diff --git a/code_valeur manquante.ipynb b/code_valeur manquante.ipynb
new file mode 100644
index 0000000..d37e139
--- /dev/null
+++ b/code_valeur manquante.ipynb
@@ -0,0 +1,2116 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "c4205b5d-e052-4863-a46b-20e4757052a7",
+ "metadata": {},
+ "source": [
+ "# Business Data Challenge - Team 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "ae3af8e6-ced8-4994-8877-fa98d4297cc0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dd3184e7-54a1-4463-af42-5850d9517a41",
+ "metadata": {},
+ "source": [
+ "Configuration de l'accès aux données"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "b6035982-9ff4-4013-9792-2d50e10db3d1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['bdc2324-data/1/1campaign_stats.csv',\n",
+ " 'bdc2324-data/1/1campaigns.csv',\n",
+ " 'bdc2324-data/1/1categories.csv',\n",
+ " 'bdc2324-data/1/1countries.csv',\n",
+ " 'bdc2324-data/1/1currencies.csv',\n",
+ " 'bdc2324-data/1/1customer_target_mappings.csv',\n",
+ " 'bdc2324-data/1/1customersplus.csv',\n",
+ " 'bdc2324-data/1/1event_types.csv',\n",
+ " 'bdc2324-data/1/1events.csv',\n",
+ " 'bdc2324-data/1/1facilities.csv',\n",
+ " 'bdc2324-data/1/1link_stats.csv',\n",
+ " 'bdc2324-data/1/1pricing_formulas.csv',\n",
+ " 'bdc2324-data/1/1product_packs.csv',\n",
+ " 'bdc2324-data/1/1products.csv',\n",
+ " 'bdc2324-data/1/1products_groups.csv',\n",
+ " 'bdc2324-data/1/1purchases.csv',\n",
+ " 'bdc2324-data/1/1representation_category_capacities.csv',\n",
+ " 'bdc2324-data/1/1representations.csv',\n",
+ " 'bdc2324-data/1/1seasons.csv',\n",
+ " 'bdc2324-data/1/1structure_tag_mappings.csv',\n",
+ " 'bdc2324-data/1/1suppliers.csv',\n",
+ " 'bdc2324-data/1/1tags.csv',\n",
+ " 'bdc2324-data/1/1target_types.csv',\n",
+ " 'bdc2324-data/1/1targets.csv',\n",
+ " 'bdc2324-data/1/1tickets.csv',\n",
+ " 'bdc2324-data/1/1type_of_categories.csv',\n",
+ " 'bdc2324-data/1/1type_of_pricing_formulas.csv',\n",
+ " 'bdc2324-data/1/1type_ofs.csv']"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import os\n",
+ "import s3fs\n",
+ "# Create filesystem object\n",
+ "S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n",
+ "fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})\n",
+ "\n",
+ "BUCKET = \"bdc2324-data/1\"\n",
+ "fs.ls(BUCKET)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "b86c935d-124f-453f-80dd-83ea6770d09c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dic_base=['campaign_stats','campaigns','categories','countries','currencies','customer_target_mappings','customersplus','event_types','events','facilities','link_stats','pricing_formulas','product_packs','products','products_groups','purchases','representation_category_capacities','representations','seasons','structure_tag_mappings','suppliers','tags','target_types','targets','tickets','type_of_categories','type_of_pricing_formulas','type_ofs']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "f6d0b27c-0ecd-406b-b042-6c3802dd68fd",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/tmp/ipykernel_438/1008972637.py:5: DtypeWarning: Columns (1) have mixed types. Specify dtype option on import or set low_memory=False.\n",
+ " globals()[nom_base] = pd.read_csv(file_in, sep=\",\")\n"
+ ]
+ }
+ ],
+ "source": [
+ "dic_base=['campaign_stats','campaigns','categories','countries','currencies','customer_target_mappings','customersplus','event_types','events','facilities','link_stats','pricing_formulas','product_packs','products','products_groups','purchases','representation_category_capacities','representations','seasons','structure_tag_mappings','suppliers','tags','target_types','targets','tickets','type_of_categories','type_of_pricing_formulas','type_ofs']\n",
+ "for nom_base in dic_base:\n",
+ " FILE_PATH_S3_fanta = 'bdc2324-data/1/1' + nom_base + '.csv'\n",
+ " with fs.open(FILE_PATH_S3_fanta, mode=\"rb\") as file_in:\n",
+ " globals()[nom_base] = pd.read_csv(file_in, sep=\",\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "2a6b5e22-3370-457f-83b7-dd1e13663229",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'bdc2324-data/1/1type_ofs.csv'"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "FILE_PATH_S3_fanta"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "79012186-ea51-4252-843e-36a9bbe3847e",
+ "metadata": {},
+ "source": [
+ "# Analyse exploratoire "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1a365f29-4766-47d8-9796-24a5271867b2",
+ "metadata": {},
+ "source": [
+ "## I. Base type_of_pricing_formulas"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bcc14f93-2289-44eb-816b-a51049b258df",
+ "metadata": {},
+ "source": [
+ "## Detection des valeur manquantes"
+ ]
+ },
+ {
+ "cell_type": "raw",
+ "id": "ab2ec4c4-9d38-4aeb-8202-9116df3cdd66",
+ "metadata": {},
+ "source": [
+ "dic_prod_princing=['type_of_pricing_formulas','products_groups','pricing_formulas','product_packs','products']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "88759b4a-2633-478d-abce-29abeac376d1",
+ "metadata": {},
+ "source": [
+ "def verifier_donnees_manquantes(base):\n",
+ " donnees_manquantes = base.isna().sum()\n",
+ " print(\"Données manquantes pour la base :\")\n",
+ " print(donnees_manquantes)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "df3075b4-1490-4cf2-a3fe-c6d4e2144ae3",
+ "metadata": {},
+ "source": [
+ "for nom_base in dic_prod_princing:\n",
+ " verifier_donnees_manquantes(nom_base)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "e0c67c01-e837-4772-b070-d1be0d895a36",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "id 0\n",
+ "type_of_id 0\n",
+ "pricing_formula_id 0\n",
+ "created_at 0\n",
+ "updated_at 0\n",
+ "identifier 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#detection des Nan d\n",
+ "\n",
+ "type_of_pricing_formulas.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "83a6a48d-effe-4537-b4bb-d5a540b610f1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#variable retenu:[[\"id\",\"type_of_id\",\"pricing_formula_id\"]]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "3eaffaa6-1164-4ee9-a671-8b5eb3df797d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " type_of_id | \n",
+ " pricing_formula_id | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ " identifier | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 127 | \n",
+ " 2021-01-05 11:55:51.226960+01:00 | \n",
+ " 2021-01-05 11:55:51.226960+01:00 | \n",
+ " cf2918b25e6dcf8c30798ca05c8ec8ed | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2425 | \n",
+ " 2021-01-05 11:55:51.235606+01:00 | \n",
+ " 2021-01-05 11:55:51.235606+01:00 | \n",
+ " 2c8ee3f7c1487d792b6c946314e681f2 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 2937 | \n",
+ " 2021-01-05 11:55:51.240114+01:00 | \n",
+ " 2021-01-05 11:55:51.240114+01:00 | \n",
+ " 44e55c85e4eb59b3c3c01c137a6b25fc | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 48 | \n",
+ " 2021-01-05 11:55:51.244638+01:00 | \n",
+ " 2021-01-05 11:55:51.244638+01:00 | \n",
+ " ee3bb93b7e2217cd86a49d547fedf6c6 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 7 | \n",
+ " 2021-01-05 11:55:51.249409+01:00 | \n",
+ " 2021-01-05 11:55:51.249409+01:00 | \n",
+ " ae701668574f1a653d2b21ddfd250620 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 563 | \n",
+ " 564 | \n",
+ " 4 | \n",
+ " 6656 | \n",
+ " 2022-02-18 16:15:58.872249+01:00 | \n",
+ " 2022-02-18 16:15:58.872249+01:00 | \n",
+ " f669824cdca9de9697f07ff3ba365a8d | \n",
+ "
\n",
+ " \n",
+ " 564 | \n",
+ " 565 | \n",
+ " 4 | \n",
+ " 6607 | \n",
+ " 2022-02-18 16:15:59.231018+01:00 | \n",
+ " 2022-02-18 16:15:59.231018+01:00 | \n",
+ " 6421c8146a598758139153b0e7b921ea | \n",
+ "
\n",
+ " \n",
+ " 565 | \n",
+ " 566 | \n",
+ " 4 | \n",
+ " 6700 | \n",
+ " 2022-02-18 16:15:59.724812+01:00 | \n",
+ " 2022-02-18 16:15:59.724812+01:00 | \n",
+ " 6823f6d4d80b322fbfb8b83545a9f96d | \n",
+ "
\n",
+ " \n",
+ " 566 | \n",
+ " 567 | \n",
+ " 4 | \n",
+ " 8118 | \n",
+ " 2022-02-18 16:16:00.163381+01:00 | \n",
+ " 2022-02-18 16:16:00.163381+01:00 | \n",
+ " 35cfc12584b4d1b94795d97fd0aa56e8 | \n",
+ "
\n",
+ " \n",
+ " 567 | \n",
+ " 569 | \n",
+ " 7 | \n",
+ " 48157 | \n",
+ " 2023-03-13 11:30:29.480161+01:00 | \n",
+ " 2023-03-13 11:30:29.480161+01:00 | \n",
+ " 55863541f33fd229ac9b54d9ec1f4874 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
568 rows × 6 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id type_of_id pricing_formula_id created_at \\\n",
+ "0 1 1 127 2021-01-05 11:55:51.226960+01:00 \n",
+ "1 2 1 2425 2021-01-05 11:55:51.235606+01:00 \n",
+ "2 3 1 2937 2021-01-05 11:55:51.240114+01:00 \n",
+ "3 4 1 48 2021-01-05 11:55:51.244638+01:00 \n",
+ "4 5 1 7 2021-01-05 11:55:51.249409+01:00 \n",
+ ".. ... ... ... ... \n",
+ "563 564 4 6656 2022-02-18 16:15:58.872249+01:00 \n",
+ "564 565 4 6607 2022-02-18 16:15:59.231018+01:00 \n",
+ "565 566 4 6700 2022-02-18 16:15:59.724812+01:00 \n",
+ "566 567 4 8118 2022-02-18 16:16:00.163381+01:00 \n",
+ "567 569 7 48157 2023-03-13 11:30:29.480161+01:00 \n",
+ "\n",
+ " updated_at identifier \n",
+ "0 2021-01-05 11:55:51.226960+01:00 cf2918b25e6dcf8c30798ca05c8ec8ed \n",
+ "1 2021-01-05 11:55:51.235606+01:00 2c8ee3f7c1487d792b6c946314e681f2 \n",
+ "2 2021-01-05 11:55:51.240114+01:00 44e55c85e4eb59b3c3c01c137a6b25fc \n",
+ "3 2021-01-05 11:55:51.244638+01:00 ee3bb93b7e2217cd86a49d547fedf6c6 \n",
+ "4 2021-01-05 11:55:51.249409+01:00 ae701668574f1a653d2b21ddfd250620 \n",
+ ".. ... ... \n",
+ "563 2022-02-18 16:15:58.872249+01:00 f669824cdca9de9697f07ff3ba365a8d \n",
+ "564 2022-02-18 16:15:59.231018+01:00 6421c8146a598758139153b0e7b921ea \n",
+ "565 2022-02-18 16:15:59.724812+01:00 6823f6d4d80b322fbfb8b83545a9f96d \n",
+ "566 2022-02-18 16:16:00.163381+01:00 35cfc12584b4d1b94795d97fd0aa56e8 \n",
+ "567 2023-03-13 11:30:29.480161+01:00 55863541f33fd229ac9b54d9ec1f4874 \n",
+ "\n",
+ "[568 rows x 6 columns]"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "type_of_pricing_formulas"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "57298669-8d55-40d5-a5aa-4c5df984eec7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "id int64\n",
+ "type_of_id int64\n",
+ "pricing_formula_id int64\n",
+ "created_at object\n",
+ "updated_at object\n",
+ "identifier object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#type des variables\n",
+ "\n",
+ "type_of_pricing_formulas.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "c11850cb-8833-44c0-a11d-9695d620a42b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " type_of_id | \n",
+ " pricing_formula_id | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ " identifier | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [id, type_of_id, pricing_formula_id, created_at, updated_at, identifier]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Identification des doublons\n",
+ "type_of_pricing_formulas.loc[type_of_pricing_formulas['id'].duplicated(keep=False),:]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7a40de03-5e18-4d3d-a0f8-da960c29fad8",
+ "metadata": {},
+ "source": [
+ "## II.products_groups"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "89909175-6734-4e8e-8632-d6f8ca812388",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "id 0\n",
+ "percent_price 0\n",
+ "max_price 0\n",
+ "min_price 0\n",
+ "category_id 0\n",
+ "pricing_formula_id 0\n",
+ "representation_id 0\n",
+ "created_at 0\n",
+ "updated_at 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#detection des Nan \n",
+ "\n",
+ "products_groups.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e0518684-c83c-4f0a-89ea-d7dcfd60051d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#variable retenu:[[\"id\",\"percent_price\",\"max_price\",\"min_price\",\"category_id\",\"pricing_formula_id\",\"representation_id\"]]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "6a187170-96c4-48d2-9568-b270f67e2c27",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "id int64\n",
+ "percent_price float64\n",
+ "max_price float64\n",
+ "min_price float64\n",
+ "category_id int64\n",
+ "pricing_formula_id int64\n",
+ "representation_id int64\n",
+ "created_at object\n",
+ "updated_at object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#type des variables\n",
+ "\n",
+ "products_groups.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "2fba2cb0-a6a4-43b2-a854-3be07939c28b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " percent_price | \n",
+ " max_price | \n",
+ " min_price | \n",
+ " category_id | \n",
+ " pricing_formula_id | \n",
+ " representation_id | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [id, percent_price, max_price, min_price, category_id, pricing_formula_id, representation_id, created_at, updated_at]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Identification des doublons\n",
+ "products_groups.loc[products_groups[['id','pricing_formula_id','representation_id']].duplicated(keep=False),:]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5312ac13-8fbd-4c3f-a98a-8c28f079a599",
+ "metadata": {},
+ "source": [
+ "## III.pricing_formulas"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "3383a773-0817-4b23-84e7-8d5d0c74b179",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " name | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ " extra_field | \n",
+ " identifier | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 41909 | \n",
+ " visite mécènes 1h30 | \n",
+ " 2022-07-08 07:08:26.802266+02:00 | \n",
+ " 2022-07-08 07:08:26.802266+02:00 | \n",
+ " NaN | \n",
+ " 21d4b0043c12b21952b0797d140991a1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 502 | \n",
+ " entree mucem tp( expo picasso) | \n",
+ " 2020-09-03 13:43:59.816765+02:00 | \n",
+ " 2022-02-18 15:57:55.792581+01:00 | \n",
+ " NaN | \n",
+ " 223b09e6c3f1f75dbf8df019af97a555 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 504 | \n",
+ " nombre de personnes cinema | \n",
+ " 2020-09-03 13:43:59.818198+02:00 | \n",
+ " 2021-01-25 19:16:05.187114+01:00 | \n",
+ " NaN | \n",
+ " ba33b7b6d225a75d713a356b49c4d915 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 117 | \n",
+ " spectacle tarif e famille tr | \n",
+ " 2020-09-03 13:21:21.400249+02:00 | \n",
+ " 2023-03-13 11:30:29.525335+01:00 | \n",
+ " NaN | \n",
+ " a00b61ad933518856f86e63ca91a5750 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 1496 | \n",
+ " billet nb famille mecene 1a | \n",
+ " 2020-09-03 14:29:33.320952+02:00 | \n",
+ " 2021-01-25 19:23:06.816402+01:00 | \n",
+ " NaN | \n",
+ " 7f6013803c242253a5ccde80f780984f | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 551 | \n",
+ " 529 | \n",
+ " billet nb expo gr | \n",
+ " 2020-09-03 13:43:59.835944+02:00 | \n",
+ " 2022-02-18 15:57:55.792581+01:00 | \n",
+ " NaN | \n",
+ " 7d888e42abe101fc8b21dc88948c8b74 | \n",
+ "
\n",
+ " \n",
+ " 552 | \n",
+ " 3153 | \n",
+ " nb pers visite scolaire rep | \n",
+ " 2020-09-03 16:32:37.068864+02:00 | \n",
+ " 2022-02-18 15:57:55.792581+01:00 | \n",
+ " NaN | \n",
+ " 3cf21731c25eee650d5b232ee4780563 | \n",
+ "
\n",
+ " \n",
+ " 553 | \n",
+ " 5847 | \n",
+ " visite scolaire rep1h00 | \n",
+ " 2021-06-09 18:10:49.742531+02:00 | \n",
+ " 2022-02-18 15:55:03.576236+01:00 | \n",
+ " NaN | \n",
+ " a7bb5a6892d55f0d5ee4ce5786ae5fc6 | \n",
+ "
\n",
+ " \n",
+ " 554 | \n",
+ " 5840 | \n",
+ " france billet - entree ts | \n",
+ " 2021-06-09 18:10:49.737576+02:00 | \n",
+ " 2022-02-18 16:16:00.199543+01:00 | \n",
+ " NaN | \n",
+ " 4c53016fc65847646f600eff853593e5 | \n",
+ "
\n",
+ " \n",
+ " 555 | \n",
+ " 5863 | \n",
+ " france billet - entree tp | \n",
+ " 2021-06-09 18:12:49.269924+02:00 | \n",
+ " 2022-02-18 16:16:00.199543+01:00 | \n",
+ " NaN | \n",
+ " 90e642c0e1ef6bc9f2bc43089798de00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
556 rows × 6 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id name created_at \\\n",
+ "0 41909 visite mécènes 1h30 2022-07-08 07:08:26.802266+02:00 \n",
+ "1 502 entree mucem tp( expo picasso) 2020-09-03 13:43:59.816765+02:00 \n",
+ "2 504 nombre de personnes cinema 2020-09-03 13:43:59.818198+02:00 \n",
+ "3 117 spectacle tarif e famille tr 2020-09-03 13:21:21.400249+02:00 \n",
+ "4 1496 billet nb famille mecene 1a 2020-09-03 14:29:33.320952+02:00 \n",
+ ".. ... ... ... \n",
+ "551 529 billet nb expo gr 2020-09-03 13:43:59.835944+02:00 \n",
+ "552 3153 nb pers visite scolaire rep 2020-09-03 16:32:37.068864+02:00 \n",
+ "553 5847 visite scolaire rep1h00 2021-06-09 18:10:49.742531+02:00 \n",
+ "554 5840 france billet - entree ts 2021-06-09 18:10:49.737576+02:00 \n",
+ "555 5863 france billet - entree tp 2021-06-09 18:12:49.269924+02:00 \n",
+ "\n",
+ " updated_at extra_field \\\n",
+ "0 2022-07-08 07:08:26.802266+02:00 NaN \n",
+ "1 2022-02-18 15:57:55.792581+01:00 NaN \n",
+ "2 2021-01-25 19:16:05.187114+01:00 NaN \n",
+ "3 2023-03-13 11:30:29.525335+01:00 NaN \n",
+ "4 2021-01-25 19:23:06.816402+01:00 NaN \n",
+ ".. ... ... \n",
+ "551 2022-02-18 15:57:55.792581+01:00 NaN \n",
+ "552 2022-02-18 15:57:55.792581+01:00 NaN \n",
+ "553 2022-02-18 15:55:03.576236+01:00 NaN \n",
+ "554 2022-02-18 16:16:00.199543+01:00 NaN \n",
+ "555 2022-02-18 16:16:00.199543+01:00 NaN \n",
+ "\n",
+ " identifier \n",
+ "0 21d4b0043c12b21952b0797d140991a1 \n",
+ "1 223b09e6c3f1f75dbf8df019af97a555 \n",
+ "2 ba33b7b6d225a75d713a356b49c4d915 \n",
+ "3 a00b61ad933518856f86e63ca91a5750 \n",
+ "4 7f6013803c242253a5ccde80f780984f \n",
+ ".. ... \n",
+ "551 7d888e42abe101fc8b21dc88948c8b74 \n",
+ "552 3cf21731c25eee650d5b232ee4780563 \n",
+ "553 a7bb5a6892d55f0d5ee4ce5786ae5fc6 \n",
+ "554 4c53016fc65847646f600eff853593e5 \n",
+ "555 90e642c0e1ef6bc9f2bc43089798de00 \n",
+ "\n",
+ "[556 rows x 6 columns]"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pricing_formulas"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "d8130c73-6c5f-45b1-93ae-db7679c8ca56",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "id 0.0\n",
+ "name 0.0\n",
+ "created_at 0.0\n",
+ "updated_at 0.0\n",
+ "extra_field 1.0\n",
+ "identifier 0.0\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#detection des Nan \n",
+ "\n",
+ "pricing_formulas.isna().sum()/pricing_formulas.shape[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9f2909c1-bc6a-443f-a077-84f6ce6b7ab5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#variable retenu: [[\"id\",\"name\"]]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "44f1dbfd-c3cf-464b-9877-f37fcc61da92",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "id int64\n",
+ "name object\n",
+ "created_at object\n",
+ "updated_at object\n",
+ "extra_field float64\n",
+ "identifier object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#type des variables\n",
+ "\n",
+ "pricing_formulas.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "6784b41b-da74-4fae-832e-16641ae710c1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " name | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ " extra_field | \n",
+ " identifier | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [id, name, created_at, updated_at, extra_field, identifier]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Identification des doublons\n",
+ "pricing_formulas.loc[pricing_formulas[['id']].duplicated(keep=False),:]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2145b0a4-b73d-4530-8c12-a78b1cf86eae",
+ "metadata": {},
+ "source": [
+ "## IV. product_packs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "e36b07a7-4f0b-4711-86a0-12a1d8158eef",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "id 0.0\n",
+ "name 1.0\n",
+ "type_of 0.0\n",
+ "created_at 0.0\n",
+ "updated_at 0.0\n",
+ "identifier 0.0\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#detection des Nan \n",
+ "\n",
+ "product_packs.isna().sum()/product_packs.shape[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e0887a01-51ea-4034-84fe-dc4dbf2ad949",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#variable retenu:[[\"id\",\"name\"]]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "8707396a-f86b-476d-a9f9-c39f8de1d02e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "id int64\n",
+ "name float64\n",
+ "type_of int64\n",
+ "created_at object\n",
+ "updated_at object\n",
+ "identifier object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#type des variables\n",
+ "\n",
+ "product_packs.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "4b102bd3-924b-43da-8915-be7664c23f97",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " name | \n",
+ " type_of | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ " identifier | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [id, name, type_of, created_at, updated_at, identifier]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#Identification des doublons\n",
+ "product_packs.loc[product_packs[['id']].duplicated(keep=False),:]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cfe0c525-896b-4731-b38e-306ff6ea0c65",
+ "metadata": {},
+ "source": [
+ "## V.products"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "968beb24-f70c-4eb6-8b1e-4b04bc7fe9c9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "id 0.0\n",
+ "amount 0.0\n",
+ "is_full_price 0.0\n",
+ "representation_id 0.0\n",
+ "pricing_formula_id 0.0\n",
+ "created_at 0.0\n",
+ "updated_at 0.0\n",
+ "category_id 0.0\n",
+ "apply_price 0.0\n",
+ "products_group_id 0.0\n",
+ "product_pack_id 0.0\n",
+ "extra_field 1.0\n",
+ "amount_consumption 1.0\n",
+ "identifier 0.0\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#detection des Nan \n",
+ "\n",
+ "products.isna().sum()/products.shape[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "15bc6ac6-67e8-4e2c-9641-7ee8bb2581a3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "id int64\n",
+ "amount float64\n",
+ "is_full_price bool\n",
+ "representation_id int64\n",
+ "pricing_formula_id int64\n",
+ "created_at object\n",
+ "updated_at object\n",
+ "category_id int64\n",
+ "apply_price float64\n",
+ "products_group_id int64\n",
+ "product_pack_id int64\n",
+ "extra_field float64\n",
+ "amount_consumption float64\n",
+ "identifier object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#type des variables\n",
+ "\n",
+ "products.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "7daa4f1a-e429-4daf-a2e1-1e311b487e09",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#dic_prod_princing=['type_of_pricing_formulas','products_groups','pricing_formulas','product_packs','products']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "dc12b746-6708-4708-826a-acb5a8e665a1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " name | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ " extra_field | \n",
+ " identifier | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 41909 | \n",
+ " visite mécènes 1h30 | \n",
+ " 2022-07-08 07:08:26.802266+02:00 | \n",
+ " 2022-07-08 07:08:26.802266+02:00 | \n",
+ " NaN | \n",
+ " 21d4b0043c12b21952b0797d140991a1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 502 | \n",
+ " entree mucem tp( expo picasso) | \n",
+ " 2020-09-03 13:43:59.816765+02:00 | \n",
+ " 2022-02-18 15:57:55.792581+01:00 | \n",
+ " NaN | \n",
+ " 223b09e6c3f1f75dbf8df019af97a555 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 504 | \n",
+ " nombre de personnes cinema | \n",
+ " 2020-09-03 13:43:59.818198+02:00 | \n",
+ " 2021-01-25 19:16:05.187114+01:00 | \n",
+ " NaN | \n",
+ " ba33b7b6d225a75d713a356b49c4d915 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 117 | \n",
+ " spectacle tarif e famille tr | \n",
+ " 2020-09-03 13:21:21.400249+02:00 | \n",
+ " 2023-03-13 11:30:29.525335+01:00 | \n",
+ " NaN | \n",
+ " a00b61ad933518856f86e63ca91a5750 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 1496 | \n",
+ " billet nb famille mecene 1a | \n",
+ " 2020-09-03 14:29:33.320952+02:00 | \n",
+ " 2021-01-25 19:23:06.816402+01:00 | \n",
+ " NaN | \n",
+ " 7f6013803c242253a5ccde80f780984f | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 551 | \n",
+ " 529 | \n",
+ " billet nb expo gr | \n",
+ " 2020-09-03 13:43:59.835944+02:00 | \n",
+ " 2022-02-18 15:57:55.792581+01:00 | \n",
+ " NaN | \n",
+ " 7d888e42abe101fc8b21dc88948c8b74 | \n",
+ "
\n",
+ " \n",
+ " 552 | \n",
+ " 3153 | \n",
+ " nb pers visite scolaire rep | \n",
+ " 2020-09-03 16:32:37.068864+02:00 | \n",
+ " 2022-02-18 15:57:55.792581+01:00 | \n",
+ " NaN | \n",
+ " 3cf21731c25eee650d5b232ee4780563 | \n",
+ "
\n",
+ " \n",
+ " 553 | \n",
+ " 5847 | \n",
+ " visite scolaire rep1h00 | \n",
+ " 2021-06-09 18:10:49.742531+02:00 | \n",
+ " 2022-02-18 15:55:03.576236+01:00 | \n",
+ " NaN | \n",
+ " a7bb5a6892d55f0d5ee4ce5786ae5fc6 | \n",
+ "
\n",
+ " \n",
+ " 554 | \n",
+ " 5840 | \n",
+ " france billet - entree ts | \n",
+ " 2021-06-09 18:10:49.737576+02:00 | \n",
+ " 2022-02-18 16:16:00.199543+01:00 | \n",
+ " NaN | \n",
+ " 4c53016fc65847646f600eff853593e5 | \n",
+ "
\n",
+ " \n",
+ " 555 | \n",
+ " 5863 | \n",
+ " france billet - entree tp | \n",
+ " 2021-06-09 18:12:49.269924+02:00 | \n",
+ " 2022-02-18 16:16:00.199543+01:00 | \n",
+ " NaN | \n",
+ " 90e642c0e1ef6bc9f2bc43089798de00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
556 rows × 6 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id name created_at \\\n",
+ "0 41909 visite mécènes 1h30 2022-07-08 07:08:26.802266+02:00 \n",
+ "1 502 entree mucem tp( expo picasso) 2020-09-03 13:43:59.816765+02:00 \n",
+ "2 504 nombre de personnes cinema 2020-09-03 13:43:59.818198+02:00 \n",
+ "3 117 spectacle tarif e famille tr 2020-09-03 13:21:21.400249+02:00 \n",
+ "4 1496 billet nb famille mecene 1a 2020-09-03 14:29:33.320952+02:00 \n",
+ ".. ... ... ... \n",
+ "551 529 billet nb expo gr 2020-09-03 13:43:59.835944+02:00 \n",
+ "552 3153 nb pers visite scolaire rep 2020-09-03 16:32:37.068864+02:00 \n",
+ "553 5847 visite scolaire rep1h00 2021-06-09 18:10:49.742531+02:00 \n",
+ "554 5840 france billet - entree ts 2021-06-09 18:10:49.737576+02:00 \n",
+ "555 5863 france billet - entree tp 2021-06-09 18:12:49.269924+02:00 \n",
+ "\n",
+ " updated_at extra_field \\\n",
+ "0 2022-07-08 07:08:26.802266+02:00 NaN \n",
+ "1 2022-02-18 15:57:55.792581+01:00 NaN \n",
+ "2 2021-01-25 19:16:05.187114+01:00 NaN \n",
+ "3 2023-03-13 11:30:29.525335+01:00 NaN \n",
+ "4 2021-01-25 19:23:06.816402+01:00 NaN \n",
+ ".. ... ... \n",
+ "551 2022-02-18 15:57:55.792581+01:00 NaN \n",
+ "552 2022-02-18 15:57:55.792581+01:00 NaN \n",
+ "553 2022-02-18 15:55:03.576236+01:00 NaN \n",
+ "554 2022-02-18 16:16:00.199543+01:00 NaN \n",
+ "555 2022-02-18 16:16:00.199543+01:00 NaN \n",
+ "\n",
+ " identifier \n",
+ "0 21d4b0043c12b21952b0797d140991a1 \n",
+ "1 223b09e6c3f1f75dbf8df019af97a555 \n",
+ "2 ba33b7b6d225a75d713a356b49c4d915 \n",
+ "3 a00b61ad933518856f86e63ca91a5750 \n",
+ "4 7f6013803c242253a5ccde80f780984f \n",
+ ".. ... \n",
+ "551 7d888e42abe101fc8b21dc88948c8b74 \n",
+ "552 3cf21731c25eee650d5b232ee4780563 \n",
+ "553 a7bb5a6892d55f0d5ee4ce5786ae5fc6 \n",
+ "554 4c53016fc65847646f600eff853593e5 \n",
+ "555 90e642c0e1ef6bc9f2bc43089798de00 \n",
+ "\n",
+ "[556 rows x 6 columns]"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pricing_formulas"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "46aad10f-8530-410e-872b-bb253c553a46",
+ "metadata": {},
+ "source": [
+ "# jointure entre les bases"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a4c3edd1-6d58-4c57-b3e4-0ef3529f6b8c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#dic_prod_princing=['type_of_pricing_formulas','products_groups','pricing_formulas','product_packs','products']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "id": "eac537e1-bbad-45bc-a85c-12b675da1088",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Merge1 entre products et pricing_formulas\n",
+ "base1=products.merge(pricing_formulas, how='left', left_on= 'pricing_formula_id', right_on= 'id', suffixes = (\"_products\", \"_pricing_formula\"))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "id": "75be3a30-3114-432d-87d6-697533c3c871",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Merge2 entre base1 et products_groups\n",
+ "base2=base1.merge(products_groups, how='left', left_on= 'id_pricing_formula', right_on= 'id', suffixes = (\"_merge2\", \"_product_group\"))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "id": "34a169c6-07a8-4ac3-a9e1-d7e7461f7310",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Merge3 entre base2 et type_of_pricing_formulas\n",
+ "base3=base2.merge(type_of_pricing_formulas, how='left', left_on= 'id_pricing_formula', right_on= 'pricing_formula_id', suffixes = (\"_merge3\", \"_type_of_pricing_f\"))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 89,
+ "id": "f44f40d2-5304-4931-b7e6-fcc06b2657b6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Merge4 entre base3 et type_of_pricing_formulas\n",
+ "df_product_pricing=base3.merge(product_packs, how='left', left_on= 'product_pack_id', right_on= 'id', suffixes = (\"_merge4\", \"_product_pack\"))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "id": "a28772c3-7bc1-46b4-acc8-1388dc60ec98",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id_products | \n",
+ " amount | \n",
+ " is_full_price | \n",
+ " representation_id_merge2 | \n",
+ " pricing_formula_id_merge2 | \n",
+ " created_at_products | \n",
+ " updated_at_products | \n",
+ " category_id_merge2 | \n",
+ " apply_price | \n",
+ " products_group_id | \n",
+ " ... | \n",
+ " pricing_formula_id | \n",
+ " created_at_type_of_pricing_f | \n",
+ " updated_at_type_of_pricing_f | \n",
+ " identifier_merge4 | \n",
+ " id | \n",
+ " name_product_pack | \n",
+ " type_of | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ " identifier_product_pack | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 10682 | \n",
+ " 9.0 | \n",
+ " False | \n",
+ " 914 | \n",
+ " 114 | \n",
+ " 2020-09-03 14:09:43.119798+02:00 | \n",
+ " 2020-09-03 14:09:43.119798+02:00 | \n",
+ " 41 | \n",
+ " 0.0 | \n",
+ " 10655 | \n",
+ " ... | \n",
+ " 114.0 | \n",
+ " 2021-02-15 17:02:27.395376+01:00 | \n",
+ " 2021-02-15 17:02:27.395376+01:00 | \n",
+ " 3706121eb9f43b635bef1433c06f679c | \n",
+ " 1 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 2020-09-03 13:11:24.501197+02:00 | \n",
+ " 2020-09-03 13:11:24.501197+02:00 | \n",
+ " a764b4bf13a360c7ac2a35ec4ca96c95 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 478 | \n",
+ " 9.5 | \n",
+ " False | \n",
+ " 273 | \n",
+ " 131 | \n",
+ " 2020-09-03 13:21:22.711773+02:00 | \n",
+ " 2020-09-03 13:21:22.711773+02:00 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " 471 | \n",
+ " ... | \n",
+ " 131.0 | \n",
+ " 2021-02-05 11:52:05.923905+01:00 | \n",
+ " 2021-02-05 11:52:05.923905+01:00 | \n",
+ " 0aceb248607671792298436004b95275 | \n",
+ " 1 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 2020-09-03 13:11:24.501197+02:00 | \n",
+ " 2020-09-03 13:11:24.501197+02:00 | \n",
+ " a764b4bf13a360c7ac2a35ec4ca96c95 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20873 | \n",
+ " 11.5 | \n",
+ " False | \n",
+ " 275 | \n",
+ " 137 | \n",
+ " 2020-09-03 14:46:33.589030+02:00 | \n",
+ " 2020-09-03 14:46:33.589030+02:00 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " 20825 | \n",
+ " ... | \n",
+ " 137.0 | \n",
+ " 2021-02-05 11:52:05.939898+01:00 | \n",
+ " 2021-02-05 11:52:05.939898+01:00 | \n",
+ " 93002d4637331edd81ffc28b6e8e89c0 | \n",
+ " 1 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 2020-09-03 13:11:24.501197+02:00 | \n",
+ " 2020-09-03 13:11:24.501197+02:00 | \n",
+ " a764b4bf13a360c7ac2a35ec4ca96c95 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 157142 | \n",
+ " 8.0 | \n",
+ " False | \n",
+ " 82519 | \n",
+ " 9 | \n",
+ " 2022-01-28 19:29:23.525722+01:00 | \n",
+ " 2022-01-28 19:29:23.525722+01:00 | \n",
+ " 5 | \n",
+ " 0.0 | \n",
+ " 156773 | \n",
+ " ... | \n",
+ " 9.0 | \n",
+ " 2021-02-05 11:52:06.107939+01:00 | \n",
+ " 2021-02-05 11:52:06.107939+01:00 | \n",
+ " 7d0b25bdfff9f366da8be820608c8191 | \n",
+ " 1 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 2020-09-03 13:11:24.501197+02:00 | \n",
+ " 2020-09-03 13:11:24.501197+02:00 | \n",
+ " a764b4bf13a360c7ac2a35ec4ca96c95 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 1341 | \n",
+ " 8.5 | \n",
+ " False | \n",
+ " 9 | \n",
+ " 93 | \n",
+ " 2020-09-03 13:29:30.773089+02:00 | \n",
+ " 2020-09-03 13:29:30.773089+02:00 | \n",
+ " 1 | \n",
+ " 0.0 | \n",
+ " 1175 | \n",
+ " ... | \n",
+ " 93.0 | \n",
+ " 2021-02-05 11:52:06.004162+01:00 | \n",
+ " 2021-02-05 11:52:06.004162+01:00 | \n",
+ " 1dbb0795e8f47cb75ba7cdb08c06be5f | \n",
+ " 1 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 2020-09-03 13:11:24.501197+02:00 | \n",
+ " 2020-09-03 13:11:24.501197+02:00 | \n",
+ " a764b4bf13a360c7ac2a35ec4ca96c95 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 41 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id_products amount is_full_price representation_id_merge2 \\\n",
+ "0 10682 9.0 False 914 \n",
+ "1 478 9.5 False 273 \n",
+ "2 20873 11.5 False 275 \n",
+ "3 157142 8.0 False 82519 \n",
+ "4 1341 8.5 False 9 \n",
+ "\n",
+ " pricing_formula_id_merge2 created_at_products \\\n",
+ "0 114 2020-09-03 14:09:43.119798+02:00 \n",
+ "1 131 2020-09-03 13:21:22.711773+02:00 \n",
+ "2 137 2020-09-03 14:46:33.589030+02:00 \n",
+ "3 9 2022-01-28 19:29:23.525722+01:00 \n",
+ "4 93 2020-09-03 13:29:30.773089+02:00 \n",
+ "\n",
+ " updated_at_products category_id_merge2 apply_price \\\n",
+ "0 2020-09-03 14:09:43.119798+02:00 41 0.0 \n",
+ "1 2020-09-03 13:21:22.711773+02:00 1 0.0 \n",
+ "2 2020-09-03 14:46:33.589030+02:00 1 0.0 \n",
+ "3 2022-01-28 19:29:23.525722+01:00 5 0.0 \n",
+ "4 2020-09-03 13:29:30.773089+02:00 1 0.0 \n",
+ "\n",
+ " products_group_id ... pricing_formula_id \\\n",
+ "0 10655 ... 114.0 \n",
+ "1 471 ... 131.0 \n",
+ "2 20825 ... 137.0 \n",
+ "3 156773 ... 9.0 \n",
+ "4 1175 ... 93.0 \n",
+ "\n",
+ " created_at_type_of_pricing_f updated_at_type_of_pricing_f \\\n",
+ "0 2021-02-15 17:02:27.395376+01:00 2021-02-15 17:02:27.395376+01:00 \n",
+ "1 2021-02-05 11:52:05.923905+01:00 2021-02-05 11:52:05.923905+01:00 \n",
+ "2 2021-02-05 11:52:05.939898+01:00 2021-02-05 11:52:05.939898+01:00 \n",
+ "3 2021-02-05 11:52:06.107939+01:00 2021-02-05 11:52:06.107939+01:00 \n",
+ "4 2021-02-05 11:52:06.004162+01:00 2021-02-05 11:52:06.004162+01:00 \n",
+ "\n",
+ " identifier_merge4 id name_product_pack type_of \\\n",
+ "0 3706121eb9f43b635bef1433c06f679c 1 NaN 0 \n",
+ "1 0aceb248607671792298436004b95275 1 NaN 0 \n",
+ "2 93002d4637331edd81ffc28b6e8e89c0 1 NaN 0 \n",
+ "3 7d0b25bdfff9f366da8be820608c8191 1 NaN 0 \n",
+ "4 1dbb0795e8f47cb75ba7cdb08c06be5f 1 NaN 0 \n",
+ "\n",
+ " created_at updated_at \\\n",
+ "0 2020-09-03 13:11:24.501197+02:00 2020-09-03 13:11:24.501197+02:00 \n",
+ "1 2020-09-03 13:11:24.501197+02:00 2020-09-03 13:11:24.501197+02:00 \n",
+ "2 2020-09-03 13:11:24.501197+02:00 2020-09-03 13:11:24.501197+02:00 \n",
+ "3 2020-09-03 13:11:24.501197+02:00 2020-09-03 13:11:24.501197+02:00 \n",
+ "4 2020-09-03 13:11:24.501197+02:00 2020-09-03 13:11:24.501197+02:00 \n",
+ "\n",
+ " identifier_product_pack \n",
+ "0 a764b4bf13a360c7ac2a35ec4ca96c95 \n",
+ "1 a764b4bf13a360c7ac2a35ec4ca96c95 \n",
+ "2 a764b4bf13a360c7ac2a35ec4ca96c95 \n",
+ "3 a764b4bf13a360c7ac2a35ec4ca96c95 \n",
+ "4 a764b4bf13a360c7ac2a35ec4ca96c95 \n",
+ "\n",
+ "[5 rows x 41 columns]"
+ ]
+ },
+ "execution_count": 90,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_product_pricing.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "03442997-806f-4285-a139-3bad46bb4522",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "d22a0d75-53c5-4b54-9060-c9e7c307fb13",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "BUCKET = \"bdc2324-data\"\n",
+ "directory_path = '2'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "7c229dad-6ebd-4f43-99f1-fb330dc29466",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['bdc2324-data/2/2campaign_stats.csv',\n",
+ " 'bdc2324-data/2/2campaigns.csv',\n",
+ " 'bdc2324-data/2/2categories.csv',\n",
+ " 'bdc2324-data/2/2contribution_sites.csv',\n",
+ " 'bdc2324-data/2/2contributions.csv',\n",
+ " 'bdc2324-data/2/2countries.csv',\n",
+ " 'bdc2324-data/2/2currencies.csv',\n",
+ " 'bdc2324-data/2/2customer_target_mappings.csv',\n",
+ " 'bdc2324-data/2/2customersplus.csv',\n",
+ " 'bdc2324-data/2/2event_types.csv',\n",
+ " 'bdc2324-data/2/2events.csv',\n",
+ " 'bdc2324-data/2/2facilities.csv',\n",
+ " 'bdc2324-data/2/2link_stats.csv',\n",
+ " 'bdc2324-data/2/2pricing_formulas.csv',\n",
+ " 'bdc2324-data/2/2product_packs.csv',\n",
+ " 'bdc2324-data/2/2products.csv',\n",
+ " 'bdc2324-data/2/2products_groups.csv',\n",
+ " 'bdc2324-data/2/2purchases.csv',\n",
+ " 'bdc2324-data/2/2representation_category_capacities.csv',\n",
+ " 'bdc2324-data/2/2representations.csv',\n",
+ " 'bdc2324-data/2/2seasons.csv',\n",
+ " 'bdc2324-data/2/2structure_tag_mappings.csv',\n",
+ " 'bdc2324-data/2/2suppliers.csv',\n",
+ " 'bdc2324-data/2/2tags.csv',\n",
+ " 'bdc2324-data/2/2target_types.csv',\n",
+ " 'bdc2324-data/2/2targets.csv',\n",
+ " 'bdc2324-data/2/2tickets.csv']"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "BUCKET = \"bdc2324-data/2\"\n",
+ "fs.ls(BUCKET)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "df3d3548-3d76-4f07-afa1-e240932bc1c7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dic_base_ent2=['campaign_stats','campaigns','categories','contribution_sites','contributions','countries','currencies','customer_target_mappings','customersplus','event_types','events','facilities','link_stats','pricing_formulas','product_packs','products','products_groups','purchases','representation_category_capacities','representations','seasons','structure_tag_mappings','suppliers','tags','target_types','targets','tickets']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "90f8d5fc-43f3-4f36-b8cc-89a41785f032",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/tmp/ipykernel_438/673681459.py:5: DtypeWarning: Columns (20) have mixed types. Specify dtype option on import or set low_memory=False.\n",
+ " globals()[nom_base] = pd.read_csv(file_in, sep=\",\")\n"
+ ]
+ }
+ ],
+ "source": [
+ "dic_base_ent2=['campaign_stats','campaigns','categories','contribution_sites','contributions','countries','currencies','customer_target_mappings','customersplus','event_types','events','facilities','link_stats','pricing_formulas','product_packs','products','products_groups','purchases','representation_category_capacities','representations','seasons','structure_tag_mappings','suppliers','tags','target_types','targets','tickets']\n",
+ "for nom_base in dic_base_ent2:\n",
+ " FILE_PATH_S3_fanta = 'bdc2324-data/2/2' + nom_base + '.csv'\n",
+ " with fs.open(FILE_PATH_S3_fanta, mode=\"rb\") as file_in:\n",
+ " globals()[nom_base] = pd.read_csv(file_in, sep=\",\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "3e39a584-e02b-41b2-831c-33b920e298e9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "27"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(dic_base_ent2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2b6c6f65",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "def calculer_proportion_valeurs_manquantes_et_exporter(databases, fichier_sortie='proportion_valeurs_manquantes.xlsx'):\n",
+ " \"\"\"\n",
+ " Calculer la proportion de valeurs manquantes pour chaque variable dans chaque base de données et exporter les résultats dans un fichier Excel.\n",
+ "\n",
+ " Paramètres:\n",
+ " - databases (dict): Un dictionnaire où les clés sont les noms des bases de données et les valeurs sont les DataFrames pandas.\n",
+ " - fichier_sortie (str): Le chemin du fichier Excel de sortie.\n",
+ "\n",
+ " Retourne:\n",
+ " - Un fichier Excel où chaque onglet représente une base de données différente avec la proportion de valeurs manquantes pour chaque variable.\n",
+ " \"\"\"\n",
+ " with pd.ExcelWriter(fichier_sortie) as writer:\n",
+ " for nom_db, df in databases.items():\n",
+ " # Calculer la proportion de valeurs manquantes pour chaque colonne\n",
+ " proportion_manquantes = df.isnull().mean()\n",
+ " # Convertir en DataFrame pour un meilleur affichage\n",
+ " resultats_df = pd.DataFrame(proportion_manquantes, columns=['ProportionValeursManquantes'])\n",
+ " resultats_df['ProportionValeursManquantes'] = resultats_df['ProportionValeursManquantes'].map(lambda x: f\"{x:.2%}\")\n",
+ " # Écrire le DataFrame dans un onglet du fichier Excel\n",
+ " resultats_df.to_excel(writer, sheet_name=nom_db)\n",
+ "\n",
+ " print(f\"Les résultats ont été exportés dans le fichier '{fichier_sortie}'.\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "06759646-9419-4841-b12f-bbfceb417f3a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#fonction calcul la proportion de valeur manquante\n",
+ "\n",
+ "import pandas as pd\n",
+ "\n",
+ "def calculer_proportion_valeurs_manquantes(databases):\n",
+ " \"\"\"\n",
+ " Calculer la proportion de valeurs manquantes pour chaque variable dans chaque base de données.\n",
+ "\n",
+ " Paramètres:\n",
+ " - databases (dict): Un dictionnaire où les clés sont les noms des bases de données et les valeurs sont les DataFrames pandas.\n",
+ "\n",
+ " Retourne:\n",
+ " - Un dictionnaire où les clés sont les noms des bases de données et les valeurs sont des DataFrames avec la proportion de valeurs manquantes pour chaque variable.\n",
+ " \"\"\"\n",
+ " resultats = {}\n",
+ " for nom_db, df in databases.items():\n",
+ " # Calculer la proportion de valeurs manquantes pour chaque colonne\n",
+ " proportion_manquantes = df.isnull().mean()\n",
+ " # Convertir en DataFrame pour un meilleur affichage\n",
+ " resultats_df = pd.DataFrame(proportion_manquantes, columns=['ProportionValeursManquantes'])\n",
+ " resultats_df['ProportionValeursManquantes'] = resultats_df['ProportionValeursManquantes'].map(lambda x: f\"{x:.2%}\")\n",
+ " # Ajouter le résultat au dictionnaire\n",
+ " resultats[nom_db] = resultats_df\n",
+ " return resultats"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0960daa8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Exemple d'utilisation\n",
+ "\n",
+ "databases = {'Base1': campaign_stats, 'Base2': campaigns}\n",
+ "\n",
+ "resultats = calculer_proportion_valeurs_manquantes(databases)\n",
+ "\n",
+ "for nom_db, resultat in resultats.items():\n",
+ " print(f\"Base de données: {nom_db}\")\n",
+ " print(resultat)\n",
+ " print()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "77dc02bb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Exemple d'utilisation\n",
+ "dict={'campaign_stats': campaign_stats,\n",
+ " 'campaigns': campaigns,\n",
+ " 'categories': categories,\n",
+ " 'contribution_sites': contribution_sites,\n",
+ " 'contributions': contributions,\n",
+ " 'countries': countries,\n",
+ " 'currencies': currencies,\n",
+ " 'customer_target_mappings': customer_target_mappings,\n",
+ " 'customersplus': customersplus,\n",
+ " 'event_types': event_types,\n",
+ " 'events': events,\n",
+ " 'facilities': facilities,\n",
+ " 'link_stats': link_stats,\n",
+ " 'pricing_formulas': pricing_formulas,\n",
+ " 'product_packs': product_packs,\n",
+ " 'products': products,\n",
+ " 'products_groups': products_groups,\n",
+ " 'purchases': purchases,\n",
+ " 'representation_category_capacities': representation_category_capacities,\n",
+ " 'representations': representations,\n",
+ " 'seasons': seasons,\n",
+ " 'structure_tag_mappings': structure_tag_mappings,\n",
+ " 'suppliers': suppliers,\n",
+ " 'tags': tags,\n",
+ " 'target_types': target_types,\n",
+ " 'targets': targets,\n",
+ " 'tickets': tickets}\n",
+ "\n",
+ "resultats = calculer_proportion_valeurs_manquantes(dict)\n",
+ "\n",
+ "for nom_db, resultat in resultats.items():\n",
+ " print(f\"Base de données: {nom_db}\")\n",
+ " print(resultat)\n",
+ " print()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "60be9271",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#MEME CODE mais avec l'exportation de result a en format excel"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "955fe358",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "def calculer_proportion_valeurs_manquantes_et_exporter(databases, fichier_sortie='proportion_valeurs_manquantes.xlsx'):\n",
+ " \"\"\"\n",
+ " Calculer la proportion de valeurs manquantes pour chaque variable dans chaque base de données et exporter les résultats dans un fichier Excel.\n",
+ "\n",
+ " Paramètres:\n",
+ " - databases (dict): Un dictionnaire où les clés sont les noms des bases de données et les valeurs sont les DataFrames pandas.\n",
+ " - fichier_sortie (str): Le chemin du fichier Excel de sortie.\n",
+ "\n",
+ " Retourne:\n",
+ " - Un fichier Excel où chaque onglet représente une base de données différente avec la proportion de valeurs manquantes pour chaque variable.\n",
+ " \"\"\"\n",
+ " with pd.ExcelWriter(fichier_sortie) as writer:\n",
+ " for nom_db, df in databases.items():\n",
+ " # Calculer la proportion de valeurs manquantes pour chaque colonne\n",
+ " proportion_manquantes = df.isnull().mean()\n",
+ " # Convertir en DataFrame pour un meilleur affichage\n",
+ " resultats_df = pd.DataFrame(proportion_manquantes, columns=['ProportionValeursManquantes'])\n",
+ " resultats_df['ProportionValeursManquantes'] = resultats_df['ProportionValeursManquantes'].map(lambda x: f\"{x:.2%}\")\n",
+ " # Écrire le DataFrame dans un onglet du fichier Excel\n",
+ " resultats_df.to_excel(writer, sheet_name=nom_db)\n",
+ "\n",
+ " print(f\"Les résultats ont été exportés dans le fichier '{fichier_sortie}'.\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7897b689",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Exemple d'utilisation\n",
+ "dict={'campaign_stats': campaign_stats,\n",
+ " 'campaigns': campaigns,\n",
+ " 'categories': categories,\n",
+ " 'contribution_sites': contribution_sites,\n",
+ " 'contributions': contributions,\n",
+ " 'countries': countries,\n",
+ " 'currencies': currencies,\n",
+ " 'customer_target_mappings': customer_target_mappings,\n",
+ " 'customersplus': customersplus,\n",
+ " 'event_types': event_types,\n",
+ " 'events': events,\n",
+ " 'facilities': facilities,\n",
+ " 'link_stats': link_stats,\n",
+ " 'pricing_formulas': pricing_formulas,\n",
+ " 'product_packs': product_packs,\n",
+ " 'products': products,\n",
+ " 'products_groups': products_groups,\n",
+ " 'purchases': purchases,\n",
+ " 'representation_category_capacities': representation_category_capacities,\n",
+ " 'representations': representations,\n",
+ " 'seasons': seasons,\n",
+ " 'structure_tag_mappings': structure_tag_mappings,\n",
+ " 'suppliers': suppliers,\n",
+ " 'tags': tags,\n",
+ " 'target_types': target_types,\n",
+ " 'targets': targets,\n",
+ " 'tickets': tickets}\n",
+ "\n",
+ "calculer_proportion_valeurs_manquantes_et_exporter(dict, 'proportion_valeurs_manquantes_ent1.xlsx')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "514273f4",
+ "metadata": {},
+ "source": [
+ "## Entreprise 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "69b8f59a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "BUCKET = \"bdc2324-data/3\"\n",
+ "fs.ls(BUCKET)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9b4c005f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dic_base_ent3=['campaign_stats','campaigns','categories','consumptions','contribution_sites','contributions','countries','currencies','customer_target_mappings','customersplus','event_types','events','facilities','link_stats','pricing_formulas','product_packs','products','products_groups','purchases','representation_category_capacities','representations','seasons','structure_tag_mappings','suppliers','tags','target_types','targets','tickets']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "aae542d6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dic_base_ent3=['campaign_stats','campaigns','categories','consumptions','contribution_sites','contributions','countries','currencies','customer_target_mappings','customersplus','event_types','events','facilities','link_stats','pricing_formulas','product_packs','products','products_groups','purchases','representation_category_capacities','representations','seasons','structure_tag_mappings','suppliers','tags','target_types','targets','tickets']\n",
+ "for nom_base in dic_base_ent2:\n",
+ " FILE_PATH_S3_fanta = 'bdc2324-data/3/3' + nom_base + '.csv'\n",
+ " with fs.open(FILE_PATH_S3_fanta, mode=\"rb\") as file_in:\n",
+ " globals()[nom_base] = pd.read_csv(file_in, sep=\",\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d4b2df76",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dict4={'campaign_stats': campaign_stats,\n",
+ " 'campaigns': campaigns,\n",
+ " 'categories': categories,\n",
+ " 'consumptions': consumptions,\n",
+ " 'contribution_sites': contribution_sites,\n",
+ " 'contributions': contributions,\n",
+ " 'countries': countries,\n",
+ " 'currencies': currencies,\n",
+ " 'customer_target_mappings': customer_target_mappings,\n",
+ " 'customersplus': customersplus,\n",
+ " 'event_types': event_types,\n",
+ " 'events': events,\n",
+ " 'facilities': facilities,\n",
+ " 'link_stats': link_stats,\n",
+ " 'pricing_formulas': pricing_formulas,\n",
+ " 'product_packs': product_packs,\n",
+ " 'products': products,\n",
+ " 'products_groups': products_groups,\n",
+ " 'purchases': purchases,\n",
+ " 'representation_category_capacities': representation_category_capacities,\n",
+ " 'representations': representations,\n",
+ " 'seasons': seasons,\n",
+ " 'structure_tag_mappings': structure_tag_mappings,\n",
+ " 'suppliers': suppliers,\n",
+ " 'tags': tags,\n",
+ " 'target_types': target_types,\n",
+ " 'targets': targets,\n",
+ " 'tickets': tickets}"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}