+W+3bt9err76qCxcu6P/+7/8cz2VcS6VKlTRnzhx9/PHHqlGjhvLly6eaNWuqffv2iomJUYsWLfTyyy/rnnvukYeHhw4fPqwVK1bowQcfdPpDzI3y9PTUyJEjlZSUpLvvvluxsbEaMmSIoqOjde+990qS3n77bR0+fFiNGjXSXXfdpdOnT2vs2LFOzxZkpl69eurZs6eeeuopbdy4Uffff7/8/Px09OhRrV69WpUqVdJzzz2n/Pnza+TIkXr66afVuHFj9ejRQyEhIdq7d69+/fVXjR8/Xvny5dOIESP0xBNPqFWrVnrmmWeUnJys999/X6dPn3a8Okm6sX3Tu3dvffPNN7r//vv1yiuvqHLlykpLS9PBgwf1448/qm/fvqpVq1aeb5OcuNo5LSu5fZwVLVpU77zzjgYMGKC//vrL8X7pY8eO6ZdffpGfn58GDx58zfls3LhRTz/9tB577DEdOnRIAwYMUJEiRRy3VV5NdvddXsiL/Zouu9elihUrSpImTpwof39/eXt7q1ixYpneNpeZ/Pnza9y4cerSpYtOnjypRx99VMHBwTp+/Lh+/fVXHT9+PENL3OV69+6tyZMnq2XLlhoyZIhCQkIUExOj33//PVeXkxtu5Fp/Na1atdKcOXP0/PPP69FHH9WhQ4f03//+V2FhYdqzZ4+j3n333adOnTppyJAhOnbsmFq1aiUvLy9t2bJFvr6+6tWrV46Xm53rrb+/v6KiovTtt9+qUaNGCggIUFBQUKav0JKk1q1bO94dX7hwYR04cEBjxoxRVFSUSpUqJenGrrnDhw9XkyZN1LBhQ/Xr10+enp766KOPtGPHDs2cOTPP3gWb3fPVtm3b9OKLL+qxxx5TqVKl5OnpqeXLl2vbtm3XvFvsww8/VOvWrVW7dm298sorioyM1MGDB7V48WLFxMRYsv5ubm5q0qSJ+vTpo7S0NL333ntKTEx0Oje3atVKU6dOVdmyZVW5cmVt2rRJ77//foZbM9O/79HR0XrnnXcUEhKiL774wvF9v9E739Jl9/jKzrGaGVedt3IS35w5c+Tu7q4mTZpo586deuutt1SlShXHHzxzcr3NznFYqVIlx7bu0qWLPDw8VKZMGdWtW1eFChXSs88+q4EDB8rDw0MxMTH69ddfM6xfdpZzpexu04SEBDVs2FAdO3ZU2bJl5e/vrw0bNmjRokVZ3u2SqZz0ipRZ77t2u91UrVrVjBo1yly4cMGp/okTJ8yzzz5rwsLCjLu7u4mKijL9+/fPUO/K3jWN+bfnybJlyxoPD48MPdH9+uuvpl27diY4ONh4eHiY0NBQ88ADD5gJEyZccx0mT55sypQpY7y8vEzx4sXN8OHDzaRJk7LVq1WXLl2Mn59fhvL69eubChUqZCiPiooyLVu2dCrbvn27ad26tbHb7cbT09NUqVIl0x45//jjD9O0aVNToEABU7hwYdOrVy+zYMECp57Gfv/9d9OhQwdTokQJ4+PjY+x2u7nnnnvM1KlTnea1detWU69ePePr62skmfr16xtjjElOTjb9+vUzRYoUMd7e3qZ69epm3rx5mfaMev78efP222+bUqVKGU9PTxMYGGgeeOABp27KJZkXXngh0+1w5f7dt2+f6datmylSpIjx8PAwhQsXNnXr1nXqwTMrp0+fNt26dTMFCxY0vr6+pkmTJub333/PtMfChQsXmqpVqxofHx9TvHhxM378+Gz3vnvy5Enz6KOPmoIFCxqbzeY0TUpKivnggw9MlSpVjLe3t8mfP78pW7aseeaZZ8yePXuc1v3KY8CYzLdVeq9277//vqMs/Zjbtm2badCggfHx8TEBAQHmueeec+qVdP78+SY6OtoUKVLEeHp6muDgYNOiRQun17BczeTJk02tWrWMn5+f8fHxMSVKlDCdO3d2eqWRMf9uz/r16xs/Pz/j6+trypcv7/Q6I2P+7SG1Vq1axtvb2/j5+ZlGjRqZNWvWZFhmdvdNZsdPUlKSefPNN02ZMmWMp6enozv6V155xfFqD1dsk6y++5l9h7I6p2V1XjEm+8dZZrI6zufNm2caNmxoChQoYLy8vExUVJR59NFHr9ldfvr5/8cffzSdOnUyBQsWdLxu6spYstouxmRv3xmT/e+IMf/rvfWrr75ylGXVw/ON7Nerye51acyYMaZYsWLGzc0tyx6Z02XVE/uqVatMy5YtTUBAgPHw8DBFihQxLVu2dFr/rPz222+mSZMmxtvb2wQEBJju3bubb7/9NtNegbOznPTj7Pjx4xmWldX5r379+o7rkDGZ975rTPa2afo2urJH56t59913TdGiRY2Xl5cpV66c+fTTTzP9vqSmpprRo0ebihUrOo7VOnXqmO+//z7H65iT6+3SpUtNtWrVjJeXl5F01d7zR44caerWrWuCgoIcrw/r3r272b9/v1O97FxzM+tZ1Rhjfv75Z/PAAw84vjO1a9d22gbGZL0fstq3V7re89WxY8dM165dTdmyZY2fn5/Jnz+/qVy5shk9enSWrwW63Nq1a010dLSx2+3Gy8vLlChRIkPPqjey/ll9P64876dv+/fee88MHjzY3HXXXcbT09NUq1bNLF682GnaU6dOme7du5vg4GDj6+tr7r33XvPzzz9nOOaMMWbHjh2mcePGTt/3adOmZeiZNbvXsqyOkewcX9k9VjOT2+etzGQnvvT9uWnTJtO6dWuTP39+4+/vbzp06GCOHTuWYZ7Zvd5m5zjs37+/CQ8PN/ny5XNa79jYWFOnTh3j6+trChcubJ5++mmzefPmTPfTtZZzvdecCxcumGeffdZUrlzZFChQwPj4+JgyZcqYgQMHOr1l4lpsxhiT/RQWgCt17dpVX3/9taODA8AqU6dO1VNPPaUNGzaoZs2aVocDALeN/fv3q1ixYnr//ffVr1+/PF1Wz549NXPmTJ04cSLHj1Dd6QYNGqTBgwfr+PHjedoHwp0q154pBQAAAHBzeOeddxQeHq7ixYsrKSlJ8+fP12effaY333yThBQ3HZJSAAAA4Dbj4eGh999/X4cPH9alS5dUqlQpjRo1Si+//LLVoQEZcPsuAAAAAMAyudP1FgAAAAAA14GkFAAAAABgGZJSAAAAAIBl6OgIcIG0tDQdOXJE/v7+efaycQAAkLuMMTpz5ozCw8OVLx9tOUBeISkFXODIkSOKiIiwOgwAAHAdDh06pLvuusvqMIDbFkkp4AL+/v6S/r2oFShQwOJoAABAdiQmJioiIsJxHQeQN0hKARdIv2W3QIECJKUAANxiePQGyFvcHA8AAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsIy71QEAyDsXLlzQwYMHrQ7jqiIjI+Xt7W11GAAAALAISSlwGzt48KB69uxpdRhXNXHiRJUuXdrqMAAAAGARklLgNhYZGamJEyfmyrwOHDigoUOHasCAAYqKisqVeUr/xggAAIA7F0kpcBvz9vbO9VbIqKgoWjYBAACQa+joCAAAAABgGZJSAAAAAIBlSEoBAAAAAJYhKQUAAAAAWIakFAAAAABgGZJSAAAAAIBlSEoBAAAAAJYhKQUAAAAAWIakFAAAAABgGZJS3LJ++ukntW7dWuHh4bLZbJo3b57TeJvNlunn/fffd9Rp0KBBhvHt27d3ms+pU6fUqVMn2e122e12derUSadPn3bBGgIAAAC3P5JS3LLOnj2rKlWqaPz48ZmOP3r0qNNn8uTJstlseuSRR5zq9ejRw6neJ5984jS+Y8eO2rp1qxYtWqRFixZp69at6tSpU56tFwAAAHAncbc6AOB6RUdHKzo6OsvxoaGhTsPffvutGjZsqOLFizuV+/r6ZqibbteuXVq0aJHWrVunWrVqSZI+/fRT1alTR7t371aZMmVucC0AAACAOxstpbgjHDt2TAsWLFD37t0zjIuJiVFQUJAqVKigfv366cyZM45xa9euld1udySkklS7dm3Z7XbFxsZmubzk5GQlJiY6fQAAAABkREsp7gjTpk2Tv7+/Hn74YafyJ554QsWKFVNoaKh27Nih/v3769dff9WSJUskSXFxcQoODs4wv+DgYMXFxWW5vOHDh2vw4MG5uxIAAADAbYikFHeEyZMn64knnpC3t7dTeY8ePRz/r1ixokqVKqWaNWtq8+bNql69uqR/O0y6kjEm0/J0/fv3V58+fRzDiYmJioiIuNHVAAAAAG47JKW47f3888/avXu3Zs+efc261atXl4eHh/bs2aPq1asrNDRUx44dy1Dv+PHjCgkJyXI+Xl5e8vLyuqG4AQAAgDsBz5Titjdp0iTVqFFDVapUuWbdnTt3KiUlRWFhYZKkOnXqKCEhQb/88oujzvr165WQkKC6devmWcwAAADAnYKWUtyykpKStHfvXsfwvn37tHXrVgUEBCgyMlLSv7fNfvXVVxo5cmSG6f/880/FxMSoRYsWCgoK0m+//aa+ffuqWrVqqlevniSpXLlyat68uXr06OF4VUzPnj3VqlUret4FAAAAcgEtpbhlbdy4UdWqVVO1atUkSX369FG1atX09ttvO+rMmjVLxhh16NAhw/Senp5atmyZmjVrpjJlyuill15S06ZNtXTpUrm5uTnqxcTEqFKlSmratKmaNm2qypUra/r06Xm/ggAAAMAdwGaMMVYHAdzuEhMTZbfblZCQoAIFClgdznX5448/1LNnT02cOFGlS5e2OhwAAPLc7XD9Bm4FtJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSlAAAAAADLkJQCAAAAACxDUgoAAAAAsAxJKQAAAADAMiSluGX99NNPat26tcLDw2Wz2TRv3jyn8V27dpXNZnP61K5d26lOcnKyevXqpaCgIPn5+alNmzY6fPiwU51Tp06pU6dOstvtstvt6tSpk06fPp3HawcAAADcGUhKccs6e/asqlSpovHjx2dZp3nz5jp69Kjjs3DhQqfxvXv31ty5czVr1iytXr1aSUlJatWqlVJTUx11OnbsqK1bt2rRokVatGiRtm7dqk6dOuXZegEAAAB3EnerAwCuV3R0tKKjo69ax8vLS6GhoZmOS0hI0KRJkzR9+nQ1btxYkjRjxgxFRERo6dKlatasmXbt2qVFixZp3bp1qlWrliTp008/VZ06dbR7926VKVMmd1cKAAAAuMPQUorb2sqVKxUcHKzSpUurR48eio+Pd4zbtGmTUlJS1LRpU0dZeHi4KlasqNjYWEnS2rVrZbfbHQmpJNWuXVt2u91RJzPJyclKTEx0+gAAAADIiKQUt63o6GjFxMRo+fLlGjlypDZs2KAHHnhAycnJkqS4uDh5enqqUKFCTtOFhIQoLi7OUSc4ODjDvIODgx11MjN8+HDHM6h2u10RERG5uGYAAADA7YPbd3Hbevzxxx3/r1ixomrWrKmoqCgtWLBADz/8cJbTGWNks9kcw5f/P6s6V+rfv7/69OnjGE5MTCQxBQAAADJBSynuGGFhYYqKitKePXskSaGhobp48aJOnTrlVC8+Pl4hISGOOseOHcswr+PHjzvqZMbLy0sFChRw+gAAAADIiKQUd4wTJ07o0KFDCgsLkyTVqFFDHh4eWrJkiaPO0aNHtWPHDtWtW1eSVKdOHSUkJOiXX35x1Fm/fr0SEhIcdQAAAABcP27fxS0rKSlJe/fudQzv27dPW7duVUBAgAICAjRo0CA98sgjCgsL0/79+/Wf//xHQUFBeuihhyRJdrtd3bt3V9++fRUYGKiAgAD169dPlSpVcvTGW65cOTVv3lw9evTQJ598Iknq2bOnWrVqRc+7AAAAQC4gKcUta+PGjWrYsKFjOP0Zzi5duujjjz/W9u3b9fnnn+v06dMKCwtTw4YNNXv2bPn7+zumGT16tNzd3dWuXTudP39ejRo10tSpU+Xm5uaoExMTo5deesnRS2+bNm2u+m5UAAAAANlnM8YYq4MAbneJiYmy2+1KSEi4ZZ8v/eOPP9SzZ09NnDhRpUuXtjocAADy3O1w/QZuBTxTCgAAAACwDEkpAAAAAMAyJKUAAAAAAMuQlAIAAAAALENSCgAAAACwDEkpAAAAAMAyJKUAAAAAAMuQlAIAAAAALENSCgAAAACwDEkpAAAAAMAyJKUAAAAAAMuQlAIAAAAALENSCgAAAACwDEkpAAAAAMAyJKUAAAAAAMuQlAIAAAAALENSCgAAAACwDEkpXO7SpUtaunSpPvnkE505c0aSdOTIESUlJVkcGQAAAABXc7c6ANxZDhw4oObNm+vgwYNKTk5WkyZN5O/vrxEjRujChQuaMGGC1SECAAAAcCFaSuFSL7/8smrWrKlTp07Jx8fHUf7QQw9p2bJlFkYGAAAAwAq0lMKlVq9erTVr1sjT09OpPCoqSn///bdFUQEAAACwCi2lcKm0tDSlpqZmKD98+LD8/f0tiAgAAACAlUhK4VJNmjTRmDFjHMM2m01JSUkaOHCgWrRoYV1gAAAAACzB7btwqdGjR6thw4YqX768Lly4oI4dO2rPnj0KCgrSzJkzrQ4PAAAAgIuRlMKlwsPDtXXrVs2aNUubNm1SWlqaunfvrieeeMKp4yMAAAAAdwaSUricj4+PnnrqKT311FNWhwIAAADAYjxTCpeaNm2aFixY4Bh+7bXXVLBgQdWtW1cHDhywMDIAAAAAViAphUsNGzbMcZvu2rVrNX78eI0YMUJBQUF65ZVXLI4OAAAAgKtx+y5c6tChQypZsqQkad68eXr00UfVs2dP1atXTw0aNLA2OAAAAAAuR0spXCp//vw6ceKEJOnHH39U48aNJUne3t46f/68laEBAAAAsAAtpXCpJk2a6Omnn1a1atX0xx9/qGXLlpKknTt3qmjRotYGBwAAAMDlaCmFS3344YeqU6eOjh8/rm+++UaBgYGSpE2bNqlDhw4WRwcAAADA1WgphUsVLFhQ48ePz1A+ePBgC6IBAAAAYDWSUlji3LlzOnjwoC5evOhUXrlyZYsiAgAAAGAFbt+FSx0/flwtW7aUv7+/KlSooGrVqjl9cuKnn35S69atFR4eLpvNpnnz5jnGpaSk6PXXX1elSpXk5+en8PBwde7cWUeOHHGaR4MGDWSz2Zw+7du3d6pz6tQpderUSXa7XXa7XZ06ddLp06evdxMAAAAAuAxJKVyqd+/eOn36tNatWycfHx8tWrRI06ZNU6lSpfTdd9/laF5nz55VlSpVMr0d+Ny5c9q8ebPeeustbd68WXPmzNEff/yhNm3aZKjbo0cPHT161PH55JNPnMZ37NhRW7du1aJFi7Ro0SJt3bpVnTp1ytmKAwAAAMgUt+/CpZYvX65vv/1Wd999t/Lly6eoqCg1adJEBQoU0PDhwx298WZHdHS0oqOjMx1nt9u1ZMkSp7Jx48bpnnvu0cGDBxUZGeko9/X1VWhoaKbz2bVrlxYtWqR169apVq1akqRPP/1UderU0e7du1WmTJlsxwsAAAAgI1pK4VJnz55VcHCwJCkgIEDHjx+XJFWqVEmbN2/O02UnJCTIZrOpYMGCTuUxMTEKCgpShQoV1K9fP505c8Yxbu3atbLb7Y6EVJJq164tu92u2NjYLJeVnJysxMREpw8AAACAjGgphUuVKVNGu3fvVtGiRVW1alV98sknKlq0qCZMmKCwsLA8W+6FCxf0xhtvqGPHjipQoICj/IknnlCxYsUUGhqqHTt2qH///vr1118draxxcXGOJPpywcHBiouLy3J5w4cPp0dhAAAAIBtISuFSvXv31tGjRyVJAwcOVLNmzRQTEyNPT09NnTo1T5aZkpKi9u3bKy0tTR999JHTuB49ejj+X7FiRZUqVUo1a9bU5s2bVb16dUmSzWbLME9jTKbl6fr3768+ffo4hhMTExUREXGjqwIAAADcdkhK4VJPPPGE4//VqlXT/v379fvvvysyMlJBQUG5vryUlBS1a9dO+/bt0/Lly51aSTNTvXp1eXh4aM+ePapevbpCQ0N17NixDPWOHz+ukJCQLOfj5eUlLy+vG44fAAAAuN3xTCks5evrq+rVq+dpQrpnzx4tXbpUgYGB15xm586dSklJcdxKXKdOHSUkJOiXX35x1Fm/fr0SEhJUt27dXI8ZAAAAuNPQUgqXSk1N1dSpU7Vs2TLFx8crLS3Nafzy5cuzPa+kpCTt3bvXMbxv3z5t3bpVAQEBCg8P16OPPqrNmzdr/vz5Sk1NdTwDGhAQIE9PT/3555+KiYlRixYtFBQUpN9++019+/ZVtWrVVK9ePUlSuXLl1Lx5c/Xo0cPxqpiePXuqVatW9LwLAAAA5AKSUrjUyy+/rKlTp6ply5aqWLHiVZ/LvJaNGzeqYcOGjuH0Zzi7dOmiQYMGOd57WrVqVafpVqxYoQYNGsjT01PLli3T2LFjlZSUpIiICLVs2VIDBw6Um5ubo35MTIxeeuklNW3aVJLUpk2bTN+NCgAAACDnSErhUrNmzdKXX36pFi1a3PC8GjRoIGNMluOvNk6SIiIitGrVqmsuJyAgQDNmzMhxfAAAAACujWdK4VKenp4qWbKk1WEAAAAAuEmQlMKl+vbtq7Fjx16zFRMAAADAnYHbd5HnHn74Yafh5cuX64cfflCFChXk4eHhNG7OnDmuDA0AAACAxUhKkefsdrvT8EMPPWRRJAAAAABuNiSlyHNTpkyxOgQAAAAANymeKYVL7du3T3v27MlQvmfPHu3fv9/1AQEAAACwFEkpXKpr166KjY3NUL5+/Xp17drV9QEBAAAAsBRJKVxqy5YtqlevXoby2rVra+vWra4PCAAAAIClSErhUjabTWfOnMlQnpCQoNTUVAsiAgAAAGAlklK41H333afhw4c7JaCpqakaPny47r33XgsjAwAAAGAFet+FS7333nuqX7++ypQpo/vuu0+S9PPPPysxMVHLly+3ODoAAAAArkZLKVyqQoUK2rZtm9q1a6f4+HidOXNGnTt31u+//66KFStaHR4AAAAAF6OlFC6TkpKipk2b6pNPPtGwYcOsDgcAAADATYCWUriMh4eHduzYIZvNZnUoAAAAAG4SJKVwqc6dO2vSpElWhwEAAADgJsHtu3Cpixcv6rPPPtOSJUtUs2ZN+fn5OY0fNWqURZEBAAAAsAJJKVxqx44dql69uiTpjz/+cBrHbb0AAADAnYekFC61YsUKq0MAAAAAcBPhmVIAAAAAgGVoKYVLNWzY8Kq36S5fvtyF0QAAAACwGkkpXKpq1apOwykpKdq6dat27NihLl26WBMUAAAAAMuQlMKlRo8enWn5oEGDlJSU5OJoAAAAAFiNZ0pxU3jyySc1efJkq8MAAAAA4GIkpbgprF27Vt7e3laHAQAAAMDFuH0XLvXwww87DRtjdPToUW3cuFFvvfWWRVEBAAAAsApJKVzKbrc7DefLl09lypTRO++8o6ZNm1oUFQAAAACrkJTCpaZMmWJ1CAAAAABuIiSlsMTGjRu1a9cu2Ww2lStXTjVq1LA6JAAAAAAWICmFSx0+fFgdOnTQmjVrVLBgQUnS6dOnVbduXc2cOVMRERHWBggAAADApeh9Fy7VrVs3paSkaNeuXTp58qROnjypXbt2yRij7t27Wx0eAAAAABejpRQu9fPPPys2NlZlypRxlJUpU0bjxo1TvXr1LIwMAAAAgBVoKYVLRUZGKiUlJUP5pUuXVKRIEQsiAgAAAGAlklK41IgRI9SrVy9t3LhRxhhJ/3Z69PLLL+uDDz6wODoAAAAArsbtu3Cprl276ty5c6pVq5bc3f89/C5duiR3d3d169ZN3bp1c9Q9efKkVWECAAAAcBGSUrjUmDFjrA4BAAAAwE2EpBQu1aVLl2zVe/fdd3X69GnHa2My89NPP+n999/Xpk2bdPToUc2dO1dt27Z1jDfGaPDgwZo4caJOnTqlWrVq6cMPP1SFChUcdZKTk9WvXz/NnDlT58+fV6NGjfTRRx/prrvuctQ5deqUXnrpJX333XeSpDZt2mjcuHFXjQ0AAABA9vBMKW5Kw4YNu+btu2fPnlWVKlU0fvz4TMePGDFCo0aN0vjx47VhwwaFhoaqSZMmOnPmjKNO7969NXfuXM2aNUurV69WUlKSWrVqpdTUVEedjh07auvWrVq0aJEWLVqkrVu3qlOnTrmzogAAAMAdjpZS3JTSO0G6mujoaEVHR2c5/ZgxYzRgwAA9/PDDkqRp06YpJCREX3zxhZ555hklJCRo0qRJmj59uho3bixJmjFjhiIiIrR06VI1a9ZMu3bt0qJFi7Ru3TrVqlVLkvTpp5+qTp062r17t9OrbQAAAADkHC2luC3t27dPcXFxatq0qaPMy8tL9evXV2xsrCRp06ZNSklJcaoTHh6uihUrOuqsXbtWdrvdkZBKUu3atWW32x11MpOcnKzExESnDwAAAICMSEpxW4qLi5MkhYSEOJWHhIQ4xsXFxcnT01OFChW6ap3g4OAM8w8ODnbUyczw4cNlt9sdn4iIiBtaHwAAAOB2RVKK25rNZnMaNsZkKLvSlXUyq3+t+fTv318JCQmOz6FDh3IYOQAAAHBnICnFbSk0NFSSMrRmxsfHO1pPQ0NDdfHiRZ06deqqdY4dO5Zh/sePH8/QCns5Ly8vFShQwOkDAAAAICOSUtyU7rvvPvn4+Fz39MWKFVNoaKiWLFniKLt48aJWrVqlunXrSpJq1KghDw8PpzpHjx7Vjh07HHXq1KmjhIQE/fLLL44669evV0JCgqMOAAAAgOtH77twubS0NO3du1fx8fFKS0tzGnf//fdLkhYuXHjN+SQlJWnv3r2O4X379mnr1q0KCAhQZGSkevfurWHDhqlUqVIqVaqUhg0bJl9fX3Xs2FGSZLfb1b17d/Xt21eBgYEKCAhQv379VKlSJUdvvOXKlVPz5s3Vo0cPffLJJ5Kknj17qlWrVvS8CwAAAOQCklK41Lp169SxY0cdOHAgw2tfbDab0/tBr2Xjxo1q2LChY7hPnz6SpC5dumjq1Kl67bXXdP78eT3//PM6deqUatWqpR9//FH+/v6OaUaPHi13d3e1a9dO58+fV6NGjTR16lS5ubk56sTExOill15y9NLbpk2bLN+NCgAAACBnbCY7L4QEcknVqlVVunRpDR48WGFhYRk6C7Lb7RZFlrcSExNlt9uVkJBwyz5f+scff6hnz56aOHGiSpcubXU4AADkudvh+g3cCmgphUvt2bNHX3/9tUqWLGl1KAAAAABuAnR0BJeqVauW03OgAAAAAO5stJTCpXr16qW+ffsqLi5OlSpVkoeHh9P4ypUrWxQZAAAAACuQlMKlHnnkEUlSt27dHGU2m03GmBx3dAQAAADg1kdSCpfat2+f1SEAAAAAuImQlMKloqKirA4BAAAAwE2Ejo7gctOnT1e9evUUHh6uAwcOSJLGjBmjb7/91uLIAAAAALgaSSlc6uOPP1afPn3UokULnT592vEMacGCBTVmzBhrgwMAAADgciSlcKlx48bp008/1YABA+Tm5uYor1mzprZv325hZAAAAACsQFIKl9q3b5+qVauWodzLy0tnz561ICIAAAAAViIphUsVK1ZMW7duzVD+ww8/qHz58q4PCAAAAICl6H0XLvXqq6/qhRde0IULF2SM0S+//KKZM2dq+PDh+uyzz6wODwAAAICLkZTCpZ566ildunRJr732ms6dO6eOHTuqSJEiGjt2rNq3b291eAAAAABcjKQULtejRw/16NFD//zzj9LS0hQcHGx1SAAAAAAswjOlcLlLly5p6dKl+uabb+Tj4yNJOnLkiJKSkiyODAAAAICr0VIKlzpw4ICaN2+ugwcPKjk5WU2aNJG/v79GjBihCxcuaMKECVaHCAAAAMCFaCmFS7388suqWbOmTp065WgllaSHHnpIy5YtszAyAAAAAFagpRQutXr1aq1Zs0aenp5O5VFRUfr7778tigoAAACAVWgphUulpaUpNTU1Q/nhw4fl7+9vQUQAAAAArERSCpdq0qSJxowZ4xi22WxKSkrSwIED1aJFC+sCAwAAAGAJbt+FS40ePVoNGzZU+fLldeHCBXXs2FF79uxRUFCQZs6caXV4AAAAAFyMpBQuFR4erq1bt2rmzJnavHmz0tLS1L17dz3xxBNOHR8BAAAAuDOQlMLlfHx81K1bN3Xr1s3qUAAAAABYjGdK4VLh4eHq2LGjJk6cqD/++MPqcAAAAABYjKQULjVy5EgVKFBAo0aNUtmyZRUWFqb27dtrwoQJ2rVrl9XhAQAAAHAxbt+FS3Xo0EEdOnSQJB07dkwrVqzQ/Pnz1atXryxfFwMAAADg9kVSCpdLSkrS6tWrtWrVKq1cuVJbtmxRpUqVVL9+fatDAwAAAOBiJKVwqVq1amnbtm2qWLGiGjRooP/85z+67777VLBgQatDAwAAAGABnimFS+3Zs0e+vr4qXry4ihcvrpIlS5KQAgAAAHcwklK41MmTJ7VixQrVq1dPS5cuVf369RUaGqrHH39cEyZMsDo8AAAAAC5GUgqXq1y5sl566SV98803+uGHHxQdHa05c+bohRdesDo0AAAAAC7GM6VwqS1btmjlypVauXKlfv75Z505c0ZVqlTRyy+/rIYNG1odHgAAAAAXIymFS919992qVq2a6tevrx49euj+++9XgQIFrA4LAAAAgEVISuFSJ0+eJAkFAAAA4MAzpXCpqlWr6sSJExnKT58+reLFi1sQEQAAAAArkZTCpfbv36/U1NQM5cnJyfr7779zfXlFixaVzWbL8EnvVKlr164ZxtWuXTtDbL169VJQUJD8/PzUpk0bHT58ONdjBQAAAO5E3L4Ll/juu+8c/1+8eLHsdrtjODU1VcuWLVPRokVzfbkbNmxwSoJ37NihJk2a6LHHHnOUNW/eXFOmTHEMe3p6Os2jd+/e+v777zVr1iwFBgaqb9++atWqlTZt2iQ3N7dcjxkAAAC4k5CUwiXatm0rSbLZbOrSpYvTOA8PDxUtWlQjR47M9eUWLlzYafjdd99ViRIlVL9+fUeZl5eXQkNDM50+ISFBkyZN0vTp09W4cWNJ0owZMxQREaGlS5eqWbNmuR4zAAAAcCfh9l24RFpamtLS0hQZGan4+HjHcFpampKTk7V79261atUqT2O4ePGiZsyYoW7duslmsznKV65cqeDgYJUuXVo9evRQfHy8Y9ymTZuUkpKipk2bOsrCw8NVsWJFxcbGZrms5ORkJSYmOn0AAAAAZERSCpfat2+fgoKCJEkXLlxw6bLnzZun06dPq2vXro6y6OhoxcTEaPny5Ro5cqQ2bNigBx54QMnJyZKkuLg4eXp6qlChQk7zCgkJUVxcXJbLGj58uOx2u+MTERGRJ+sEAAAA3Oq4fRculZaWpqFDh2rChAk6duyY/vjjDxUvXlxvvfWWihYtqu7du+fZsidNmqTo6GiFh4c7yh5//HHH/ytWrKiaNWsqKipKCxYs0MMPP5zlvIwxTq2tV+rfv7/69OnjGE5MTMx2Ynrs2DElJCRkq64rHThwwOnfm5HdbldISIjVYQAAACAHSErhUkOGDNG0adM0YsQI9ejRw1FeqVIljR49Os+S0gMHDmjp0qWaM2fOVeuFhYUpKipKe/bskSSFhobq4sWLOnXqlFNraXx8vOrWrZvlfLy8vOTl5ZXjOI8dO6YnO3VWysXkHE/rKkOHDrU6hCx5eHppxvTPSUwBAABuISSlcKnPP/9cEydOVKNGjfTss886yitXrqzff/89z5Y7ZcoUBQcHq2XLlletd+LECR06dEhhYWGSpBo1asjDw0NLlixRu3btJElHjx7Vjh07NGLEiFyPMyEhQSkXk3W+eH2leduvPQEc8l1IkP5apYSEBJJSAACAWwhJKVzq77//VsmSJTOUp6WlKSUlJU+WmZaWpilTpqhLly5yd//fIZ+UlKRBgwbpkUceUVhYmPbv36///Oc/CgoK0kMPPSTp39tBu3fvrr59+yowMFABAQHq16+fKlWq5OiNN09i9rYrzS8oz+YPAAAA3CxISuFSFSpU0M8//6yoqCin8q+++krVqlXLk2UuXbpUBw8eVLdu3ZzK3dzctH37dn3++ec6ffq0wsLC1LBhQ82ePVv+/v6OeqNHj5a7u7vatWun8+fPq1GjRpo6dSrvKAUAAAByAUkpXGrgwIHq1KmT/v77b6WlpWnOnDnavXu3Pv/8c82fPz9Pltm0aVMZYzKU+/j4aPHixdec3tvbW+PGjdO4cePyIjwAAADgjsYrYeBSrVu31uzZs7Vw4ULZbDa9/fbb2rVrl77//ns1adLE6vAAAAAAuBgtpXC5Zs2aqVmzZlaHAQAAAOAmQFIKS2zcuFG7du2SzWZTuXLlVKNGDatDAgAAAGABklK41OHDh9WhQwetWbNGBQsWlCSdPn1adevW1cyZMxUREWFtgAAAAABcimdK4VLdunVTSkqKdu3apZMnT+rkyZPatWuXjDHq3r271eEBAAAAcDFaSuFSP//8s2JjY1WmTBlHWZkyZTRu3DjVq1fPwsgAAAAAWIGWUrhUZGSkUlJSMpRfunRJRYoUsSAiAAAAAFYiKYVLjRgxQr169dLGjRsd7w7duHGjXn75ZX3wwQcWRwcAAADA1bh9F3muUKFCstlsjuGzZ8+qVq1acnf/9/C7dOmS3N3d1a1bN7Vt29aiKAEAAABYgaQUeW7MmDFWhwAAAADgJkVSijzXpUuXHE/z7rvv6tlnn3W8NgYAAADA7YlnSnFTGjZsmE6ePGl1GAAAAADyGEkpbkrpnSABAAAAuL2RlAIAAAAALENSCgAAAACwDEkpAAAAAMAyJKUAAAAAAMuQlOKmdN9998nHx8fqMAAAAADkMZJSuNyff/6pN998Ux06dFB8fLwkadGiRdq5c6ejzsKFCxUWFmZViAAAAABchKQULrVq1SpVqlRJ69ev15w5c5SUlCRJ2rZtmwYOHGhxdAAAAABcjaQULvXGG29oyJAhWrJkiTw9PR3lDRs21Nq1ay2MDAAAAIAVSErhUtu3b9dDDz2Uobxw4cI6ceKEBREBAAAAsBJJKVyqYMGCOnr0aIbyLVu2qEiRIhZEBAAAAMBKJKVwqY4dO+r1119XXFycbDab0tLStGbNGvXr10+dO3e2OjwAAAAALkZSCpcaOnSoIiMjVaRIESUlJal8+fK6//77VbduXb355ptWhwcAAADAxdytDgB3Fg8PD8XExOidd97Rli1blJaWpmrVqqlUqVJWhwYAAADAAiSlsESJEiVUokQJq8MAAAAAYDGSUriUMUZff/21VqxYofj4eKWlpTmNnzNnjkWRAQAAALACSSlc6uWXX9bEiRPVsGFDhYSEyGazWR0SAAAAAAuRlMKlZsyYoTlz5qhFixZWhwIAAADgJkDvu3Apu92u4sWLWx0GAAAAgJsESSlcatCgQRo8eLDOnz9vdSgAAAAAbgLcvguXeuyxxzRz5kwFBweraNGi8vDwcBq/efNmiyIDAAAAYAWSUrhU165dtWnTJj355JN0dAQAAACApBSutWDBAi1evFj33nuvS5aXfrvw5UJCQhQXFyfp31fUDB48WBMnTtSpU6dUq1Ytffjhh6pQoYKjfnJysvr166eZM2fq/PnzatSokT766CPdddddLlkHAAAA4HbGM6VwqYiICBUoUMCly6xQoYKOHj3q+Gzfvt0xbsSIERo1apTGjx+vDRs2KDQ0VE2aNNGZM2ccdXr37q25c+dq1qxZWr16tZKSktSqVSulpqa6dD0AAACA2xFJKVxq5MiReu2117R//36XLdPd3V2hoaGOT+HChSX920o6ZswYDRgwQA8//LAqVqyoadOm6dy5c/riiy8kSQkJCZo0aZJGjhypxo0bq1q1apoxY4a2b9+upUuXumwdAAAAgNsVSSlc6sknn9SKFStUokQJ+fv7KyAgwOmTF/bs2aPw8HAVK1ZM7du3119//SVJ2rdvn+Li4tS0aVNHXS8vL9WvX1+xsbGSpE2bNiklJcWpTnh4uCpWrOiok5nk5GQlJiY6fQAAAABkxDOlcKkxY8a4dHm1atXS559/rtKlS+vYsWMaMmSI6tatq507dzqeKw0JCXGaJiQkRAcOHJAkxcXFydPTU4UKFcpQJ336zAwfPjzDs6wAAAAAMiIphUt16dLFpcuLjo52/L9SpUqqU6eOSpQooWnTpql27dqSlKEHYGPMNXsFvlad/v37q0+fPo7hxMRERUREXM8qAAAAALc1bt9Fnrv81tUrb2l19S2ufn5+qlSpkvbs2aPQ0FBJytDiGR8f72g9DQ0N1cWLF3Xq1Kks62TGy8tLBQoUcPrc6tL89utiyclK89tvdSgAAAC4jZCUIs8VKlRI8fHxkqSCBQuqUKFCGT7p5XktOTlZu3btUlhYmIoVK6bQ0FAtWbLEMf7ixYtatWqV6tatK0mqUaOGPDw8nOocPXpUO3bscNS5ExgZpYb8LHmfUGrIzzIyVocEAACA2wS37yLPLV++3NGJ0ZQpUxQRESE3NzenOmlpaTp48GCuL7tfv35q3bq1IiMjFR8fryFDhigxMVFdunSRzWZT7969NWzYMJUqVUqlSpXSsGHD5Ovrq44dO0qS7Ha7unfvrr59+yowMFABAQHq16+fKlWqpMaNG+d6vDcrk3+/jO//f7erb5xM/v2yJRWzOCoAAADcDkhKkefq16/v+H+3bt109OhRBQcHO9U5ceKEGjdunOvPnB4+fFgdOnTQP//8o8KFC6t27dpat26doqKiJEmvvfaazp8/r+eff16nTp1SrVq19OOPP8rf398xj9GjR8vd3V3t2rXT+fPn1ahRI02dOjVDYn27MjJKDV4tGZtkM5KxKTV4tWxJRWXT1Z+9BQAAAK6FpBQulVUHQUlJSfL29s715c2aNeuq4202mwYNGqRBgwZlWcfb21vjxo3TuHHjcjm6W8PlraSSJJuhtRQAAAC5hqQULpHeE63NZtNbb70lX19fx7jU1FStX79eVatWtSg6ZCVDK6ljBK2lAAAAyB0kpXCJLVu2SPq3pXT79u3y9PR0jPP09FSVKlXUr18/q8JDFjK0kqajtRQAAAC5hKQULrFixQpJ0lNPPaWxY8feFq9Iud39r5VUyrQx1IjWUgAAANwwklK41JQpU6wOAdllS5XxSMw8IZUkm/7/+FTJcCoBAADA9eGXJIBM2Yy7PP7qJON2Pus6l3xlIyEFAADADeDXJIAs2VIKyJbCrdYAAADIO/msDgAAAAAAcOciKQUAAAAAWIakFAAAAABgGZJSAAAAAIBlSEoBAAAAAJYhKQUAAAAAWIakFAAAAABgGZJSAAAAAIBlSEoBAAAAAJYhKQUAAAAAWIakFAAAAABgGZJSAAAAAIBlSEoBAAAAAJYhKQUAAAAAWIakFAAAAABgGXerAwCAO8GFCxd08OBBq8O4psjISHl7e1sdBgAAuIOQlAKACxw8eFA9e/a0OoxrmjhxokqXLm11GAAA4A5CUgoALhAZGamJEyfm2vwOHDigoUOHasCAAYqKisq1+UZGRubavAAAALKDpBQAXMDb2ztPWiCjoqJo2QQAALc0OjoCAAAAAFiGpBQAAAAAYBmSUgAAAACAZUhKAQAAAACWISkFAAAAAFiGpBQAAAAAYBmSUgC4Bf16+ledeuiUfj39q9WhAAAA3BCSUgC4xRhjFHMwRmkF0xRzMEbGGKtDAgAAuG4kpQBwi4k9Eqs/z/4pSfrz7J+KPRJrcUQAAADXj6QUAG4hxhiN2zJO+f7/6Tuf8mnclnG0lgIAgFsWSSlua8OHD9fdd98tf39/BQcHq23bttq9e7dTna5du8pmszl9ateu7VQnOTlZvXr1UlBQkPz8/NSmTRsdPnzYlasCSPq3lXTniZ1KU5okKU1p2nliJ62lAADglkVSitvaqlWr9MILL2jdunVasmSJLl26pKZNm+rs2bNO9Zo3b66jR486PgsXLnQa37t3b82dO1ezZs3S6tWrlZSUpFatWik1NdWVq4M7nKOV1OZ86s5no7UUAADcutytDgDIS4sWLXIanjJlioKDg7Vp0ybdf//9jnIvLy+FhoZmOo+EhARNmjRJ06dPV+PGjSVJM2bMUEREhJYuXapmzZrl3QoAl0lvJb1Smvlfa2m9IvUsiAwAAOD60VKKO0pCQoIkKSAgwKl85cqVCg4OVunSpdWjRw/Fx8c7xm3atEkpKSlq2rSpoyw8PFwVK1ZUbGzmt0wmJycrMTHR6QPciPRWUptsmY63yUZrKQAAuCWRlOKOYYxRnz59dO+996pixYqO8ujoaMXExGj58uUaOXKkNmzYoAceeEDJycmSpLi4OHl6eqpQoUJO8wsJCVFcXFymyxo+fLjsdrvjExERkXcrhjtCSlqK4s7GySjzpNPIKO5snFLSUlwcGQAAwI3h9l3cMV588UVt27ZNq1evdip//PHHHf+vWLGiatasqaioKC1YsEAPP/xwlvMzxshmy7zVqn///urTp49jODExkcQUN8TTzVOzWs3SyQsnJUkHDxzUkKFD9OaANxUZFSlJCvAOkKebp5VhAgAA5BhJKe4IvXr10nfffaeffvpJd91111XrhoWFKSoqSnv27JEkhYaG6uLFizp16pRTa2l8fLzq1q2b6Ty8vLzk5eWVeysASAr1C1Wo37/PPrufcJf7CXcVz19cpQNLWxwZAADA9eP2XdzWjDF68cUXNWfOHC1fvlzFihW75jQnTpzQoUOHFBYWJkmqUaOGPDw8tGTJEkedo0ePaseOHVkmpQAAAACyh5ZS3NZeeOEFffHFF/r222/l7+/veAbUbrfLx8dHSUlJGjRokB555BGFhYVp//79+s9//qOgoCA99NBDjrrdu3dX3759FRgYqICAAPXr10+VKlVy9MYLAAAA4PrQUorb2scff6yEhAQ1aNBAYWFhjs/s2bMlSW5ubtq+fbsefPBBlS5dWl26dFHp0qW1du1a+fv7O+YzevRotW3bVu3atVO9evXk6+ur77//Xm5ublatGoCbxNoja/XgvAe19shaq0MBAOCWREspbmvXej2Gj4+PFi9efM35eHt7a9y4cRo3blxuhQbgNmCM0djNY/VXwl8au3msaofVzrIDNAAAkDlaSgEAuE6xR2K188ROSdLOEzsVeyTzdxcDAICskZQCAHAdjDEat2Wc8tn+vZTms+XTuC3jrnmHBgAAcEZSCgDAdUhvJU0zaZKkNJNGaykAANeBpBQAgBy6spU0Ha2lAADkHEkpAAA5dGUraTpaSwEAyDmSUgAAciC9ldSmzHvZtclGaykAADlAUgoAQA6kpKUo7mycjDJPOo2M4s7GKSUtxcWRAQBwa+I9pQAA5ICnm6dmtZqlkxdOZlknwDtAnm6eLowKAIBbF0kpAAA5FOoXqlC/UKvDAADgtsDtuwAAAAAAy5CUAgAAAAAsQ1IKAAAAALAMSSkAAAAAwDJ0dAQAWTh27JgSEhKsDiNTBw4ccPr3ZmO32xUSEmJ1GAAA4BZAUgoAmTh27Jie7NRZKReTrQ7lqoYOHWp1CJny8PTSjOmfk5gCd6i1R9bq3V/e1Rv3vKE64XWsDgfATY6kFAAykZCQoJSLyTpfvL7SvO1Wh3NLyXchQfprlRISEkhKgTuQMUZjN4/VXwl/aezmsaodVls2m83qsADcxEhKAeAq0rztSvMLsjoMALhlxB6J1c4TOyVJO0/sVOyRWNUrUs/iqADczOjoCAAAALnCGKNxW8Ypn+3fn5j5bPk0bss4GWMsjgzAzYykFAAAALkivZU0zaRJktJMmqO1FACyQlIKAACAG3ZlK2k6WksBXAtJKQAAuC2sPbJWD857UGuPrLU6lDvSla2k6WgtBXAtJKUAAOCWd2WPr7TKuVZ6K6lNmfeya5ON1lIAWSIpBQAAt7zMenyF66SkpSjubJyMMk86jYzizsYpJS3FxZEBuBXwShgAAHBLu/xZxjST5niGsW54Xd6P6SKebp6a1WqWTl44mWWdAO8Aebp5ujAqALcKklIAAHBLu7yVVHJ+hpH3Y7pOqF+oQv1CrQ4DwC2I23cBAMAtix5fAeDWR1IKAABuWfT4CgC3PpJSAABwS6LHVwC4PZCUAgCAWxI9vgLA7YGOjgAAwC2JHl8B4PZAUgoAAG5Z9PgKALc+bt8FAAAAAFiGpBQAAAAAYBmSUgAAAACAZUhKAQAAAACWISkFsumjjz5SsWLF5O3trRo1aujnn3+2OiQAAADglkfvu0A2zJ49W71799ZHH32kevXq6ZNPPlF0dLR+++03RUZGWh0egBy4cOGCDh48aHUY1xQZGSlvb2+rwwAAIM+RlALZMGrUKHXv3l1PP/20JGnMmDFavHixPv74Yw0fPtzi6IDb37Fjx5SQkJAr8zpw4ICGDh2aK/PKSwMGDFBUVFSuzMtutyskJCRX5gUAQG4jKQWu4eLFi9q0aZPeeOMNp/KmTZsqNjY202mSk5OVnJzsGE5MTMzRMt0SDivf+dM5jjUDkyrbxXM3Pp88ZDx9JZvbDc/HdjEpF6LJ6E7aF1Lu7I/c3hfHjh3TE0920qWUi7k635tdbibO7h6eipkxPVcS071792rfvn25EJV07tw5/fnnn7kyr7xUokQJ+fr65sq8ihUrppIlS+bKvKTc2x/sCwBWIikFruGff/5Rampqhh9zISEhiouLy3Sa4cOHa/DgwTlelt1uV758bvL+e/N1xXqny5fPTXa7PVfmxb64Mbm5LyQpLTU11+Z1J8rN7Tdu3Dj9+uuvuTa/O02VKlU0duzYXJsf++P65fa+AHD9bMYYY3UQwM3syJEjKlKkiGJjY1WnTh1H+dChQzV9+nT9/vvvGabJrKU0IiJCCQkJKlCgwFWX9/vvv+vQoUO5EntKSor++eefXJlXXgkKCpKHh0euzCsiIkJly5bNlXlJd96+kHJvf7AvbtzN+t2gpfTG0FJ6Y1y9LxITE2W327N1/QZw/WgpBa4hKChIbm5uGVpF4+Pjs7wVzsvLS15eXte1vLJly+bqj3lcP/bFzYN9cfMoWbIktzzeRNgfAG4HvBIGuAZPT0/VqFFDS5YscSpfsmSJ6tata1FUAAAAwO2BllIgG/r06aNOnTqpZs2aqlOnjiZOnKiDBw/q2WeftTo0AAAA4JZGUgpkw+OPP64TJ07onXfe0dGjR1WxYkUtXLgw117XAAAAANyp6OgIcAE6SgAA4NbD9RtwDZ4pBQAAAABYhqQUAAAAAGAZklIAAAAAgGVISgEAAAAAliEpBQAAAABYhqQUAAAAAGAZklIAAAAAgGVISgEAAAAAliEpBQAAAABYxt3qAIA7gTFGkpSYmGhxJAAAILvSr9vp13EAeYOkFHCBM2fOSJIiIiIsjgQAAOTUmTNnZLfbrQ4DuG3ZDH/6AfJcWlqajhw5In9/f9lsNqvDuS6JiYmKiIjQoUOHVKBAAavDueOxP24e7IubB/vi5nG77AtjjM6cOaPw8HDly8dTb0BeoaUUcIF8+fLprrvusjqMXFGgQIFb+gfG7Yb9cfNgX9w82Bc3j9thX9BCCuQ9/uQDAAAAALAMSSkAAAAAwDIkpQCyxcvLSwMHDpSXl5fVoUDsj5sJ++Lmwb64ebAvAOQEHR0BAAAAACxDSykAAAAAwDIkpQAAAAAAy5CUAgAAAAAsQ1IKAAAAALAMSSkAJz/99JNat26t8PBw2Ww2zZs3z2m8MUaDBg1SeHi4fHx81KBBA+3cudOaYG9z19oXc+bMUbNmzRQUFCSbzaatW7daEued4mr7IyUlRa+//roqVaokPz8/hYeHq3Pnzjpy5Ih1Ad/GrvXdGDRokMqWLSs/Pz8VKlRIjRs31vr1660J9jZ3rX1xuWeeeUY2m01jxoxxWXwAbg0kpQCcnD17VlWqVNH48eMzHT9ixAiNGjVK48eP14YNGxQaGqomTZrozJkzLo709netfXH27FnVq1dP7777rosjuzNdbX+cO3dOmzdv1ltvvaXNmzdrzpw5+uOPP9SmTRsLIr39Xeu7Ubp0aY0fP17bt2/X6tWrVbRoUTVt2lTHjx93caS3v2vti3Tz5s3T+vXrFR4e7qLIANxKeCUMgCzZbDbNnTtXbdu2lfRvK2l4eLh69+6t119/XZKUnJyskJAQvffee3rmmWcsjPb2duW+uNz+/ftVrFgxbdmyRVWrVnV5bHeiq+2PdBs2bNA999yjAwcOKDIy0nXB3WGysy8SExNlt9u1dOlSNWrUyHXB3WGy2hd///23atWqpcWLF6tly5bq3bu3evfubUmMAG5OtJQCyLZ9+/YpLi5OTZs2dZR5eXmpfv36io2NtTAy4OaTkJAgm82mggULWh3KHe3ixYuaOHGi7Ha7qlSpYnU4d5y0tDR16tRJr776qipUqGB1OABuUu5WBwDg1hEXFydJCgkJcSoPCQnRgQMHrAgJuClduHBBb7zxhjp27KgCBQpYHc4daf78+Wrfvr3OnTunsLAwLVmyREFBQVaHdcd577335O7urpdeesnqUADcxGgpBZBjNpvNadgYk6EMuFOlpKSoffv2SktL00cffWR1OHeshg0bauvWrYqNjVXz5s3Vrl07xcfHWx3WHWXTpk0aO3aspk6dyjUCwFWRlALIttDQUEn/azFNFx8fn6H1FLgTpaSkqF27dtq3b5+WLFlCK6mF/Pz8VLJkSdWuXVuTJk2Su7u7Jk2aZHVYd5Sff/5Z8fHxioyMlLu7u9zd3XXgwAH17dtXRYsWtTo8ADcRklIA2VasWDGFhoZqyZIljrKLFy9q1apVqlu3roWRAdZLT0j37NmjpUuXKjAw0OqQcBljjJKTk60O447SqVMnbdu2TVu3bnV8wsPD9eqrr2rx4sVWhwfgJsIzpQCcJCUlae/evY7hffv2aevWrQoICFBkZKR69+6tYcOGqVSpUipVqpSGDRsmX19fdezY0cKob0/X2hcnT57UwYMHHe/C3L17t6R/W7TTW7WRe662P8LDw/Xoo49q8+bNmj9/vlJTUx13FAQEBMjT09OqsG9LV9sXgYGBGjp0qNq0aaOwsDCdOHFCH330kQ4fPqzHHnvMwqhvT9c6T135xxkPDw+FhoaqTJkyrg4VwM3MAMBlVqxYYSRl+HTp0sUYY0xaWpoZOHCgCQ0NNV5eXub+++8327dvtzbo29S19sWUKVMyHT9w4EBL475dXW1/7Nu3L9NxksyKFSusDv22c7V9cf78efPQQw+Z8PBw4+npacLCwkybNm3ML7/8YnXYt6VrnaeuFBUVZUaPHu3SGAHc/HhPKQAAAADAMjxTCgAAAACwDEkpAAAAAMAyJKUAAAAAAMuQlAIAAAAALENSCgAAAACwDEkpAAAAAMAyJKUAAAAAAMuQlAIAbjkNGjRQ7969rQ4DAADkApJSAAAAAIBlSEoBAJCUmpqqtLQ0q8MAAOCOQ1IKALhuDRo00EsvvaTXXntNAQEBCg0N1aBBgyRJ+/fvl81m09atWx31T58+LZvNppUrV0qSVq5cKZvNpsWLF6tatWry8fHRAw88oPj4eP3www8qV66cChQooA4dOujcuXNOy7506ZJefPFFFSxYUIGBgXrzzTdljHGMv3jxol577TUVKVJEfn5+qlWrlmO5kjR16lQVLFhQ8+fPV/ny5eXl5aUDBw5cc50nT56sChUqyMvLS2FhYXrxxRcd4w4ePKgHH3xQ+fPnV4ECBdSuXTsdO3bMMX7QoEGqWrWqJk+erMjISOXPn1/PPfecUlNTNWLECIWGhio4OFhDhw51WqbNZtPHH3+s6Oho+fj4qFixYvrqq6+c6rz++usqXbq0fH19Vbx4cb311ltKSUlxqjNkyBAFBwfL399fTz/9tN544w1VrVrVMb5r165q27atPvjgA4WFhSkwMFAvvPCCYz7vvPOOKlWqlGGb1KhRQ2+//fY1tx0AAJkhKQUA3JBp06bJz89P69ev14gRI/TOO+9oyZIlOZrHoEGDNH78eMXGxurQoUNq166dxowZoy+++EILFizQkiVLNG7cuAzLdXd31/r16/V///d/Gj16tD777DPH+Keeekpr1qzRrFmztG3bNj322GNq3ry59uzZ46hz7tw5DR8+XJ999pl27typ4ODgq8b58ccf64UXXlDPnj21fft2fffddypZsqQkyRijtm3b6uTJk1q1apWWLFmiP//8U48//rjTPP7880/98MMPWrRokWbOnKnJkyerZcuWOnz4sFatWqX33ntPb775ptatW+c03VtvvaVHHnlEv/76q5588kl16NBBu3btcoz39/fX1KlT9dtvv2ns2LH69NNPNXr0aMf4mJgYDR06VO+99542bdqkyMhIffzxxxnWccWKFfrzzz+1YsUKTZs2TVOnTtXUqVMlSd26ddNvv/2mDRs2OOpv27ZNW7ZsUdeuXa+67QAAyJIBAOA61a9f39x7771OZXfffbd5/fXXzb59+4wks2XLFse4U6dOGUlmxYoVxhhjVqxYYSSZpUuXOuoMHz7cSDJ//vmno+yZZ54xzZo1c1puuXLlTFpamqPs9ddfN+XKlTPGGLN3715js9nM33//7RRbo0aNTP/+/Y0xxkyZMsVIMlu3bs32+oaHh5sBAwZkOu7HH380bm5u5uDBg46ynTt3Gknml19+McYYM3DgQOPr62sSExMddZo1a2aKFi1qUlNTHWVlypQxw4cPdwxLMs8++6zT8mrVqmWee+65LGMdMWKEqVGjhlP9F154walOvXr1TJUqVRzDXbp0MVFRUebSpUuOsscee8w8/vjjjuHo6Gin5fbu3ds0aNAgyzgAALgWWkoBADekcuXKTsNhYWGKj4+/7nmEhIQ4bkG9vOzKedauXVs2m80xXKdOHe3Zs0epqanavHmzjDEqXbq08ufP7/isWrVKf/75p2MaT0/PDPFnJT4+XkeOHFGjRo0yHb9r1y5FREQoIiLCUVa+fHkVLFjQqUWzaNGi8vf3d1q38uXLK1++fE5lV65vnTp1MgxfPt+vv/5a9957r0JDQ5U/f3699dZbOnjwoGP87t27dc899zjN48phSapQoYLc3Nwcw1fuzx49emjmzJm6cOGCUlJSFBMTo27dumW6TQAAyA53qwMAANzaPDw8nIZtNpvS0tIcSZa57DnPK59xzGweNpsty3lmV1pamtzc3LRp0yanBEuS8ufP7/i/j4+PU2J7NT4+Plcdb4zJdF5Xlme2bte7vunzXbdundq3b6/BgwerWbNmstvtmjVrlkaOHJlp/ctju9K1YmndurW8vLw0d+5ceXl5KTk5WY888sg1YwUAICu0lAIA8kThwoUlSUePHnWUXd7p0Y268pnLdevWqVSpUnJzc1O1atWUmpqq+Ph4lSxZ0ukTGhp6Xcvz9/dX0aJFtWzZskzHly9fXgcPHtShQ4ccZb/99psSEhJUrly561rm5TJb37Jly0qS1qxZo6ioKA0YMEA1a9ZUqVKlMnTaVKZMGf3yyy9OZRs3bsxxHO7u7urSpYumTJmiKVOmqH379vL19c3xfAAASEdLKQAgT/j4+Kh27dp69913VbRoUf3zzz968803c23+hw4dUp8+ffTMM89o8+bNGjdunKNlsHTp0nriiSfUuXNnjRw5UtWqVdM///yj5cuXq1KlSmrRosV1LXPQoEF69tlnFRwcrOjoaJ05c0Zr1qxRr1691LhxY1WuXFlPPPGExowZo0uXLun5559X/fr1VbNmzRte36+++ko1a9bUvffeq5iYGP3yyy+aNGmSJKlkyZI6ePCgZs2apbvvvlsLFizQ3Llznabv1auXevTooZo1a6pu3bqaPXu2tm3b5nSbdHY9/fTTjkR7zZo1N7xuAIA7Gy2lAIA8M3nyZKWkpKhmzZp6+eWXNWTIkFybd+fOnXX+/Hndc889euGFF9SrVy/17NnTMX7KlCnq3Lmz+vbtqzJlyqhNmzZav3690zOfOdWlSxeNGTNGH330kSpUqKBWrVo5evO12WyaN2+eChUqpPvvv1+NGzdW8eLFNXv27BteV0kaPHiwZs2apcqVK2vatGmKiYlR+fLlJUkPPvigXnnlFb344ouqWrWqYmNj9dZbbzlN/8QTT6h///7q16+fqlevrn379qlr167y9vbOcSylSpVS3bp1VaZMGdWqVStX1g8AcOeymcweKAEAADcNm82muXPnqm3btrk63yZNmig0NFTTp0/P0XTGGJUtW1bPPPOM+vTpk6sxAQDuPNy+CwDAHeDcuXOaMGGCmjVrJjc3N82cOVNLly7N8Ttl4+PjNX36dP3999966qmn8ihaAMCdhKQUAID/7/Keea/0ww8/6L777nNhNLnLZrNp4cKFGjJkiJKTk1WmTBl98803aty4cY7mExISoqCgIE2cOFGFChXKo2gBAHcSbt8FAOD/27t3b5bjihQpcs3XwgAAgJwjKQUAAAAAWIbedwEAAAAAliEpBQAAAABYhqQUAAAAAGAZklIAAAAAgGVISgEAAAAAliEpBQAAAABYhqQUAAAAAGAZklIAAAAAgGX+HzsIOzI+/OG6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#repartion Chiffre d'affaire selon le numero de la compagnie\n", + "\n", + "sns.boxplot(data=products_purchased_reduced_spectacle, y=\"time_between_purchase\",x=\"number_compagny\",showfliers=False,showmeans=True)\n", + "plt.title(\"Boite à moustache du temps ecoulés entre le premier et le dernier achat selon les compagnies de spectacles\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "58cbe8a5-3899-4aa3-91ab-48bed9124fbd", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "58f49748-e55f-4d1b-b58b-102d02a9e0eb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sum_sq df F PR(>F)\n", + "number_compagny 4.108441e+09 1.0 23548.336165 0.0\n", + "Residual 1.334471e+11 764878.0 NaN NaN la p-value associé à la stat de fisher est inferieure à 5% donc il y a un lien entre les entreprise et le temps écoulés entre le premier et le dernier achat\n" + ] + } + ], + "source": [ + "#test anova entre les entreprise de spectacle et taux d'achat de ticket en ligne\n", + "import statsmodels.api as sm\n", + "from statsmodels.formula.api import ols\n", + "model = ols('time_between_purchase ~ number_compagny', data=products_purchased_reduced_spectacle).fit()\n", + "anova_table = sm.stats.anova_lm(model, typ=2)\n", + "anova_table\n", + "print(anova_table,\"la p-value associé à la stat de fisher est inferieure à 5% donc il y a un lien entre les entreprise et le temps écoulés entre le premier et le dernier achat\" )\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "33ef5773-a09d-4b8c-918f-1b64a9790422", + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "id": "b9e84af4-a02b-4f83-81ae-b7a73475d060",