Changement architecture p1

This commit is contained in:
Antoine JOUBREL 2024-03-28 21:18:08 +00:00
parent 3d6414728c
commit 42b4414a16
8 changed files with 7 additions and 10 deletions

View File

@ -13,7 +13,7 @@ S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL}) fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import cleaning and merge functions # Import cleaning and merge functions
exec(open('0_Cleaning_and_merge_functions.py').read()) exec(open('utils_cleaning_and_merge.py').read())
# Output folder # Output folder
BUCKET_OUT = "projet-bdc2324-team1" BUCKET_OUT = "projet-bdc2324-team1"
@ -51,9 +51,6 @@ for tenant_id in ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12",
## Exportation ## Exportation
export_dataset(df = df1_campaigns_information, output_name = "0_Input/Company_"+ tenant_id +"/campaigns_information.csv") export_dataset(df = df1_campaigns_information, output_name = "0_Input/Company_"+ tenant_id +"/campaigns_information.csv")
# Exportation
export_dataset(df = df1_campaigns_information, output_name = "1_Temp/Company 1 - Campaigns dataset clean.csv")
if tenant_id == "101": if tenant_id == "101":
# Cleaning product area # Cleaning product area
products_purchased_reduced, products_purchased_reduced_1 = uniform_product_df(directory_path = tenant_id) products_purchased_reduced, products_purchased_reduced_1 = uniform_product_df(directory_path = tenant_id)

View File

@ -17,7 +17,7 @@ S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL}) fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import KPI construction functions # Import KPI construction functions
exec(open('0_KPI_functions.py').read()) exec(open('utils_features_construction.py').read())
# Ignore warning # Ignore warning
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
@ -130,7 +130,7 @@ type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee
list_of_comp = companies[type_of_comp] list_of_comp = companies[type_of_comp]
# Export folder # Export folder
BUCKET_OUT = f'projet-bdc2324-team1/Generalization_v2/{type_of_comp}' BUCKET_OUT = f'projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}'
# Dates used for the construction of features and the dependant variable # Dates used for the construction of features and the dependant variable
start_date = "2021-05-01" start_date = "2021-05-01"

View File

@ -21,7 +21,7 @@ warnings.filterwarnings('ignore')
# functions # functions
def generate_test_set(type_of_comp): def generate_test_set(type_of_comp):
file_path_list = fs.ls(f"projet-bdc2324-team1/Generalization_v2/{type_of_comp}/Test_set") file_path_list = fs.ls(f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}/Test_set")
test_set = pd.DataFrame() test_set = pd.DataFrame()
for file in file_path_list: for file in file_path_list:
print(file) print(file)
@ -32,7 +32,7 @@ def generate_test_set(type_of_comp):
def generate_train_set(type_of_comp): def generate_train_set(type_of_comp):
file_path_list = fs.ls(f"projet-bdc2324-team1/Generalization_v2/{type_of_comp}/Train_set") file_path_list = fs.ls(f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}/Train_set")
train_set = pd.DataFrame() train_set = pd.DataFrame()
for file in file_path_list: for file in file_path_list:
print(file) print(file)
@ -43,7 +43,7 @@ def generate_train_set(type_of_comp):
type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?') type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
BUCKET_OUT = f'projet-bdc2324-team1/Generalization_v2/{type_of_comp}/' BUCKET_OUT = f'projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}/'
# create test and train datasets # create test and train datasets
test_set = generate_test_set(type_of_comp) test_set = generate_test_set(type_of_comp)

View File

@ -9,7 +9,7 @@ import warnings
# Ignore warning # Ignore warning
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
exec(open('0_KPI_functions.py').read()) exec(open('utils_features_construction.py').read())
exec(open('utils_stat_desc.py').read()) exec(open('utils_stat_desc.py').read())
# Create filesystem object # Create filesystem object