completed CA projection
This commit is contained in:
parent
cf0b33c940
commit
d3e13f4c56
|
@ -4,47 +4,55 @@ from pandas import DataFrame
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import os
|
import os
|
||||||
import s3fs
|
import s3fs
|
||||||
import re
|
|
||||||
from sklearn.linear_model import LogisticRegression
|
|
||||||
from sklearn.ensemble import RandomForestClassifier
|
|
||||||
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, recall_score
|
|
||||||
from sklearn.utils import class_weight
|
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
|
||||||
from sklearn.pipeline import Pipeline
|
|
||||||
from sklearn.compose import ColumnTransformer
|
|
||||||
from sklearn.preprocessing import OneHotEncoder
|
|
||||||
from sklearn.impute import SimpleImputer
|
|
||||||
from sklearn.model_selection import GridSearchCV
|
|
||||||
from sklearn.preprocessing import StandardScaler, MaxAbsScaler, MinMaxScaler
|
|
||||||
from sklearn.metrics import make_scorer, f1_score, balanced_accuracy_score
|
|
||||||
import seaborn as sns
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score
|
|
||||||
from sklearn.exceptions import ConvergenceWarning, DataConversionWarning
|
|
||||||
from sklearn.naive_bayes import GaussianNB
|
|
||||||
from scipy.optimize import fsolve
|
from scipy.optimize import fsolve
|
||||||
import pickle
|
import pickle
|
||||||
import warnings
|
import warnings
|
||||||
import io
|
import io
|
||||||
|
|
||||||
|
# importation of functions defined
|
||||||
|
from utils_CA_segment import *
|
||||||
|
|
||||||
|
# Create filesystem object
|
||||||
|
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
|
||||||
|
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
|
||||||
|
|
||||||
# define type of activity
|
# define type of activity
|
||||||
type_of_activity = "sport"
|
type_of_activity = "sport"
|
||||||
PATH = f"projet-bdc2324-team1/Output_expected_CA/{type_of_activity}/"
|
PATH = f"projet-bdc2324-team1/Output_expected_CA/{type_of_activity}/"
|
||||||
|
|
||||||
|
# type of model for the score
|
||||||
|
type_of_model = "LogisticRegression_cv"
|
||||||
|
|
||||||
|
# load train and test sets
|
||||||
|
dataset_train, dataset_test = load_train_test(type_of_activity)
|
||||||
|
|
||||||
|
# make features - define X train and X test
|
||||||
|
X_train, X_test, y_train, y_test = features_target_split(dataset_train, dataset_test)
|
||||||
|
|
||||||
|
# choose model - logit cross validated
|
||||||
|
model = load_model(type_of_activity, type_of_model)
|
||||||
|
|
||||||
|
# create table X test segment from X test
|
||||||
|
X_test_segment = df_segment(X_test, y_test, model)
|
||||||
|
|
||||||
# comparison with bias of the train set - X train to be defined
|
# comparison with bias of the train set - X train to be defined
|
||||||
X_train_score = logit_cv.predict_proba(X_train)[:, 1]
|
X_train_score = model.predict_proba(X_train)[:, 1]
|
||||||
|
|
||||||
bias_train_set = find_bias(odd_ratios = odd_ratio(adjust_score_1(X_train_score)),
|
bias_train_set = find_bias(odd_ratios = odd_ratio(adjust_score_1(X_train_score)),
|
||||||
y_objective = y_train["y_has_purchased"].sum(),
|
y_objective = y_train["y_has_purchased"].sum(),
|
||||||
initial_guess=6)
|
initial_guess=6)
|
||||||
|
|
||||||
|
# create a score adjusted with the bias computed
|
||||||
score_adjusted_train = adjusted_score(odd_ratio(adjust_score_1(X_test_segment["score"])), bias = bias_train_set)
|
score_adjusted_train = adjusted_score(odd_ratio(adjust_score_1(X_test_segment["score"])), bias = bias_train_set)
|
||||||
X_test_segment["score_adjusted"] = score_adjusted_train
|
X_test_segment["score_adjusted"] = score_adjusted_train
|
||||||
|
|
||||||
|
|
||||||
# plot adjusted scores and save (to be tested)
|
### 1. plot adjusted scores and save (to be tested)
|
||||||
plot_hist_scores(X_test_segment, score = "score", score_adjusted = "score_adjusted", type_of_activity = type_of_activity)
|
plot_hist_scores(X_test_segment, score = "score", score_adjusted = "score_adjusted", type_of_activity = type_of_activity)
|
||||||
|
save_file_s3_ca("hist_score_adjusted_", type_of_activity)
|
||||||
|
|
||||||
|
"""
|
||||||
image_buffer = io.BytesIO()
|
image_buffer = io.BytesIO()
|
||||||
plt.savefig(image_buffer, format='png')
|
plt.savefig(image_buffer, format='png')
|
||||||
image_buffer.seek(0)
|
image_buffer.seek(0)
|
||||||
|
@ -53,27 +61,33 @@ FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".png"
|
||||||
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
|
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
|
||||||
s3_file.write(image_buffer.read())
|
s3_file.write(image_buffer.read())
|
||||||
plt.close()
|
plt.close()
|
||||||
|
"""
|
||||||
|
|
||||||
# comparison between score and adjusted score
|
### 2. comparison between score and adjusted score
|
||||||
X_test_table_adjusted_scores = (100 * X_test_segment.groupby("quartile")[["score","score_adjusted", "has_purchased"]].mean()).round(2).reset_index()
|
X_test_table_adjusted_scores = (100 * X_test_segment.groupby("quartile")[["score","score_adjusted", "has_purchased"]].mean()).round(2).reset_index()
|
||||||
X_test_table_adjusted_scores = X_test_table_adjusted_scores.rename(columns = {col : f"{col} (%)" for col in X_test_table_adjusted_scores.columns if col in ["score","score_adjusted", "has_purchased"]})
|
X_test_table_adjusted_scores = X_test_table_adjusted_scores.rename(columns = {col : f"{col} (%)" for col in X_test_table_adjusted_scores.columns if col in ["score","score_adjusted", "has_purchased"]})
|
||||||
|
|
||||||
file_name = "table_adjusted_score"
|
# save table
|
||||||
|
file_name = "table_adjusted_score_"
|
||||||
FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".csv"
|
FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".csv"
|
||||||
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
||||||
X_test_table_adjusted_scores.to_csv(file_out, index = False)
|
X_test_table_adjusted_scores.to_csv(file_out, index = False)
|
||||||
|
|
||||||
|
|
||||||
# project revenue
|
# project revenue
|
||||||
X_test_segment = project_tickets_CA (X_test_segment, "nb_tickets", "total_amount", "score_adjusted", duration_ref=1.5, duration_projection=1)
|
X_test_segment = project_tickets_CA (X_test_segment, "nb_tickets", "total_amount", "score_adjusted", duration_ref=17, duration_projection=12)
|
||||||
|
|
||||||
|
|
||||||
# table summarizing projections
|
### 3. table summarizing projections (nb tickets, revenue)
|
||||||
X_test_expected_CA = round(summary_expected_CA(df=X_test_segment, segment="quartile", nb_tickets_expected="nb_tickets_expected", total_amount_expected="total_amount_expected", total_amount="total_amount"),2)
|
X_test_expected_CA = round(summary_expected_CA(df=X_test_segment, segment="quartile", nb_tickets_expected="nb_tickets_expected", total_amount_expected="total_amount_expected", total_amount="total_amount"),2)
|
||||||
|
|
||||||
file_name = "table_expected_CA"
|
# rename columns
|
||||||
|
mapping_dict = {col: col.replace("perct", "(%)").replace("_", " ") for col in X_test_expected_CA.columns}
|
||||||
|
X_test_expected_CA = X_test_expected_CA.rename(columns=mapping_dict)
|
||||||
|
|
||||||
|
# save table
|
||||||
|
file_name = "table_expected_CA_"
|
||||||
FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".csv"
|
FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".csv"
|
||||||
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
||||||
X_test_expected_CA.to_csv(file_out, index = False)
|
X_test_expected_CA.to_csv(file_out, index = False)
|
||||||
|
|
||||||
|
|
||||||
|
|
File diff suppressed because one or more lines are too long
|
@ -1,3 +1,83 @@
|
||||||
|
# importations
|
||||||
|
import pandas as pd
|
||||||
|
from pandas import DataFrame
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import s3fs
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from scipy.optimize import fsolve
|
||||||
|
import pickle
|
||||||
|
import warnings
|
||||||
|
import io
|
||||||
|
|
||||||
|
# functions
|
||||||
|
|
||||||
|
def load_train_test(type_of_activity):
|
||||||
|
BUCKET = f"projet-bdc2324-team1/Generalization/{type_of_activity}"
|
||||||
|
File_path_train = BUCKET + "/Train_set.csv"
|
||||||
|
File_path_test = BUCKET + "/Test_set.csv"
|
||||||
|
|
||||||
|
with fs.open( File_path_train, mode="rb") as file_in:
|
||||||
|
dataset_train = pd.read_csv(file_in, sep=",")
|
||||||
|
# dataset_train['y_has_purchased'] = dataset_train['y_has_purchased'].fillna(0)
|
||||||
|
|
||||||
|
with fs.open(File_path_test, mode="rb") as file_in:
|
||||||
|
dataset_test = pd.read_csv(file_in, sep=",")
|
||||||
|
# dataset_test['y_has_purchased'] = dataset_test['y_has_purchased'].fillna(0)
|
||||||
|
|
||||||
|
return dataset_train, dataset_test
|
||||||
|
|
||||||
|
|
||||||
|
def features_target_split(dataset_train, dataset_test):
|
||||||
|
|
||||||
|
features_l = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max',
|
||||||
|
'time_between_purchase', 'nb_tickets_internet', 'fidelity', 'is_email_true', 'opt_in', #'is_partner',
|
||||||
|
'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened']
|
||||||
|
|
||||||
|
# we suppress fidelity, time between purchase, and gender other (colinearity issue)
|
||||||
|
"""
|
||||||
|
features_l = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max',
|
||||||
|
'purchase_date_min', 'purchase_date_max', 'nb_tickets_internet', 'is_email_true',
|
||||||
|
'opt_in', 'gender_female', 'gender_male', 'nb_campaigns', 'nb_campaigns_opened']
|
||||||
|
"""
|
||||||
|
|
||||||
|
X_train = dataset_train[features_l]
|
||||||
|
y_train = dataset_train[['y_has_purchased']]
|
||||||
|
|
||||||
|
X_test = dataset_test[features_l]
|
||||||
|
y_test = dataset_test[['y_has_purchased']]
|
||||||
|
|
||||||
|
return X_train, X_test, y_train, y_test
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(type_of_activity, model):
|
||||||
|
BUCKET = f"projet-bdc2324-team1/Output_model/{type_of_activity}/{model}/"
|
||||||
|
filename = model + '.pkl'
|
||||||
|
file_path = BUCKET + filename
|
||||||
|
with fs.open(file_path, mode="rb") as f:
|
||||||
|
model_bytes = f.read()
|
||||||
|
|
||||||
|
model = pickle.loads(model_bytes)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def df_segment(df, y, model) :
|
||||||
|
|
||||||
|
y_pred = model.predict(df)
|
||||||
|
y_pred_prob = model.predict_proba(df)[:, 1]
|
||||||
|
|
||||||
|
df_segment = df
|
||||||
|
|
||||||
|
df_segment["has_purchased"] = y
|
||||||
|
df_segment["has_purchased_estim"] = y_pred
|
||||||
|
df_segment["score"] = y_pred_prob
|
||||||
|
df_segment["quartile"] = np.where(df_segment['score']<0.25, '1',
|
||||||
|
np.where(df_segment['score']<0.5, '2',
|
||||||
|
np.where(df_segment['score']<0.75, '3', '4')))
|
||||||
|
|
||||||
|
return df_segment
|
||||||
|
|
||||||
|
|
||||||
def odd_ratio(score) :
|
def odd_ratio(score) :
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
|
@ -152,3 +232,14 @@ def summary_expected_CA(df, segment, nb_tickets_expected, total_amount_expected,
|
||||||
df_expected_CA["pace_purchase"] = df_drop_null_pace.groupby(segment)[pace_purchase].mean().values
|
df_expected_CA["pace_purchase"] = df_drop_null_pace.groupby(segment)[pace_purchase].mean().values
|
||||||
|
|
||||||
return df_expected_CA
|
return df_expected_CA
|
||||||
|
|
||||||
|
|
||||||
|
def save_file_s3_ca(File_name, type_of_activity):
|
||||||
|
image_buffer = io.BytesIO()
|
||||||
|
plt.savefig(image_buffer, format='png')
|
||||||
|
image_buffer.seek(0)
|
||||||
|
PATH = f"projet-bdc2324-team1/Output_expected_CA/{type_of_activity}/"
|
||||||
|
FILE_PATH_OUT_S3 = PATH + File_name + type_of_activity + '.png'
|
||||||
|
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
|
||||||
|
s3_file.write(image_buffer.read())
|
||||||
|
plt.close()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user