generate train and test dataset for all companies
This commit is contained in:
parent
44fef6d618
commit
79dc4f13ff
|
@ -6,6 +6,7 @@ import os
|
|||
import s3fs
|
||||
import re
|
||||
import warnings
|
||||
from datetime import date, timedelta, datetime
|
||||
|
||||
# Create filesystem object
|
||||
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
|
||||
|
@ -18,6 +19,47 @@ exec(open('0_KPI_functions.py').read())
|
|||
# Ignore warning
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
|
||||
def display_covering_time(df, company, datecover):
|
||||
"""
|
||||
This function draws the time coverage of each company
|
||||
"""
|
||||
min_date = df['purchase_date'].min().strftime("%Y-%m-%d")
|
||||
max_date = df['purchase_date'].max().strftime("%Y-%m-%d")
|
||||
datecover[company] = [datetime.strptime(min_date, "%Y-%m-%d") + timedelta(days=x) for x in range((datetime.strptime(max_date, "%Y-%m-%d") - datetime.strptime(min_date, "%Y-%m-%d")).days)]
|
||||
print(f'Couverture Company {company} : {min_date} - {max_date}')
|
||||
return datecover
|
||||
|
||||
|
||||
def compute_time_intersection(datecover):
|
||||
"""
|
||||
This function returns the time coverage for all companies
|
||||
"""
|
||||
timestamps_sets = [set(timestamps) for timestamps in datecover.values()]
|
||||
intersection = set.intersection(*timestamps_sets)
|
||||
intersection_list = list(intersection)
|
||||
formated_dates = [dt.strftime("%Y-%m-%d") for dt in intersection_list]
|
||||
return sorted(formated_dates)
|
||||
|
||||
|
||||
def df_coverage_modelization(sport, coverage_train = 0.7):
|
||||
"""
|
||||
This function returns start_date, end_of_features and final dates
|
||||
that help to construct train and test datasets
|
||||
"""
|
||||
datecover = {}
|
||||
for company in sport:
|
||||
df_products_purchased_reduced = display_databases(company, file_name = "products_purchased_reduced",
|
||||
datetime_col = ['purchase_date'])
|
||||
datecover = display_covering_time(df_products_purchased_reduced, company, datecover)
|
||||
#print(datecover.keys())
|
||||
dt_coverage = compute_time_intersection(datecover)
|
||||
start_date = dt_coverage[0]
|
||||
end_of_features = dt_coverage[int(0.7 * len(dt_coverage))]
|
||||
final_date = dt_coverage[-1]
|
||||
return start_date, end_of_features, final_date
|
||||
|
||||
|
||||
def dataset_construction(min_date, end_features_date, max_date, directory_path):
|
||||
|
||||
# Import customerplus
|
||||
|
@ -97,32 +139,43 @@ def dataset_construction(min_date, end_features_date, max_date, directory_path):
|
|||
|
||||
## Exportation
|
||||
|
||||
companies = {'musee' : ['1', '2', '3', '4', '101'],
|
||||
'sport': ['5', '6', '7', '8', '9'],
|
||||
'musique' : ['10', '11', '12', '13', '14']}
|
||||
|
||||
type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
|
||||
list_of_comp = companies[type_of_comp]
|
||||
# Dossier d'exportation
|
||||
BUCKET_OUT = "projet-bdc2324-team1/2_Output/Logistique Regression databases - First approach"
|
||||
BUCKET_OUT = f'projet-bdc2324-team1/Generalization/{type_of_comp}'
|
||||
|
||||
# Dataset test
|
||||
dataset_test = dataset_construction(min_date = "2021-08-01", end_features_date = "2023-08-01", max_date = "2023-11-01", directory_path = "1")
|
||||
# Create test dataset and train dataset for sport companies
|
||||
|
||||
# Exportation
|
||||
FILE_KEY_OUT_S3 = "dataset_test.csv"
|
||||
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
|
||||
start_date, end_of_features, final_date = df_coverage_modelization(list_of_comp, coverage_train = 0.7)
|
||||
|
||||
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
||||
dataset_test.to_csv(file_out, index = False)
|
||||
for company in list_of_comp:
|
||||
dataset_test = dataset_construction(min_date = start_date, end_features_date = end_of_features,
|
||||
max_date = final_date, directory_path = company)
|
||||
|
||||
print("Exportation dataset test : SUCCESS")
|
||||
# Exportation
|
||||
FILE_KEY_OUT_S3 = "dataset_test" + company + ".csv"
|
||||
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
|
||||
|
||||
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
||||
dataset_test.to_csv(file_out, index = False)
|
||||
|
||||
print("Exportation dataset test : SUCCESS")
|
||||
|
||||
# Dataset train
|
||||
dataset_train = dataset_construction(min_date = "2021-05-01", end_features_date = "2023-05-01", max_date = "2023-08-01", directory_path = "1")
|
||||
|
||||
# Export
|
||||
FILE_KEY_OUT_S3 = "dataset_train.csv"
|
||||
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
|
||||
|
||||
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
||||
dataset_train.to_csv(file_out, index = False)
|
||||
dataset_train = dataset_construction(min_date = start_date, end_features_date = end_of_features,
|
||||
max_date = final_date, directory_path = company)
|
||||
# Export
|
||||
FILE_KEY_OUT_S3 = "dataset_train" + company + ".csv"
|
||||
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
|
||||
|
||||
print("Exportation dataset train : SUCCESS")
|
||||
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
||||
dataset_train.to_csv(file_out, index = False)
|
||||
|
||||
print("Exportation dataset train : SUCCESS")
|
||||
|
||||
|
||||
print("FIN DE LA GENERATION DES DATASETS : SUCCESS")
|
||||
|
|
Loading…
Reference in New Issue
Block a user