Ajout dummies pays et genre
This commit is contained in:
parent
c8be7f484f
commit
62c5d67476
|
@ -39,16 +39,18 @@ for i in range(len(liste_database)) :
|
|||
# Cleaning customerplus
|
||||
df1_customerplus_clean = preprocessing_customerplus(df1_customersplus)
|
||||
|
||||
# Cleaning ticket area
|
||||
df1_ticket_information = preprocessing_tickets_area(tickets = df1_tickets, purchases = df1_purchases, suppliers = df1_suppliers, type_ofs = df1_type_ofs)
|
||||
|
||||
# Cleaning target area
|
||||
df1_target_information = preprocessing_target_area(targets = df1_targets, target_types = df1_target_types, customer_target_mappings = df1_customer_target_mappings)
|
||||
|
||||
# Cleaning campaign area
|
||||
df1_campaigns_information = preprocessing_campaigns_area(campaign_stats = df1_campaign_stats, campaigns = df1_campaigns)
|
||||
|
||||
# Cleaning product area
|
||||
## Cleaning product area
|
||||
|
||||
# Cleaning ticket area
|
||||
df1_ticket_information = preprocessing_tickets_area(tickets = df1_tickets, purchases = df1_purchases, suppliers = df1_suppliers, type_ofs = df1_type_ofs)
|
||||
|
||||
|
||||
BUCKET = "bdc2324-data"
|
||||
directory_path = '1'
|
||||
|
||||
|
@ -63,6 +65,14 @@ df1_products_purchased = pd.merge(df1_ticket_information, products_global, left_
|
|||
# Selection des variables d'intérêts
|
||||
df1_products_purchased_reduced = df1_products_purchased[['ticket_id', 'customer_id', 'purchase_id' ,'event_type_id', 'supplier_name', 'purchase_date', 'type_of_ticket_name', 'amount', 'children', 'is_full_price', 'name_event_types', 'name_facilities', 'name_categories', 'name_events', 'name_seasons']]
|
||||
|
||||
#Exportation
|
||||
BUCKET_OUT = "projet-bdc2324-team1"
|
||||
FILE_KEY_OUT_S3 = "0_Temp/Company 1 - Purchases.csv"
|
||||
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
|
||||
|
||||
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
||||
df1_products_purchased_reduced.to_csv(file_out, index = False)
|
||||
|
||||
## 2 - Construction of KPIs on a given period
|
||||
|
||||
def explanatory_variables(min_date = "2021-09-01", max_date = "2023-09-01", df_campaigns_information = df1_campaigns_information, df_products_purchased_reduced = df1_products_purchased_reduced, df_customerplus_clean = df1_customerplus_clean):
|
||||
|
@ -81,10 +91,29 @@ def explanatory_variables(min_date = "2021-09-01", max_date = "2023-09-01", df_c
|
|||
print("Data filtering : SUCCESS")
|
||||
|
||||
# Fusion de l'ensemble et creation des KPI
|
||||
|
||||
# KPI sur les campagnes publicitaires
|
||||
df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_information)
|
||||
|
||||
# KPI sur le comportement d'achat
|
||||
df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_reduced)
|
||||
|
||||
# KPI sur les données socio-demographique
|
||||
|
||||
## Le genre
|
||||
df_customerplus_clean["gender_label"] = df_customerplus_clean["gender"].map({
|
||||
0: 'female',
|
||||
1: 'male',
|
||||
2: 'other'
|
||||
})
|
||||
gender_dummies = pd.get_dummies(df_customerplus_clean["gender_label"], prefix='gender').astype(int)
|
||||
df_customerplus_clean = pd.concat([df_customerplus_clean, gender_dummies], axis=1)
|
||||
|
||||
## Indicatrice si individue vit en France
|
||||
df_customerplus_clean["country_fr"] = df_customerplus_clean["country"].apply(lambda x : int(x=="fr") if pd.notna(x) else np.nan)
|
||||
|
||||
print("KPIs construction : SUCCESS")
|
||||
|
||||
# Fusion avec KPI liés au customer
|
||||
df_customer = pd.merge(df_customerplus_clean, df_campaigns_kpi, on = 'customer_id', how = 'left')
|
||||
|
||||
|
@ -97,6 +126,8 @@ def explanatory_variables(min_date = "2021-09-01", max_date = "2023-09-01", df_c
|
|||
# Fill NaN values
|
||||
df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']] = df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']].fillna(0)
|
||||
|
||||
print("Explanatory variable construction : SUCCESS")
|
||||
|
||||
return df_customer_product
|
||||
|
||||
# Fonction pour créer les variables expliquée
|
||||
|
@ -110,6 +141,8 @@ def explained_variable(min_date = "2023-08-01", max_date = "2023-11-01", df_prod
|
|||
|
||||
y = df_products_purchased_reduced[['customer_id', 'event_type_id', 'y_has_purchased']].drop_duplicates()
|
||||
|
||||
print("Explained variable construction : SUCCESS")
|
||||
|
||||
return y
|
||||
|
||||
## Exportation
|
||||
|
@ -117,12 +150,14 @@ def explained_variable(min_date = "2023-08-01", max_date = "2023-11-01", df_prod
|
|||
# Dossier d'exportation
|
||||
BUCKET_OUT = "projet-bdc2324-team1/1_Output/Logistique Regression databases - First approach"
|
||||
|
||||
# Dataset test
|
||||
X_test = explanatory_variables(min_date = "2021-08-01", max_date = "2023-08-01", df_campaigns_information = df1_campaigns_information, df_products_purchased_reduced = df1_products_purchased_reduced, df_customerplus_clean = df1_customerplus_clean)
|
||||
|
||||
y_test = explained_variable(min_date = "2023-08-01", max_date = "2023-11-01", df_products_purchased_reduced = df1_products_purchased_reduced)
|
||||
|
||||
dataset_test = pd.merge(X_test, y_test, on = ['customer_id', 'event_type_id'], how = 'left')
|
||||
|
||||
# Exportation
|
||||
FILE_KEY_OUT_S3 = "dataset_test.csv"
|
||||
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
|
||||
|
||||
|
@ -131,12 +166,14 @@ with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
|||
|
||||
print("Exportation dataset test : SUCCESS")
|
||||
|
||||
# Dataset train
|
||||
X_train = explanatory_variables(min_date = "2021-05-01", max_date = "2023-05-01", df_campaigns_information = df1_campaigns_information, df_products_purchased_reduced = df1_products_purchased_reduced, df_customerplus_clean = df1_customerplus_clean)
|
||||
|
||||
y_train = explained_variable(min_date = "2023-05-01", max_date = "2023-08-01", df_products_purchased_reduced = df1_products_purchased_reduced)
|
||||
|
||||
dataset_train = pd.merge(X_train, y_train, on = ['customer_id', 'event_type_id'], how = 'left')
|
||||
|
||||
# Exportation
|
||||
FILE_KEY_OUT_S3 = "dataset_train.csv"
|
||||
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
|
||||
|
||||
|
@ -146,8 +183,4 @@ with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
|||
print("Exportation dataset train : SUCCESS")
|
||||
|
||||
|
||||
|
||||
# # Exportation vers 'projet-bdc2324-team1'
|
||||
|
||||
|
||||
print("Exportation base de la base X d'entraînement : SUCCESS")
|
||||
print("FIN DE LA GENERATION DES DATASETS : SUCCESS")
|
||||
|
|
|
@ -27,7 +27,7 @@ def preprocessing_customerplus(customerplus = None):
|
|||
cleaning_date(customerplus_copy, 'last_visiting_date')
|
||||
|
||||
# Selection des variables
|
||||
customerplus_copy.drop(['lastname', 'firstname', 'email', 'civility', 'note', 'created_at', 'updated_at', 'deleted_at', 'extra', 'reference', 'extra_field', 'identifier', 'need_reload', 'preferred_category', 'preferred_supplier', 'preferred_formula', 'zipcode', 'last_visiting_date'], axis = 1, inplace=True)
|
||||
customerplus_copy.drop(['lastname', 'firstname', 'birthdate', 'profession', 'language', 'age', 'email', 'civility', 'note', 'created_at', 'updated_at', 'deleted_at', 'extra', 'reference', 'extra_field', 'identifier', 'need_reload', 'preferred_category', 'preferred_supplier', 'preferred_formula', 'zipcode', 'last_visiting_date'], axis = 1, inplace=True)
|
||||
customerplus_copy.rename(columns = {'id' : 'customer_id'}, inplace = True)
|
||||
|
||||
return customerplus_copy
|
||||
|
|
Loading…
Reference in New Issue
Block a user