Ajout fichier .py pour nettoyage et fusions

This commit is contained in:
Antoine JOUBREL 2024-02-11 22:55:11 +00:00
parent 7154a1c82c
commit 5f621c2352
4 changed files with 465 additions and 0 deletions

89
0_Cleaning_and_merge.py Normal file
View File

@ -0,0 +1,89 @@
# Business Data Challenge - Team 1
import pandas as pd
import numpy as np
import os
import s3fs
import re
import warnings
# Import cleaning and merge functions
exec(open('BDC-team-1/0_Cleaning_and_merge_functions.py').read())
exec(open('BDC-team-1/0_KPI_functions.py').read())
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Ignore warning
warnings.filterwarnings('ignore')
# Data loading
BUCKET = "bdc2324-data/1"
liste_database = fs.ls(BUCKET)
# loop to create dataframes from liste
client_number = liste_database[0].split("/")[1]
df_prefix = "df" + str(client_number) + "_"
for i in range(len(liste_database)) :
current_path = liste_database[i]
with fs.open(current_path, mode="rb") as file_in:
df = pd.read_csv(file_in)
# the pattern of the name is df1xxx
nom_dataframe = df_prefix + re.search(r'\/(\d+)\/(\d+)([a-zA-Z_]+)\.csv$', current_path).group(3)
globals()[nom_dataframe] = df
# Cleaning customerplus
df1_customerplus_clean = preprocessing_customerplus(df1_customersplus)
# Cleaning ticket area
df1_ticket_information = preprocessing_tickets_area(tickets = df1_tickets, purchases = df1_purchases, suppliers = df1_suppliers, type_ofs = df1_type_ofs)
# Cleaning target area
df1_target_information = preprocessing_target_area(targets = df1_targets, target_types = df1_target_types, customer_target_mappings = df1_customer_target_mappings)
# Cleaning campaign area
df1_campaigns_information = preprocessing_campaigns_area(campaign_stats = df1_campaign_stats, campaigns = df1_campaigns)
# Cleaning product area
BUCKET = "bdc2324-data"
directory_path = '1'
products_theme = create_products_table()
events_theme= create_events_table()
representation_theme = create_representations_table()
products_global = uniform_product_df()
# Fusion liée au product
df1_products_purchased = pd.merge(df1_ticket_information, products_global, left_on = 'product_id', right_on = 'id_products', how = 'inner')
# Selection des variables d'intérêts
df1_products_purchased_reduced = df1_products_purchased[['ticket_id', 'customer_id', 'purchase_id' ,'event_type_id', 'supplier_name', 'purchase_date', 'type_of_ticket_name', 'amount', 'children', 'is_full_price', 'name_event_types', 'name_facilities', 'name_categories', 'name_events', 'name_seasons']]
# Fusion de l'ensemble et creation des KPI
df1_campaigns_kpi = campaigns_kpi_function(campaigns_information = df1_campaigns_information)
df1_tickets_kpi = tickets_kpi_function(tickets_information = df1_products_purchased_reduced)
# Fusion avec KPI liés au customer
df1_customer = pd.merge(df1_customerplus_clean, df1_campaigns_kpi, on = 'customer_id', how = 'left')
# Fill NaN values
df1_customer[['nb_campaigns', 'nb_campaigns_opened']] = df1_customer[['nb_campaigns', 'nb_campaigns_opened']].fillna(0)
# Fusion avec KPI liés au comportement d'achat
df1_customer_product = pd.merge(df1_tickets_kpi, df1_customer, on = 'customer_id', how = 'outer')
# Fill NaN values
df1_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']] = df1_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']].fillna(0)
## Exportation
# Exportation vers 'projet-bdc2324-team1'
BUCKET_OUT = "projet-bdc2324-team1"
FILE_KEY_OUT_S3 = "1_Output/Company 1 - Segmentation base.csv"
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
df1_customer_product.to_csv(file_out, index = False)

View File

@ -0,0 +1,261 @@
# Cleaning and merge functions
# Cleaning function
def cleaning_date(df, column_name):
"""
Nettoie la colonne spécifiée du DataFrame en convertissant les valeurs en datetime avec le format ISO8601.
Parameters:
- df: DataFrame
Le DataFrame contenant la colonne à nettoyer.
- column_name: str
Le nom de la colonne à nettoyer.
Returns:
- DataFrame
Le DataFrame modifié avec la colonne nettoyée.
"""
df[column_name] = pd.to_datetime(df[column_name], utc = True, format = 'ISO8601')
return df
def preprocessing_customerplus(customerplus = None):
customerplus_copy = customerplus.copy()
# Passage en format date
cleaning_date(customerplus_copy, 'first_buying_date')
cleaning_date(customerplus_copy, 'last_visiting_date')
# Selection des variables
customerplus_copy.drop(['lastname', 'firstname', 'email', 'civility', 'note', 'created_at', 'updated_at', 'deleted_at', 'extra', 'reference', 'extra_field', 'identifier', 'need_reload', 'preferred_category', 'preferred_supplier', 'preferred_formula', 'zipcode', 'last_visiting_date'], axis = 1, inplace=True)
customerplus_copy.rename(columns = {'id' : 'customer_id'}, inplace = True)
return customerplus_copy
def preprocessing_tickets_area(tickets = None, purchases = None, suppliers = None, type_ofs = None):
# Base des tickets
tickets = tickets[['id', 'purchase_id', 'product_id', 'is_from_subscription', 'type_of', 'supplier_id']]
tickets.rename(columns = {'id' : 'ticket_id'}, inplace = True)
# Base des fournisseurs
suppliers = suppliers[['id', 'name']]
suppliers.rename(columns = {'name' : 'supplier_name'}, inplace = True)
suppliers['supplier_name'] = suppliers['supplier_name'].fillna('')
# Base des types de billets
type_ofs = type_ofs[['id', 'name', 'children']]
type_ofs.rename(columns = {'name' : 'type_of_ticket_name'}, inplace = True)
# Base des achats
# Nettoyage de la date d'achat
cleaning_date(purchases, 'purchase_date')
# Selection des variables
purchases = purchases[['id', 'purchase_date', 'customer_id']]
# Fusions
# Fusion avec fournisseurs
ticket_information = pd.merge(tickets, suppliers, left_on = 'supplier_id', right_on = 'id', how = 'inner')
ticket_information.drop(['supplier_id', 'id'], axis = 1, inplace=True)
# Fusion avec type de tickets
ticket_information = pd.merge(ticket_information, type_ofs, left_on = 'type_of', right_on = 'id', how = 'inner')
ticket_information.drop(['type_of', 'id'], axis = 1, inplace=True)
# Fusion avec achats
ticket_information = pd.merge(ticket_information, purchases, left_on = 'purchase_id', right_on = 'id', how = 'inner')
ticket_information.drop(['id'], axis = 1, inplace=True)
return ticket_information
def preprocessing_target_area(targets = None, target_types = None, customer_target_mappings = None):
# Target.csv cleaning
targets = targets[["id", "target_type_id", "name"]]
targets.rename(columns = {'id' : 'target_id' , 'name' : 'target_name'}, inplace = True)
# target_type cleaning
target_types = target_types[["id","is_import","name"]].add_prefix("target_type_")
#customer_target_mappings cleaning
customer_target_mappings = customer_target_mappings[["id", "customer_id", "target_id"]]
# Merge target et target_type
targets_full = pd.merge(targets, target_types, left_on='target_type_id', right_on='target_type_id', how='inner')
targets_full.drop(['target_type_id'], axis = 1, inplace=True)
# Merge
targets_full = pd.merge(customer_target_mappings, targets_full, left_on='target_id', right_on='target_id', how='inner')
targets_full.drop(['target_id'], axis = 1, inplace=True)
return targets_full
def preprocessing_campaigns_area(campaign_stats = None, campaigns = None):
# campaign_stats cleaning
campaign_stats = campaign_stats[["id", "campaign_id", "customer_id", "opened_at", "sent_at", "delivered_at"]]
cleaning_date(campaign_stats, 'opened_at')
cleaning_date(campaign_stats, 'sent_at')
cleaning_date(campaign_stats, 'delivered_at')
# campaigns cleaning
campaigns = campaigns[["id", "name", "service_id", "sent_at"]].add_prefix("campaign_")
cleaning_date(campaigns, 'campaign_sent_at')
# Merge
campaigns_full = pd.merge(campaign_stats, campaigns, on = "campaign_id", how = "left")
campaigns_full.drop(['campaign_id'], axis = 1, inplace=True)
return campaigns_full
def display_databases(file_name):
"""
This function returns the file from s3 storage
"""
file_path = BUCKET + "/" + directory_path + "/" + file_name
print("File path : ", file_path)
with fs.open(file_path, mode="rb") as file_in:
df = pd.read_csv(file_in, sep=",")
print("Shape : ", df.shape)
return df
def remove_horodates(df):
"""
this function remove horodate columns like created_at and updated_at
"""
df = df.drop(columns = ["created_at", "updated_at"])
return df
def order_columns_id(df):
"""
this function puts all id columns at the beginning in order to read the dataset easier
"""
substring = 'id'
id_columns = [col for col in df.columns if substring in col]
remaining_col = [col for col in df.columns if substring not in col]
new_order = id_columns + remaining_col
return df[new_order]
def process_df_2(df):
"""
This function organizes dataframe
"""
df = remove_horodates(df)
print("Number of columns : ", len(df.columns))
df = order_columns_id(df)
print("Columns : ", df.columns)
return df
def load_dataset(name):
"""
This function loads csv file
"""
df = display_databases(name)
df = process_df_2(df)
# drop na :
#df = df.dropna(axis=1, thresh=len(df))
# if identifier in table : delete it
if 'identifier' in df.columns:
df = df.drop(columns = 'identifier')
return df
def create_products_table():
# first merge products and categories
print("first merge products and categories")
products = load_dataset("1products.csv")
categories = load_dataset("1categories.csv")
# Drop useless columns
products = products.drop(columns = ['apply_price', 'extra_field', 'amount_consumption'])
categories = categories.drop(columns = ['extra_field', 'quota'])
#Merge
products_theme = products.merge(categories, how = 'left', left_on = 'category_id',
right_on = 'id', suffixes=('_products', '_categories'))
products_theme = products_theme.rename(columns = {"name" : "name_categories"})
# Second merge products_theme and type of categories
print("Second merge products_theme and type of categories")
type_of_categories = load_dataset("1type_of_categories.csv")
type_of_categories = type_of_categories.drop(columns = 'id')
products_theme = products_theme.merge(type_of_categories, how = 'left', left_on = 'category_id',
right_on = 'category_id' )
# Index cleaning
products_theme = products_theme.drop(columns = ['id_categories'])
products_theme = order_columns_id(products_theme)
return products_theme
def create_events_table():
# first merge events and seasons :
print("first merge events and seasons : ")
events = load_dataset("1events.csv")
seasons = load_dataset("1seasons.csv")
# Drop useless columns
events = events.drop(columns = ['manual_added', 'is_display'])
seasons = seasons.drop(columns = ['start_date_time'])
events_theme = events.merge(seasons, how = 'left', left_on = 'season_id', right_on = 'id', suffixes=('_events', '_seasons'))
# Secondly merge events_theme and event_types
print("Secondly merge events_theme and event_types : ")
event_types = load_dataset("1event_types.csv")
event_types = event_types.drop(columns = ['fidelity_delay'])
events_theme = events_theme.merge(event_types, how = 'left', left_on = 'event_type_id', right_on = 'id', suffixes=('_events', '_event_type'))
events_theme = events_theme.rename(columns = {"name" : "name_event_types"})
events_theme = events_theme.drop(columns = 'id')
# thirdly merge events_theme and facilities
print("thirdly merge events_theme and facilities : ")
facilities = load_dataset("1facilities.csv")
facilities = facilities.drop(columns = ['fixed_capacity'])
events_theme = events_theme.merge(facilities, how = 'left', left_on = 'facility_id', right_on = 'id', suffixes=('_events', '_facility'))
events_theme = events_theme.rename(columns = {"name" : "name_facilities", "id_events" : "event_id"})
events_theme = events_theme.drop(columns = 'id')
# Index cleaning
events_theme = events_theme.drop(columns = ['id_seasons'])
events_theme = order_columns_id(events_theme)
return events_theme
def create_representations_table():
representations = load_dataset("1representations.csv")
representations = representations.drop(columns = ['serial', 'open', 'satisfaction', 'is_display', 'expected_filling',
'max_filling', 'extra_field', 'start_date_time', 'end_date_time', 'name',
'representation_type_id'])
representations_capacity = load_dataset("1representation_category_capacities.csv")
representations_capacity = representations_capacity.drop(columns = ['expected_filling', 'max_filling'])
representations_theme = representations.merge(representations_capacity, how='left',
left_on='id', right_on='representation_id',
suffixes=('_representation', '_representation_cap'))
# index cleaning
representations_theme = representations_theme.drop(columns = ["id_representation"])
representations_theme = order_columns_id(representations_theme)
return representations_theme
def uniform_product_df():
"""
This function returns the uniform product dataset
"""
print("Products theme columns : ", products_theme.columns)
print("\n Representation theme columns : ", representation_theme.columns)
print("\n Events theme columns : ", events_theme.columns)
products_global = products_theme.merge(representation_theme, how='left',
on= ["representation_id", "category_id"])
products_global = products_global.merge(events_theme, how='left', on='event_id',
suffixes = ("_representation", "_event"))
products_global = order_columns_id(products_global)
# remove useless columns
products_global = products_global.drop(columns = ['type_of_id']) # 'name_events', 'name_seasons', 'name_categories'
return products_global

82
0_KPI_functions.py Normal file
View File

@ -0,0 +1,82 @@
# Function de construction de KPI
def campaigns_kpi_function(campaigns_information = None):
# Nombre de campagnes de mails
nb_campaigns = campaigns_information[['customer_id', 'campaign_name']].groupby('customer_id').count().reset_index()
nb_campaigns.rename(columns = {'campaign_name' : 'nb_campaigns'}, inplace = True)
# Temps d'ouverture en min moyen
campaigns_information['time_to_open'] = campaigns_information['opened_at'] - campaigns_information['delivered_at']
time_to_open = campaigns_information[['customer_id', 'time_to_open']].groupby('customer_id').mean().reset_index()
# Nombre de mail ouvert
opened_campaign = campaigns_information[['customer_id', 'campaign_name', 'opened_at']]
opened_campaign.dropna(subset=['opened_at'], inplace=True)
opened_campaign = opened_campaign[['customer_id', 'campaign_name']].groupby('customer_id').count().reset_index()
opened_campaign.rename(columns = {'campaign_name' : 'nb_campaigns_opened' }, inplace = True)
# Fusion des indicateurs
campaigns_reduced = pd.merge(nb_campaigns, opened_campaign, on = 'customer_id', how = 'left')
campaigns_reduced = pd.merge(campaigns_reduced, time_to_open, on = 'customer_id', how = 'left')
# Remplir les NaN : nb_campaigns_opened
campaigns_reduced['nb_campaigns_opened'].fillna(0)
# Remplir les NaT : time_to_open (??)
return campaigns_reduced
def tickets_kpi_function(tickets_information = None):
tickets_information_copy = tickets_information.copy()
# Dummy : Canal de vente en ligne
liste_mots = ['en ligne', 'internet', 'web', 'net', 'vad', 'online'] # vad = vente à distance
tickets_information_copy['vente_internet'] = tickets_information_copy['supplier_name'].str.contains('|'.join(liste_mots), case=False).astype(int)
# Proportion de vente en ligne
prop_vente_internet = tickets_information_copy[tickets_information_copy['vente_internet'] == 1].groupby(['customer_id', 'event_type_id'])['ticket_id'].count().reset_index()
prop_vente_internet.rename(columns = {'ticket_id' : 'nb_tickets_internet'}, inplace = True)
# Average amount
avg_amount = (tickets_information_copy.groupby(["event_type_id", 'name_event_types'])
.agg({"amount" : "mean"}).reset_index()
.rename(columns = {'amount' : 'avg_amount'}))
tickets_kpi = (tickets_information_copy[['event_type_id', 'customer_id', 'purchase_id' ,'ticket_id','supplier_name', 'purchase_date', 'amount', 'vente_internet']]
.groupby(['customer_id', 'event_type_id'])
.agg({'ticket_id': 'count',
'purchase_id' : 'nunique',
'amount' : 'sum',
'supplier_name': 'nunique',
'vente_internet' : 'max',
'purchase_date' : ['min', 'max']})
.reset_index()
)
tickets_kpi.columns = tickets_kpi.columns.map('_'.join)
tickets_kpi.rename(columns = {'ticket_id_count' : 'nb_tickets',
'purchase_id_nunique' : 'nb_purchases',
'amount_sum' : 'total_amount',
'supplier_name_nunique' : 'nb_suppliers',
'customer_id_' : 'customer_id',
'event_type_id_' : 'event_type_id'}, inplace = True)
tickets_kpi['time_between_purchase'] = tickets_kpi['purchase_date_max'] - tickets_kpi['purchase_date_min']
tickets_kpi['time_between_purchase'] = tickets_kpi['time_between_purchase'] / np.timedelta64(1, 'D') # En nombre de jours
# Convertir date et en chiffre
max_date = tickets_kpi['purchase_date_max'].max()
tickets_kpi['purchase_date_max'] = (max_date - tickets_kpi['purchase_date_max']) / np.timedelta64(1, 'D')
tickets_kpi['purchase_date_min'] = (max_date - tickets_kpi['purchase_date_min']) / np.timedelta64(1, 'D')
tickets_kpi = tickets_kpi.merge(prop_vente_internet, on = ['customer_id', 'event_type_id'], how = 'left')
tickets_kpi['nb_tickets_internet'] = tickets_kpi['nb_tickets_internet'].fillna(0)
tickets_kpi = tickets_kpi.merge(avg_amount, how='left', on= 'event_type_id')
return tickets_kpi

View File

@ -0,0 +1,33 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ac01a6ea-bef6-4ace-89ff-1dc03a4215c2",
"metadata": {},
"source": [
"# Segmentation des clients par régression logistique"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}