diff --git a/0_5_Machine_Learning.py b/0_5_Machine_Learning.py index 1700766..79ee8c1 100644 --- a/0_5_Machine_Learning.py +++ b/0_5_Machine_Learning.py @@ -63,6 +63,7 @@ model_result = pd.DataFrame(columns= ["Model", "Accuracy", "Recall", "F1_score", # Naive Bayes model_result = pipeline_naiveBayes_benchmark(X_train, y_train, X_test, y_test, model_result) +save_result_set_s3(model_result , "resultat", type_of_activity, type_of_model) print("Naive Bayes : Done") # Logistic Regression @@ -70,12 +71,16 @@ model_result = pipeline_logreg_benchmark(X_train, y_train, X_test, y_test, model print("Logistic : Done") model_result = pipeline_logreg_cv(X_train, y_train, X_test, y_test, model_result) +save_result_set_s3(model_result , "resultat", type_of_activity, type_of_model) print("Logistic CV : Done") # Random Forest model_result = pipeline_randomF_benchmark(X_train, y_train, X_test, y_test, model_result) +save_result_set_s3(model_result , "resultat", type_of_activity, type_of_model) print("Random Forest : Done") + model_result = pipeline_randomF_cv(X_train, y_train, X_test, y_test, model_result) +save_result_set_s3(model_result , "resultat", type_of_activity, type_of_model) print("Random Forest CV: Done") # Save result