diff --git a/0_6_segmentation_V2TP.py b/0_6_segmentation_V2TP.py index 38d3dc6..77eed3d 100644 --- a/0_6_segmentation_V2TP.py +++ b/0_6_segmentation_V2TP.py @@ -21,7 +21,7 @@ import matplotlib.pyplot as plt ################################### # choose the type of companies for which you want to run the pipeline -activity = "sport" +type_of_activity = "sport" # choose the model we use for the segmentation model_name = "LogisticRegression_Benchmark" @@ -76,7 +76,7 @@ X_test_business_fig = df_business_fig(X_test_segment, "segment", business_var) # save histogram to Minio hist_segment_business_KPIs(X_test_business_fig, "segment", "size", "nb_tickets", "nb_purchases", "total_amount", "nb_campaigns") -save_file_s3_mp(File_name = "segments_business_KPIs_", type_of_activity = activity) +save_file_s3_mp(File_name = "segments_business_KPIs_", type_of_activity) ### 2. description of marketing personae (spider chart) @@ -95,5 +95,5 @@ X_test_segment_caract = pd.concat([X_test_segment_pb, X_test_segment_mp[['share_ # visualization and save the graphic to the MinIo categories = list(X_test_segment_caract.drop("segment", axis=1).columns) radar_mp_plot_all(df=X_test_segment_caract, categories=categories) -save_file_s3_mp(File_name = "spider_chart_all_", type_of_activity = activity) +save_file_s3_mp(File_name = "spider_chart_all_", type_of_activity)