diff --git a/Clean-Notebook.ipynb b/Exploration_billet_AJ.ipynb similarity index 97% rename from Clean-Notebook.ipynb rename to Exploration_billet_AJ.ipynb index 1f70494..f8931c2 100644 --- a/Clean-Notebook.ipynb +++ b/Exploration_billet_AJ.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 1, "id": "15103481-8d74-404c-aa09-7601fe7730da", "metadata": {}, "outputs": [], @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "id": "5d83bb1a-d341-446e-91f6-1c428607f6d4", "metadata": {}, "outputs": [], @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 3, "id": "699664b9-eee4-4f8d-a207-e524526560c5", "metadata": {}, "outputs": [], @@ -84,7 +84,7 @@ } ], "source": [ - "liste_database_select = ['suppliers', 'ticket', 'purchase', 'consumption', 'customer', 'event', 'target', 'prod', 'campa']\n", + "liste_database_select = ['suppliers', 'ticket', 'purchase', 'consumption', 'type_ofs']\n", "\n", "# Filtrer la liste pour les éléments contenant au moins un élément de la liste à tester\n", "liste_database_filtered = [element for element in liste_database if any(element_part in element for element_part in liste_database_select)]\n", @@ -124,50 +124,6 @@ " globals()[nom_dataframe] = df" ] }, - { - "cell_type": "code", - "execution_count": 25, - "id": "7d1da9df-f423-4a9f-a2a6-6d8ceeab1c34", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "_\n", - "__\n", - "___\n", - "df\n", - "df1_purchases\n", - "df1_suppliers\n", - "df1_tickets\n", - "dataframe\n", - "_7\n", - "_10\n", - "_11\n", - "_18\n", - "_20\n", - "df1_customer_target_mappings\n", - "df1_customersplus\n", - "df1_event_types\n", - "df1_events\n", - "df1_target_types\n", - "df1_targets\n" - ] - } - ], - "source": [ - "# Obtenir toutes les variables globales\n", - "variables_globales = globals()\n", - "\n", - "# Filtrer les variables pour obtenir uniquement les DataFrames\n", - "dataframes = {nom: variable for nom, variable in variables_globales.items() if isinstance(variable, pd.DataFrame)}\n", - "\n", - "# Afficher les noms et les DataFrames\n", - "for nom, dataframe in dataframes.items():\n", - " print(f\"{nom}\")" - ] - }, { "cell_type": "markdown", "id": "78453f3c-4f89-44ed-a6c6-2a7443b72b52", @@ -407,97 +363,22 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "id": "6d7f338e-e4d3-422b-9cdc-dec967c0b28e", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
id0.0
name0.0
manually_added0.0
label100.0
itr100.0
updated_at0.0
created_at0.0
commission100.0
identifier0.0
\n", - "
" - ], - "text/plain": [ - " 0\n", - "id 0.0\n", - "name 0.0\n", - "manually_added 0.0\n", - "label 100.0\n", - "itr 100.0\n", - "updated_at 0.0\n", - "created_at 0.0\n", - "commission 100.0\n", - "identifier 0.0" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "pd.DataFrame(df1_suppliers.isna().mean()*100)" + "df1_suppliers.isna().mean()*100" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "3c645ab7-16bf-4054-9ae2-15a8c32e29c6", + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "id": "676a9869-9a8b-4cd2-8b1c-0644b5229c72",