identify target customer
This commit is contained in:
parent
6d0f67bd31
commit
54fbad0344
|
@ -16,7 +16,7 @@ S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
|
|||
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
|
||||
|
||||
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
|
||||
'sport': ['5'],
|
||||
'sport': ['5', '6'],
|
||||
'musique' : ['10', '11', '12', '13', '14']}
|
||||
|
||||
|
||||
|
@ -30,13 +30,17 @@ customer, campaigns_kpi, campaigns_brut, tickets, products = load_files(list_of_
|
|||
outlier_list = outlier_detection(tickets, list_of_comp)
|
||||
|
||||
# Identify valid customer (customer who bought tickets after starting date or received mails after starting date)
|
||||
customer_valid_list = valid_customer_detection(products)
|
||||
customer_valid_list = valid_customer_detection(products, campaigns_brut)
|
||||
|
||||
# Identify customer who bought during the period of y
|
||||
consumer_target_period = identify_purchase_during_target_periode(products)
|
||||
|
||||
databases = [customer, campaigns_kpi, campaigns_brut, tickets, products]
|
||||
|
||||
for dataset in databases:
|
||||
dataset['customer_id'] = dataset['customer_id'].apply(lambda x: remove_elements(x, outlier_list))# remove outlier
|
||||
dataset['customer_id'] = dataset['customer_id'].isin(customer_valid_list) # keep only valid customer
|
||||
dataset['has_purchased_target_period'] = np.where(dataset['customer_id'].isin(customer_valid_list), 1, 0)
|
||||
#print(f'shape of {dataset} : ', dataset.shape)
|
||||
|
||||
# Generate graph and automatically saved them in the bucket
|
||||
|
@ -46,16 +50,16 @@ maximum_price_paid(customer, type_of_activity)
|
|||
|
||||
mailing_consent(customer, type_of_activity)
|
||||
|
||||
gender_bar(customer, type_of_activity)
|
||||
#gender_bar(customer, type_of_activity)
|
||||
|
||||
country_bar(customer, type_of_activity)
|
||||
#country_bar(customer, type_of_activity)
|
||||
|
||||
lazy_customer_plot(campaigns_kpi, type_of_activity)
|
||||
#lazy_customer_plot(campaigns_kpi, type_of_activity)
|
||||
|
||||
# campaigns_effectiveness(customer, type_of_activity)
|
||||
#campaigns_effectiveness(customer, type_of_activity)
|
||||
|
||||
sale_dynamics(products, campaigns_brut, type_of_activity)
|
||||
#sale_dynamics(products, campaigns_brut, type_of_activity)
|
||||
|
||||
tickets_internet(tickets, type_of_activity)
|
||||
#tickets_internet(tickets, type_of_activity)
|
||||
|
||||
box_plot_price_tickets(tickets, type_of_activity)
|
||||
#box_plot_price_tickets(tickets, type_of_activity)
|
||||
|
|
|
@ -99,11 +99,15 @@ def valid_customer_detection(products, campaigns_brut):
|
|||
consumer_valid = consumer_valid_product + consumer_valid_campaigns
|
||||
return consumer_valid
|
||||
|
||||
|
||||
def identify_purchase_during_target_periode(products):
|
||||
products_target_period = products[products['purchase_date']>="2022-11-01" & products['purchase_date']<="2023-11-01"]
|
||||
consumer_target_period = products_target_period['customer_id'].to_list()
|
||||
return consumer_target_period
|
||||
|
||||
|
||||
def remove_elements(lst, elements_to_remove):
|
||||
return ''.join([x for x in lst if x not in elements_to_remove])
|
||||
|
||||
def keep_elements(lst, elements_to_remove):
|
||||
return ''.join([x for x in lst if x in elements_to_remove])
|
||||
|
||||
|
||||
def compute_nb_clients(customer, type_of_activity):
|
||||
|
|
Loading…
Reference in New Issue
Block a user