diff --git a/Sport/Modelization/3_logit_cross_val_sport.ipynb b/Sport/Modelization/3_logit_cross_val_sport.ipynb index cf835b7..ef23062 100644 --- a/Sport/Modelization/3_logit_cross_val_sport.ipynb +++ b/Sport/Modelization/3_logit_cross_val_sport.ipynb @@ -221,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 96, "id": "639b432a-c39c-4bf8-8ee2-e136d156e0dd", "metadata": {}, "outputs": [ @@ -231,7 +231,7 @@ "{0.0: 0.5837086520288036, 1.0: 3.486549107420539}" ] }, - "execution_count": 9, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } @@ -247,7 +247,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 97, "id": "34644a00-85a5-41c9-98df-41178cb3ac69", "metadata": {}, "outputs": [ @@ -537,7 +537,7 @@ "[224213 rows x 14 columns]" ] }, - "execution_count": 8, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } @@ -548,7 +548,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 98, "id": "295676df-36ac-43d8-8b31-49ff08efd6e7", "metadata": {}, "outputs": [], @@ -586,7 +586,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 99, "id": "f46fb56e-c908-40b4-868f-9684d1ae01c2", "metadata": {}, "outputs": [ @@ -606,7 +606,7 @@ "dtype: int64" ] }, - "execution_count": 80, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -617,7 +617,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 100, "id": "e729781b-4d65-42c5-bdc5-82b4d653aaf0", "metadata": {}, "outputs": [], @@ -630,7 +630,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 101, "id": "a7ebbe6f-70ba-4276-be18-f10e7bfd7423", "metadata": {}, "outputs": [], @@ -666,7 +666,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 102, "id": "2334eb51-e6ea-4fd0-89ce-f54cd474d332", "metadata": {}, "outputs": [], @@ -701,7 +701,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 103, "id": "83917b97-4d9b-4e3c-ba27-1e546ce885d3", "metadata": {}, "outputs": [], @@ -738,14 +738,14 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 104, "id": "ba4cde9f-a614-4a43-81b9-e16e78aa6c4c", "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
Pipeline(steps=[('preprocessor',\n",
+       "
Pipeline(steps=[('preprocessor',\n",
        "                 ColumnTransformer(transformers=[('num',\n",
        "                                                  Pipeline(steps=[('scaler',\n",
        "                                                                   StandardScaler())]),\n",
@@ -1171,7 +1171,7 @@
        "                ('logreg',\n",
        "                 LogisticRegression(class_weight={0.0: 0.5837086520288036,\n",
        "                                                  1.0: 3.486549107420539},\n",
-       "                                    max_iter=5000, solver='saga'))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.