diff --git a/Sport/exploration_sport.ipynb b/Sport/exploration_sport.ipynb
new file mode 100644
index 0000000..e28c5f2
--- /dev/null
+++ b/Sport/exploration_sport.ipynb
@@ -0,0 +1,854 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 114,
+ "id": "314bf34b-1f6d-4a99-8f82-aa71ebacdabc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import os\n",
+ "import s3fs\n",
+ "import warnings\n",
+ "from datetime import date, timedelta, datetime\n",
+ "import numpy as np\n",
+ "\n",
+ "exec(open('../0_KPI_functions.py').read())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "id": "a276822a-c389-429e-b249-8a9e47758bfc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Ignore warning\n",
+ "warnings.filterwarnings('ignore')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "id": "f62b996c-4e17-40ea-83ba-f0cb60be7671",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['bdc2324-data/1',\n",
+ " 'bdc2324-data/10',\n",
+ " 'bdc2324-data/101',\n",
+ " 'bdc2324-data/11',\n",
+ " 'bdc2324-data/12',\n",
+ " 'bdc2324-data/13',\n",
+ " 'bdc2324-data/14',\n",
+ " 'bdc2324-data/2',\n",
+ " 'bdc2324-data/3',\n",
+ " 'bdc2324-data/4',\n",
+ " 'bdc2324-data/5',\n",
+ " 'bdc2324-data/6',\n",
+ " 'bdc2324-data/7',\n",
+ " 'bdc2324-data/8',\n",
+ " 'bdc2324-data/9']"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Create filesystem object\n",
+ "S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n",
+ "fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})\n",
+ "\n",
+ "BUCKET = \"bdc2324-data\"\n",
+ "fs.ls(BUCKET)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2c829aa8-2006-4e72-889b-7096dd55718b",
+ "metadata": {},
+ "source": [
+ "## Look at the time sequence of each company and compute inter time coverage"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "id": "e86864b7-4852-449a-8680-638559d56080",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sport = ['5', '6', '7', '8', '9']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "id": "7634ec57-4891-4684-8638-1e1643baca28",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def display_covering_time(df, company, datecover):\n",
+ " \"\"\"\n",
+ " This function draws the time coverage of each company\n",
+ " \"\"\"\n",
+ " min_date = df['purchase_date'].min().strftime(\"%Y-%m-%d\")\n",
+ " max_date = df['purchase_date'].max().strftime(\"%Y-%m-%d\")\n",
+ " datecover[company] = [datetime.strptime(min_date, \"%Y-%m-%d\") + timedelta(days=x) for x in range((datetime.strptime(max_date, \"%Y-%m-%d\") - datetime.strptime(min_date, \"%Y-%m-%d\")).days)]\n",
+ " print(f'Couverture Company {company} : {min_date} - {max_date}')\n",
+ " return datecover"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 91,
+ "id": "53c83f51-822c-4e05-8c7c-89aa327603c6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def compute_time_intersection(datecover):\n",
+ " timestamps_sets = [set(timestamps) for timestamps in datecover.values()]\n",
+ " intersection = set.intersection(*timestamps_sets)\n",
+ " intersection_list = list(intersection)\n",
+ " formated_dates = [dt.strftime(\"%Y-%m-%d\") for dt in intersection_list]\n",
+ " return sorted(formated_dates)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 93,
+ "id": "eec152de-078e-44c4-ad6e-74ae6ba5c65a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def df_coverage_modelization(sport, coverage_train = 0.7):\n",
+ " \"\"\"\n",
+ " This function returns start_date, end_of_features and final dates\n",
+ " that help to construct train and test datasets\n",
+ " \"\"\"\n",
+ " datecover = {}\n",
+ " for company in sport:\n",
+ " df_products_purchased_reduced = display_databases(company, file_name = \"products_purchased_reduced\",\n",
+ " datetime_col = ['purchase_date'])\n",
+ " datecover = display_covering_time(df_products_purchased_reduced, company, datecover)\n",
+ " #print(datecover.keys())\n",
+ " dt_coverage = compute_time_intersection(datecover)\n",
+ " start_date = dt_coverage[0]\n",
+ " end_of_features = dt_coverage[int(0.7 * len(dt_coverage))]\n",
+ " final_date = dt_coverage[-1]\n",
+ " return start_date, end_of_features, final_date\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 94,
+ "id": "348f246a-bc2d-4bbc-ba05-aa825da15a69",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "File path : projet-bdc2324-team1/0_Input/Company_5/products_purchased_reduced.csv\n",
+ "Couverture Company 5 : 2019-04-15 - 2023-11-09\n",
+ "File path : projet-bdc2324-team1/0_Input/Company_6/products_purchased_reduced.csv\n",
+ "Couverture Company 6 : 2018-06-28 - 2023-11-08\n",
+ "File path : projet-bdc2324-team1/0_Input/Company_7/products_purchased_reduced.csv\n",
+ "Couverture Company 7 : 2015-02-10 - 2023-11-08\n",
+ "File path : projet-bdc2324-team1/0_Input/Company_8/products_purchased_reduced.csv\n",
+ "Couverture Company 8 : 2010-09-28 - 2023-11-08\n",
+ "File path : projet-bdc2324-team1/0_Input/Company_9/products_purchased_reduced.csv\n",
+ "Couverture Company 9 : 2014-09-22 - 2023-10-24\n",
+ "dict_keys(['5', '6', '7', '8', '9'])\n",
+ "2019-04-15 2022-06-15 2023-10-23\n"
+ ]
+ }
+ ],
+ "source": [
+ "start_date, end_of_features, final_date = df_coverage_modelization(sport, coverage_train = 0.7)\n",
+ "print(start_date, end_of_features, final_date )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "34ddc267-4daa-4926-9d54-5b13d4212eaa",
+ "metadata": {},
+ "source": [
+ "## Look at common database between Sport companies"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 101,
+ "id": "389387fa-2046-4811-b8dd-6d524e91fe2e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['bdc2324-data/5',\n",
+ " 'bdc2324-data/6',\n",
+ " 'bdc2324-data/7',\n",
+ " 'bdc2324-data/8',\n",
+ " 'bdc2324-data/9']"
+ ]
+ },
+ "execution_count": 101,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "companies = fs.ls(BUCKET)\n",
+ "companies = [company for company in companies if any(company.endswith(end) for end in sport)]\n",
+ "companies"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 107,
+ "id": "895fc2b3-c768-454d-bedb-54994e4d211a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of databases : 30\n",
+ "Number of common databases : 23\n"
+ ]
+ }
+ ],
+ "source": [
+ "companies_database = {}\n",
+ "\n",
+ "for company in companies:\n",
+ " companies_database[company.split('/')[-1]] = [file.split('/')[-1].replace(company.split('/')[-1], '') for file in fs.ls(company)] \n",
+ "\n",
+ "all_database = companies_database[max(companies_database, key=lambda x: len(companies_database[x]))]\n",
+ "print(\"Number of databases : \",len(all_database))\n",
+ "\n",
+ "data_in_common = set(all_database)\n",
+ "\n",
+ "for key in companies_database:\n",
+ " diff_database = data_in_common.symmetric_difference(companies_database[key])\n",
+ " data_in_common = data_in_common - diff_database\n",
+ "\n",
+ "print(\"Number of common databases : \",len(data_in_common))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 121,
+ "id": "0c06517d-f5b7-4104-94fa-0e3f843c5881",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'campaign_stats.csv',\n",
+ " 'campaigns.csv',\n",
+ " 'categories.csv',\n",
+ " 'countries.csv',\n",
+ " 'currencies.csv',\n",
+ " 'customer_target_mappings.csv',\n",
+ " 'customersplus.csv',\n",
+ " 'event_types.csv',\n",
+ " 'events.csv',\n",
+ " 'facilities.csv',\n",
+ " 'link_stats.csv',\n",
+ " 'pricing_formulas.csv',\n",
+ " 'product_packs.csv',\n",
+ " 'products.csv',\n",
+ " 'products_groups.csv',\n",
+ " 'purchases.csv',\n",
+ " 'representation_category_capacities.csv',\n",
+ " 'representations.csv',\n",
+ " 'seasons.csv',\n",
+ " 'suppliers.csv',\n",
+ " 'target_types.csv',\n",
+ " 'targets.csv',\n",
+ " 'tickets.csv'}"
+ ]
+ },
+ "execution_count": 121,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data_in_common"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1af245aa-44a7-453b-90f9-0c4bcc415cd0",
+ "metadata": {},
+ "source": [
+ "## Investigate errors from data construction for company 6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 108,
+ "id": "538a5ca2-a50d-4726-93eb-c2b0d0ab8400",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "directory_path = '6'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 143,
+ "id": "1ca3fb71-930a-441c-b35b-b98bca780606",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "File path : projet-bdc2324-team1/0_Input/Company_6/customerplus_cleaned.csv\n",
+ "File path : projet-bdc2324-team1/0_Input/Company_6/campaigns_information.csv\n",
+ "File path : projet-bdc2324-team1/0_Input/Company_6/products_purchased_reduced.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_customerplus_clean = display_databases(directory_path, file_name = \"customerplus_cleaned\")\n",
+ "df_campaigns_information = display_databases(directory_path, file_name = \"campaigns_information\", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])\n",
+ "df_products_purchased_reduced = display_databases(directory_path, file_name = \"products_purchased_reduced\", datetime_col = ['purchase_date'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 144,
+ "id": "2ad3052c-e9e6-4ef9-abe2-4b8b2306a2b9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "max_date = pd.to_datetime(final_date, utc = True, format = 'ISO8601') \n",
+ "end_features_date = pd.to_datetime(end_of_features, utc = True, format = 'ISO8601')\n",
+ "min_date = pd.to_datetime(start_date, utc = True, format = 'ISO8601')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 128,
+ "id": "146999f2-ab92-4b7c-8c57-2e3ac8c4dd88",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "File path : projet-bdc2324-team1/0_Input/Company_6/campaigns_information.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_campaigns_information = display_databases(directory_path, file_name = \"campaigns_information\", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 133,
+ "id": "7448a7b9-3edf-4177-9df2-a260ebbee45e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Timestamp('2022-06-15 00:00:00+0000', tz='UTC')"
+ ]
+ },
+ "execution_count": 133,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "end_features_date"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 136,
+ "id": "d8e954ab-65d4-4f36-8410-69bf664773a7",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Shape campaigns_information : (1333010, 8)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " customer_id | \n",
+ " opened_at | \n",
+ " sent_at | \n",
+ " delivered_at | \n",
+ " campaign_name | \n",
+ " campaign_service_id | \n",
+ " campaign_sent_at | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 38 | \n",
+ " NaT | \n",
+ " 2022-08-02 18:31:33+00:00 | \n",
+ " NaN | \n",
+ " Adhérents non ré-engagés | \n",
+ " 15 | \n",
+ " 2022-08-02 18:31:36+00:00 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 26135 | \n",
+ " NaT | \n",
+ " 2022-08-02 18:31:34+00:00 | \n",
+ " NaN | \n",
+ " Adhérents non ré-engagés | \n",
+ " 15 | \n",
+ " 2022-08-02 18:31:36+00:00 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3876 | \n",
+ " NaT | \n",
+ " 2022-08-02 18:31:35+00:00 | \n",
+ " NaN | \n",
+ " Adhérents non ré-engagés | \n",
+ " 15 | \n",
+ " 2022-08-02 18:31:36+00:00 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 26226 | \n",
+ " NaT | \n",
+ " 2022-08-02 18:31:35+00:00 | \n",
+ " NaN | \n",
+ " Adhérents non ré-engagés | \n",
+ " 15 | \n",
+ " 2022-08-02 18:31:36+00:00 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 25349 | \n",
+ " NaT | \n",
+ " 2022-08-02 18:31:34+00:00 | \n",
+ " NaN | \n",
+ " Adhérents non ré-engagés | \n",
+ " 15 | \n",
+ " 2022-08-02 18:31:36+00:00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id customer_id opened_at sent_at delivered_at \\\n",
+ "0 1 38 NaT 2022-08-02 18:31:33+00:00 NaN \n",
+ "1 2 26135 NaT 2022-08-02 18:31:34+00:00 NaN \n",
+ "2 3 3876 NaT 2022-08-02 18:31:35+00:00 NaN \n",
+ "3 4 26226 NaT 2022-08-02 18:31:35+00:00 NaN \n",
+ "4 5 25349 NaT 2022-08-02 18:31:34+00:00 NaN \n",
+ "\n",
+ " campaign_name campaign_service_id campaign_sent_at \n",
+ "0 Adhérents non ré-engagés 15 2022-08-02 18:31:36+00:00 \n",
+ "1 Adhérents non ré-engagés 15 2022-08-02 18:31:36+00:00 \n",
+ "2 Adhérents non ré-engagés 15 2022-08-02 18:31:36+00:00 \n",
+ "3 Adhérents non ré-engagés 15 2022-08-02 18:31:36+00:00 \n",
+ "4 Adhérents non ré-engagés 15 2022-08-02 18:31:36+00:00 "
+ ]
+ },
+ "execution_count": 136,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "print(\"Shape campaigns_information : \", df_campaigns_information.shape)\n",
+ "df_campaigns_information.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 134,
+ "id": "93eceaf1-ce4c-4dfa-9c51-4fd016d09fc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Timestamp('2022-08-02 18:31:33+0000', tz='UTC')"
+ ]
+ },
+ "execution_count": 134,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_campaigns_information['sent_at'].min()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 137,
+ "id": "ea50cab4-1dae-4efe-ae3c-22b6f9ad1d26",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Timestamp('2023-11-07 10:08:16+0000', tz='UTC')"
+ ]
+ },
+ "execution_count": 137,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_campaigns_information['sent_at'].max()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 127,
+ "id": "dcb87bc9-caf5-4655-9cfa-4a3dad504bac",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " customer_id | \n",
+ " opened_at | \n",
+ " sent_at | \n",
+ " delivered_at | \n",
+ " campaign_name | \n",
+ " campaign_service_id | \n",
+ " campaign_sent_at | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [id, customer_id, opened_at, sent_at, delivered_at, campaign_name, campaign_service_id, campaign_sent_at]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 127,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Filtre de la base df_campaigns_information\n",
+ "df_campaigns_information = df_campaigns_information[(df_campaigns_information['sent_at'] <= end_features_date) & (df_campaigns_information['sent_at'] >= min_date)]\n",
+ "df_campaigns_information"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 145,
+ "id": "abe22e09-a041-4349-be8f-b0784f2f0a98",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " ticket_id | \n",
+ " customer_id | \n",
+ " purchase_id | \n",
+ " event_type_id | \n",
+ " supplier_name | \n",
+ " purchase_date | \n",
+ " amount | \n",
+ " is_full_price | \n",
+ " name_event_types | \n",
+ " name_facilities | \n",
+ " name_categories | \n",
+ " name_events | \n",
+ " name_seasons | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 49 | \n",
+ " 91401 | \n",
+ " 108392 | \n",
+ " 1259025.0 | \n",
+ " 4 | \n",
+ " caisse | \n",
+ " 2022-02-27 13:44:10.690000+00:00 | \n",
+ " 0.0 | \n",
+ " False | \n",
+ " ligue 1 uber eats | \n",
+ " stade de l'aube | \n",
+ " honneur basse | \n",
+ " olympique de marseille | \n",
+ " saison 2021-2022 | \n",
+ "
\n",
+ " \n",
+ " 117 | \n",
+ " 535527 | \n",
+ " 31304 | \n",
+ " 136629.0 | \n",
+ " 4 | \n",
+ " adhésion | \n",
+ " 2022-04-28 15:47:52.790000+00:00 | \n",
+ " 0.0 | \n",
+ " False | \n",
+ " ligue 1 uber eats | \n",
+ " stade de l'aube | \n",
+ " honneur basse | \n",
+ " ac ajaccio | \n",
+ " saison 2022-2023 | \n",
+ "
\n",
+ " \n",
+ " 274 | \n",
+ " 547400 | \n",
+ " 192 | \n",
+ " 140477.0 | \n",
+ " 4 | \n",
+ " adhésion | \n",
+ " 2022-04-28 15:47:54.053000+00:00 | \n",
+ " 0.0 | \n",
+ " False | \n",
+ " ligue 1 uber eats | \n",
+ " stade de l'aube | \n",
+ " honneur basse | \n",
+ " rc strasbourg | \n",
+ " saison 2022-2023 | \n",
+ "
\n",
+ " \n",
+ " 304 | \n",
+ " 84413 | \n",
+ " 31388 | \n",
+ " 20259.0 | \n",
+ " 4 | \n",
+ " adhésion | \n",
+ " 2021-08-03 13:45:01.603000+00:00 | \n",
+ " 0.0 | \n",
+ " False | \n",
+ " ligue 1 uber eats | \n",
+ " stade de l'aube | \n",
+ " vitoux haute | \n",
+ " olympique de marseille | \n",
+ " saison 2021-2022 | \n",
+ "
\n",
+ " \n",
+ " 311 | \n",
+ " 407271 | \n",
+ " 3265 | \n",
+ " 90527.0 | \n",
+ " 4 | \n",
+ " web [adhésion] | \n",
+ " 2022-05-26 09:15:40.993000+00:00 | \n",
+ " 0.0 | \n",
+ " False | \n",
+ " ligue 1 uber eats | \n",
+ " stade de l'aube | \n",
+ " champagne basse | \n",
+ " stade brestois 29 | \n",
+ " saison 2022-2023 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ticket_id customer_id purchase_id event_type_id supplier_name \\\n",
+ "49 91401 108392 1259025.0 4 caisse \n",
+ "117 535527 31304 136629.0 4 adhésion \n",
+ "274 547400 192 140477.0 4 adhésion \n",
+ "304 84413 31388 20259.0 4 adhésion \n",
+ "311 407271 3265 90527.0 4 web [adhésion] \n",
+ "\n",
+ " purchase_date amount is_full_price \\\n",
+ "49 2022-02-27 13:44:10.690000+00:00 0.0 False \n",
+ "117 2022-04-28 15:47:52.790000+00:00 0.0 False \n",
+ "274 2022-04-28 15:47:54.053000+00:00 0.0 False \n",
+ "304 2021-08-03 13:45:01.603000+00:00 0.0 False \n",
+ "311 2022-05-26 09:15:40.993000+00:00 0.0 False \n",
+ "\n",
+ " name_event_types name_facilities name_categories \\\n",
+ "49 ligue 1 uber eats stade de l'aube honneur basse \n",
+ "117 ligue 1 uber eats stade de l'aube honneur basse \n",
+ "274 ligue 1 uber eats stade de l'aube honneur basse \n",
+ "304 ligue 1 uber eats stade de l'aube vitoux haute \n",
+ "311 ligue 1 uber eats stade de l'aube champagne basse \n",
+ "\n",
+ " name_events name_seasons \n",
+ "49 olympique de marseille saison 2021-2022 \n",
+ "117 ac ajaccio saison 2022-2023 \n",
+ "274 rc strasbourg saison 2022-2023 \n",
+ "304 olympique de marseille saison 2021-2022 \n",
+ "311 stade brestois 29 saison 2022-2023 "
+ ]
+ },
+ "execution_count": 145,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Filtre de la base df_products_purchased_reduced\n",
+ "df_products_purchased_reduced = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= end_features_date) & (df_products_purchased_reduced['purchase_date'] >= min_date)]\n",
+ "df_products_purchased_reduced.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 150,
+ "id": "ae7ef3a6-5b42-4a3c-a108-fec9f2ec4d32",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array(['caisse', 'adhésion', 'web [adhésion]', 'web [grand public]',\n",
+ " 'itr ticketmaster', 'itr fnac', nan, 'decathlon', 'boutique web',\n",
+ " 'boutique officielle'], dtype=object)"
+ ]
+ },
+ "execution_count": 150,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_products_purchased_reduced[\"supplier_name\"].unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 151,
+ "id": "942f58a5-8ed4-4b18-a7a2-bd296447fa6a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# KPI sur le comportement d'achat\n",
+ "tickets_information_copy = df_products_purchased_reduced.copy()\n",
+ "# Dummy : Canal de vente en ligne\n",
+ "liste_mots = ['en ligne', 'internet', 'web', 'net', 'vad', 'online'] # vad = vente à distance\n",
+ "tickets_information_copy['vente_internet'] = tickets_information_copy['supplier_name'].fillna('').str.contains('|'.join(liste_mots), case=False).astype(int)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "658b57cd-4fb8-4552-a582-972144b2af1c",
+ "metadata": {},
+ "source": [
+ "tickets_information_copy['vente_internet'] corrected by handling na"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f086a8dc-69ab-4cf3-b25e-379d7da02f43",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}