Passage à demande input à boucle sur activite
This commit is contained in:
parent
0a7900c07f
commit
35638f2a2d
|
@ -21,54 +21,56 @@ companies = {'musee' : ['1', '2', '3', '4'], # , '101'
|
|||
'musique' : ['10', '11', '12', '13', '14']}
|
||||
|
||||
|
||||
type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
|
||||
list_of_comp = companies[type_of_activity]
|
||||
|
||||
# Load files
|
||||
customer, campaigns_kpi, campaigns_brut, tickets, products, targets = load_files(list_of_comp)
|
||||
|
||||
# Identify anonymous customer for each company and remove them from our datasets
|
||||
outlier_list = outlier_detection(tickets, list_of_comp)
|
||||
|
||||
# Identify valid customer (customer who bought tickets after starting date or received mails after starting date)
|
||||
customer_valid_list = valid_customer_detection(products, campaigns_brut)
|
||||
|
||||
databases = [customer, campaigns_kpi, campaigns_brut, tickets, products]
|
||||
|
||||
for dataset in databases:
|
||||
dataset['customer_id'] = dataset['customer_id'].apply(lambda x: remove_elements(x, outlier_list))# remove outlier
|
||||
dataset = dataset[dataset['customer_id'].isin(customer_valid_list)] # keep only valid customer
|
||||
#print(f'shape of {dataset} : ', dataset.shape)
|
||||
|
||||
# Identify customer who bought during the period of y
|
||||
customer_target_period = identify_purchase_during_target_periode(products)
|
||||
customer['has_purchased_target_period'] = np.where(customer['customer_id'].isin(customer_target_period), 1, 0)
|
||||
|
||||
# Generate graph and automatically saved them in the bucket
|
||||
compute_nb_clients(customer, type_of_activity)
|
||||
|
||||
#maximum_price_paid(customer, type_of_activity)
|
||||
|
||||
target_proportion(customer, type_of_activity)
|
||||
|
||||
mailing_consent(customer, type_of_activity)
|
||||
|
||||
mailing_consent_by_target(customer)
|
||||
|
||||
gender_bar(customer, type_of_activity)
|
||||
|
||||
country_bar(customer, type_of_activity)
|
||||
|
||||
lazy_customer_plot(campaigns_kpi, type_of_activity)
|
||||
|
||||
campaigns_effectiveness(customer, type_of_activity)
|
||||
|
||||
sale_dynamics(products, campaigns_brut, type_of_activity)
|
||||
|
||||
tickets_internet(tickets, type_of_activity)
|
||||
|
||||
already_bought_online(tickets, type_of_activity)
|
||||
|
||||
box_plot_price_tickets(tickets, type_of_activity)
|
||||
|
||||
target_description(targets, type_of_activity)
|
||||
# type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
|
||||
for type_of_activity in ['musee', 'sport', 'musique'] :
|
||||
|
||||
list_of_comp = companies[type_of_activity]
|
||||
|
||||
# Load files
|
||||
customer, campaigns_kpi, campaigns_brut, tickets, products, targets = load_files(list_of_comp)
|
||||
|
||||
# Identify anonymous customer for each company and remove them from our datasets
|
||||
outlier_list = outlier_detection(tickets, list_of_comp)
|
||||
|
||||
# Identify valid customer (customer who bought tickets after starting date or received mails after starting date)
|
||||
customer_valid_list = valid_customer_detection(products, campaigns_brut)
|
||||
|
||||
databases = [customer, campaigns_kpi, campaigns_brut, tickets, products]
|
||||
|
||||
for dataset in databases:
|
||||
dataset['customer_id'] = dataset['customer_id'].apply(lambda x: remove_elements(x, outlier_list))# remove outlier
|
||||
dataset = dataset[dataset['customer_id'].isin(customer_valid_list)] # keep only valid customer
|
||||
#print(f'shape of {dataset} : ', dataset.shape)
|
||||
|
||||
# Identify customer who bought during the period of y
|
||||
customer_target_period = identify_purchase_during_target_periode(products)
|
||||
customer['has_purchased_target_period'] = np.where(customer['customer_id'].isin(customer_target_period), 1, 0)
|
||||
|
||||
# Generate graph and automatically saved them in the bucket
|
||||
compute_nb_clients(customer, type_of_activity)
|
||||
|
||||
#maximum_price_paid(customer, type_of_activity)
|
||||
|
||||
target_proportion(customer, type_of_activity)
|
||||
|
||||
mailing_consent(customer, type_of_activity)
|
||||
|
||||
mailing_consent_by_target(customer)
|
||||
|
||||
gender_bar(customer, type_of_activity)
|
||||
|
||||
country_bar(customer, type_of_activity)
|
||||
|
||||
lazy_customer_plot(campaigns_kpi, type_of_activity)
|
||||
|
||||
campaigns_effectiveness(customer, type_of_activity)
|
||||
|
||||
sale_dynamics(products, campaigns_brut, type_of_activity)
|
||||
|
||||
tickets_internet(tickets, type_of_activity)
|
||||
|
||||
already_bought_online(tickets, type_of_activity)
|
||||
|
||||
box_plot_price_tickets(tickets, type_of_activity)
|
||||
|
||||
target_description(targets, type_of_activity)
|
Loading…
Reference in New Issue
Block a user