From e96e5a2b089e0b8ff858108e3273d09df400835c Mon Sep 17 00:00:00 2001 From: frodrigue-ensae Date: Sun, 10 Mar 2024 20:00:29 +0000 Subject: [PATCH] stat --- Spectacle/Stat_desc.ipynb | 497 ++++++-------------------------------- 1 file changed, 79 insertions(+), 418 deletions(-) diff --git a/Spectacle/Stat_desc.ipynb b/Spectacle/Stat_desc.ipynb index a80db6c..551ee03 100644 --- a/Spectacle/Stat_desc.ipynb +++ b/Spectacle/Stat_desc.ipynb @@ -6592,7 +6592,7 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 127, "id": "5a08b5a5-7d56-4543-945a-38f6219d831d", "metadata": {}, "outputs": [ @@ -6608,13 +6608,14 @@ } ], "source": [ - "#repartition Chiffre d'affaire selon les compagnie de spectacle\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", "\n", "# Filtrer les données pour inclure uniquement les valeurs positives de total_amount et exclusion des valeur aberrantes\n", "filtered_products_purchased_reduced_spectacle = products_purchased_reduced_spectacle[(products_purchased_reduced_spectacle['total_amount'] > 0) & (products_purchased_reduced_spectacle['total_amount'] <= 255)]\n", "\n", "# Créer le graphique en utilisant les données filtrées\n", - "sns.boxplot(data=filtered_products_purchased_reduced_spectacle, y=\"total_amount\", x=\"number_compagny\", showfliers=False, showmeans=True)\n", + "sns.boxplot(data=filtered_data, y=\"total_amount\", x=\"number_compagny\", showfliers=False, showmeans=True)\n", "\n", "# Titre du graphique\n", "plt.title(\"Boite à moustache du chiffre d'affaire selon les compagnies de spectacles\")\n", @@ -6684,7 +6685,40 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 129, + "id": "9ec6e1c5-f3bc-4041-b32e-b62762246eb7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAHFCAYAAAC3jl5pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSW0lEQVR4nO3deZyNdf/H8fdhZs6shhlm08wYsi8jKZkUY20wFQmpEJG03LaU240hTCmlCClrFPULt+JOZIlQYxlRkmyjGGowgxizXL8/3HNuxyxmda7h9Xw8zoPzvb7nOp/rOue6znu+13WdYzEMwxAAAABMoYyjCwAAAMD/EM4AAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwEQIZwAAACZCOAMAADARwtl1xMfHy9vbW++++66jSwEAALeAEg1n8+bNk8VisbtVqlRJLVq00Jdfflno+VapUkW9e/e23T9+/LhiYmIUHx9f9KKv0bBhQy1btkwjR47U1q1bi33+ZjRx4kQtX768xJ/HYrHo+eefL/Hnyev5Y2Jibuhz9u7dW56envnqm1N933zzjRo3biwPDw9ZLBbb67RkyRLVrVtXbm5uslgsJbItXE/v3r1VpUoVuzaLxaJ58+YVan67du1S8+bN5e3tLYvFoilTpkjKfR3kx5EjR4pUk6Nk7UuPHDlyw5+7RYsWatGixQ19zunTpxf5NSqO/Vhx1CFl35azXs+SEhMTI4vFor/++qvY5vnxxx/btsGiuPbz+0bIafvJaX9V3IqSTW7IyNncuXO1detWbdmyRbNmzVLZsmUVHR2tL774olDzW7ZsmUaNGmW7f/z4cY0dO7bEPpBatmypDz74QN27d9eff/5ZIs9hJjcqnCFvW7du1dNPP227bxiGunbtKmdnZ61YsUJbt25V8+bN9eeff+rJJ59UtWrV9NVXX2nr1q2qUaOGAysvHn369NGJEye0ePFibd26Vd27d891HeRXYGCgtm7dqg4dOpRg5Siqmy2c3QyKK5yZxahRo7Rs2bISfY6iZBOn4i8nu3r16qlx48a2+w888IAqVKigTz75RNHR0QWe3x133FGc5eVL9+7d1b179xv+vLh13XPPPXb3jx8/rtOnT6tTp05q1aqVrf27775TWlqannjiiesGlb///lvu7u4lUm9x27t3r/r166eoqChb2x9//JHjOsgvq9Wabb3mpDStJwAFV61aNUeXkCeHnHPm6uoqFxcXOTs727WfPn1aAwcOVOXKleXi4qKqVatq5MiRSk1Ntet39bDohg0bdNddd0mSnnrqKdvh06uHkLdv364HH3xQPj4+cnV11R133KFPP/00X7WOHTtWTZo0kY+Pj8qVK6dGjRpp9uzZys/vxWcdwvrll1/Url07eXh4KDAwUK+99pokadu2bWrWrJk8PDxUo0YNzZ8/P9s89u7dq4ceekgVKlSQq6urGjZsmK1fboc8NmzYIIvFog0bNtjadu3apY4dO8rPz09Wq1VBQUHq0KGDfv/9d0lXht8vXLig+fPn29Zl1iGNP//8UwMHDlSdOnXk6ekpPz8/tWzZUps2bcpWd2pqqsaNG6fatWvL1dVVvr6+ioyM1JYtW7L1/eijj1S7dm25u7srPDw8x0PeBw4cUI8ePWx1165dW++9916e6z9LSkqK+vXrJ19fX3l6euqBBx7Qr7/+mq1fbsPcWYcI8uOrr75Sq1at5O3tLXd3d9WuXVuxsbHZ+v32229q3769PD09FRwcrKFDh2Z7n1/9Po6JidFtt90mSXr55ZdlsVhs20GzZs0kSd26dbN7vbLef3v27FHbtm3l5eVlCzSXL1/W+PHjVatWLVmtVlWqVElPPfVUvkeG582bp5o1a9peiwULFuTrcb/99pueeuopVa9eXe7u7qpcubKio6O1Z88eu3lbLBalp6drxowZdtt0Tusgv/OVcj6smfX67ty5U126dFGFChVsO27DMDR9+nQ1bNhQbm5uqlChgrp06aJDhw5dd1n//PNP9e/fX8HBwbZ1fO+992rt2rV2/dauXatWrVqpXLlycnd317333qtvvvkmX+tzzpw5Cg8Pl6urq3x8fNSpUyft27fPrk/W+yA/77n8Ksr759ChQ+revbuCgoJktVrl7++vVq1a2UYXqlSpop9++kkbN260vfZZr/OlS5c0dOhQNWzYUN7e3vLx8VHTpk3173//2+458tqP5bY9X7sfzauO3OR3X5OTJUuWqG3btgoMDJSbm5tq166tV155RRcuXMjW9/vvv1d0dLR8fX3l6uqqatWqadCgQdn6nTx5Uo899pi8vb3l7++vPn36KDk52a7Pe++9p/vvv19+fn7y8PBQ/fr1NWnSJKWlpdn6tGjRQitXrtTRo0ftTlPKS1pamoYPH66AgAC5u7urWbNm+uGHH7L1y+/rkZf8ro+r5bS/z+/23qJFC9WrV09xcXG677775O7urqpVq+q1115TZmampPxlk7zckJGzjIwMpaenyzAMnTx5Um+88YYuXLigHj162PpcunRJkZGROnjwoMaOHasGDRpo06ZNio2NVXx8vFauXJnjvBs1aqS5c+fqqaee0r/+9S/b4Yqsnfj69ev1wAMPqEmTJpo5c6a8vb21ePFidevWTX///fd1j30fOXJEzzzzjEJCQiRdCVQvvPCC/vjjD40ePfq6y56WlqbOnTtrwIABeumll/Txxx9rxIgRSklJ0eeff66XX35Zt912m6ZOnarevXurXr16uvPOOyVJ+/fvV0REhPz8/PTuu+/K19dXCxcuVO/evXXy5EkNHz78us9/tQsXLqhNmzYKCwvTe++9J39/fyUmJmr9+vU6d+6cpCuH0lq2bKnIyEjboeNy5cpJuhKeJWnMmDEKCAjQ+fPntWzZMrVo0ULffPONbeeXnp6uqKgobdq0SYMGDVLLli2Vnp6ubdu2KSEhQREREbaaVq5cqbi4OI0bN06enp6aNGmSOnXqpP3796tq1aqSpJ9//lkREREKCQnR5MmTFRAQoNWrV+vFF1/UX3/9pTFjxuS6zIZh6OGHH9aWLVs0evRo3XXXXfruu+/sRmOKy+zZs9WvXz81b95cM2fOlJ+fn3799Vft3bvXrl9aWpoefPBB9e3bV0OHDtW3336rV199Vd7e3rm+p55++mmFh4erc+fOeuGFF9SjRw9ZrVaVK1dOd999t5577jlNnDhRkZGRttdLuvIh+uCDD+qZZ57RK6+8ovT0dGVmZuqhhx7Spk2bNHz4cEVEROjo0aMaM2aMWrRooe3bt8vNzS3X5Zw3b56eeuopPfTQQ5o8ebKSk5MVExOj1NRUlSlj//fetX/EHD9+XL6+vnrttddUqVIlnT59WvPnz1eTJk20a9cu1axZUx06dNDWrVvVtGlTdenSRUOHDpV0ZZvOaR3kd77X07lzZ3Xv3l0DBgywfSA+88wzmjdvnl588UW9/vrrOn36tMaNG6eIiAjt3r1b/v7+uc7vySef1M6dOzVhwgTVqFFDZ8+e1c6dO5WUlGTrs3DhQvXs2VMPPfSQ5s+fL2dnZ73//vtq166dVq9enefoYGxsrP75z3/qscceU2xsrJKSkhQTE6OmTZsqLi5O1atXt/UtzHsuN0V9/7Rv314ZGRmaNGmSQkJC9Ndff2nLli06e/aspCunrXTp0kXe3t6aPn26JNle59TUVJ0+fVrDhg1T5cqVdfnyZa1du1adO3fW3Llz1bNnT0l578fyK686clKQfU3v3r2zffYcOHBA7du316BBg+Th4aFffvlFr7/+un744QetW7fO1m/16tWKjo5W7dq19dZbbykkJERHjhzR119/ne15HnnkEXXr1k19+/bVnj17NGLECElXQn2WgwcPqkePHgoLC5OLi4t2796tCRMm6JdffrH1mz59uvr376+DBw/m+1Bgv379tGDBAg0bNkxt2rTR3r171blzZ9tnTXEpyPq4noJs74mJiXr88cc1dOhQjRkzRsuWLdOIESMUFBSknj17XjebXJdRgubOnWtIynazWq3G9OnT7frOnDnTkGR8+umndu2vv/66Icn4+uuvbW2hoaFGr169bPfj4uIMScbcuXOz1VCrVi3jjjvuMNLS0uzaO3bsaAQGBhoZGRn5Xp6MjAwjLS3NGDdunOHr62tkZmbm2b9Xr16GJOPzzz+3taWlpRmVKlUyJBk7d+60tSclJRlly5Y1hgwZYmvr3r27YbVajYSEBLv5RkVFGe7u7sbZs2cNw/jfej58+LBdv/Xr1xuSjPXr1xuGYRjbt283JBnLly/Ps24PDw+79Zub9PR0Iy0tzWjVqpXRqVMnW/uCBQsMScYHH3yQ5+MlGf7+/kZKSoqtLTEx0ShTpowRGxtra2vXrp1x2223GcnJyXaPf/755w1XV1fj9OnTuT7Hf/7zH0OS8c4779i1T5gwwZBkjBkzxtbWq1cvIzQ0NNs8xowZY1xvUzl37pxRrlw5o1mzZnm+L7LeE9e+z9u3b2/UrFnTru3a+g4fPmxIMt544w27flmv82effZbjc82ZM8eu/ZNPPsn2vjSM/21H126bV8vIyDCCgoKMRo0a2S3nkSNHDGdn5xzXX17S09ONy5cvG9WrVzcGDx5sN02S8dxzz9m15bYO8jvfrMdfva/Ien1Hjx5tN4+tW7cakozJkyfbtR87dsxwc3Mzhg8fnmcNnp6exqBBg3KdfuHCBcPHx8eIjo62a8/IyDDCw8ONu+++29Z27TZ+5swZw83NzWjfvr3dYxMSEgyr1Wr06NHD1laQ91xOmjdvbjRv3tx2vyjvn7/++suQZEyZMiXP56xbt67dc+Ymax/Ut29f44477rCbltt+LLftOaf9aH7rMIyC7WuuJzMz00hLSzM2btxoSDJ2795tm1atWjWjWrVqxsWLF3N9fNYyTpo0ya594MCBhqura677qKzPuAULFhhly5a127d26NAh39v3vn37DEnZtulFixYZkuxel4K8HjnJz/rIaV7X7u8Lsr03b97ckGR8//33dn3r1KljtGvXznY/r2xyPTfksOaCBQsUFxenuLg4/ec//1GvXr303HPPadq0abY+69atk4eHh7p06WL32Ky/LvI7zH+13377Tb/88osef/xxSVdGdLJu7du314kTJ7R///4857Fu3Tq1bt1a3t7eKlu2rJydnTV69GglJSXp1KlT163BYrGoffv2tvtOTk66/fbbFRgYaHfunI+Pj/z8/HT06FG7527VqpWCg4Pt5tm7d2/9/fffBb569Pbbb1eFChX08ssva+bMmfr5558L9HhJmjlzpho1aiRXV1c5OTnJ2dlZ33zzjd2hlP/85z9ydXVVnz59rju/yMhIeXl52e77+/vbrYdLly7pm2++UadOneTu7p7tNbx06ZK2bduW6/zXr18vSbb3QJarR22Lw5YtW5SSkqKBAwded7jfYrFkO9eyQYMGdq99cXrkkUfs7n/55ZcqX768oqOj7dZnw4YNFRAQYHcY/Fr79+/X8ePH1aNHD7vlDA0NtRsRzU16eromTpyoOnXqyMXFRU5OTnJxcdGBAweyHY4riOKYb07ryWKx6IknnrBbTwEBAQoPD89zPUnS3XffrXnz5mn8+PHatm2b3WEi6cp75vTp0+rVq5fd/DMzM/XAAw8oLi4ux0Na0pWRoYsXL2YbfQkODlbLli2z7S+L8z1XlPePj4+PqlWrpjfeeENvvfWWdu3aZTsMlF+fffaZ7r33Xnl6etr2QbNnzy7S+6c4FHVfc+jQIfXo0UMBAQG2z5qsc0izlu3XX3/VwYMH1bdvX7m6ul53ng8++KDd/QYNGujSpUt2n127du3Sgw8+KF9fX9vz9uzZUxkZGfk+JHut3NZF165d5eRUfAfsCro+8lLQ7T0gIEB33323XVtx7sdvSDirXbu2GjdurMaNG+uBBx7Q+++/r7Zt22r48OG2oeykpCQFBARk+2Dz8/OTk5OT3aGA/Dp58qQkadiwYXJ2dra7DRw4UJLyvNT4hx9+UNu2bSVJH3zwgb777jvFxcVp5MiRkqSLFy9etwZ3d/dsbxoXFxf5+Phk6+vi4qJLly7Z7iclJSkwMDBbv6CgINv0gvD29tbGjRvVsGFD/fOf/1TdunUVFBSkMWPGZPvgyMlbb72lZ599Vk2aNNHnn3+ubdu2KS4uTg888IDduvjzzz8VFBSU7RBXTnx9fbO1Wa1W2/ySkpKUnp6uqVOnZnsNs0JvXq9hUlKSnJycsj1PQEDAdWsriKxzbfIzZJ3Te8Jqtdq99sXF3d092+GckydP6uzZs7bzPq++JSYmXnd9Sjmvv/ys0yFDhmjUqFF6+OGH9cUXX+j7779XXFycwsPD87U9leR8r93WTp48KcMw5O/vn209bdu27bpfU7BkyRL16tVLH374oZo2bSofHx/17NlTiYmJtvlLUpcuXbLN//XXX5dhGLZTCa6V9Trktn+4dt9QnO+5orx/LBaLvvnmG7Vr106TJk1So0aNVKlSJb344ov5Oty1dOlSde3aVZUrV9bChQu1detWxcXFqU+fPiWy/RREUfY158+f13333afvv/9e48eP14YNGxQXF6elS5dK+t9nTUH2M1L2/WvWYdms+SUkJOi+++7TH3/8oXfeeUebNm1SXFyc7Xzewm6Tue0nclo/RVHQ9ZGXgm7v1/vsKqobcs5ZTho0aKDVq1fr119/1d133y1fX199//33MgzDLqCdOnVK6enpqlixYoGfI+sxI0aMUOfOnXPsk9e5KIsXL5azs7O+/PJLux3bjfqaCV9fX504cSJb+/HjxyX9b/myarv25N6cdpL169fX4sWLZRiGfvzxR82bN0/jxo2Tm5ubXnnllTzrWbhwoVq0aKEZM2bYtV+7U61UqZI2b96szMzMfAW0vFSoUEFly5bVk08+qeeeey7HPmFhYbk+3tfXV+np6UpKSrLbmLI+IK/m6uqa4wnS+fmuoEqVKkmS7cIKs8hpFK9ixYry9fXVV199leNjrh7JvFbWOsxp/eXUdq2sc6wmTpxo1/7XX3+pfPny1318Sc732nVVsWJFWSwWbdq0KcdzjfI6/yjr8VOmTNGUKVOUkJCgFStW6JVXXtGpU6f01Vdf2bbfqVOn5noFaW7ntGW9DrntHwqzv8yvorx/pCujrLNnz5Z0ZeTj008/VUxMjC5fvqyZM2fm+diFCxcqLCxMS5YssXu9CnJhw9X7y6tfw6J+J1hB9jXXWrdunY4fP64NGzbYXXGdNXiRpbj3M8uXL9eFCxe0dOlShYaG2tqL+rVUV+8nKleubGvPWj9XK8rrUZzro6jbe3Fz2C8EZL34WSu3VatWOn/+fLbgk3UVWF4nxl7710CWmjVrqnr16tq9e7dt5O7aW147EovFIicnJ5UtW9bWdvHiRX300Uf5Xs6iaNWqlW2jvdqCBQvk7u5u26FnXXHy448/2vVbsWJFrvO2WCwKDw/X22+/rfLly2vnzp22abmlf4vFku0N+uOPP2Y7vBoVFaVLly4Vy/cDubu7KzIyUrt27VKDBg1yfA3z+kssMjJSkrRo0SK79o8//jhb3ypVqujUqVO2EQ3pygn1q1evvm6dERER8vb21syZM/N1Ja8jdezYUUlJScrIyMhxfeb1B0vNmjUVGBioTz75xG45jx49muOVuNfK6T20cuVK/fHHH4VfoBKab8eOHWUYhv74448c11P9+vXzPa+QkBA9//zzatOmjW1bu/fee1W+fHn9/PPPue6fXFxccpxf06ZN5ebmpoULF9q1//7777bTIUpKUd4/16pRo4b+9a9/qX79+vneB7m4uNgFs8TExGxXa+Y1j9z2lzl972ZBRkIKsq+5VtbyXPsefv/99+3u16hRQ9WqVdOcOXMKfaXt9Z7XMAx98MEH2foWZF1kXRx27br49NNPlZ6ebtdWkNfjWsW5Popze8+SWzbJjxsycrZ3717bC5KUlKSlS5dqzZo16tSpk23Uo2fPnnrvvffUq1cvHTlyRPXr19fmzZs1ceJEtW/fXq1bt851/tWqVZObm5sWLVqk2rVry9PTU0FBQQoKCtL777+vqKgotWvXTr1791blypV1+vRp7du3Tzt37tRnn32W63w7dOigt956Sz169FD//v2VlJSkN99884Yl6DFjxujLL79UZGSkRo8eLR8fHy1atEgrV67UpEmT5O3tLUm66667VLNmTQ0bNkzp6emqUKGCli1bps2bN9vN78svv9T06dP18MMPq2rVqjIMQ0uXLtXZs2fVpk0bW7/69etrw4YN+uKLLxQYGCgvLy/VrFlTHTt21KuvvqoxY8aoefPm2r9/v8aNG6ewsDC7De6xxx7T3LlzNWDAAO3fv1+RkZHKzMzU999/r9q1axf4++LeeecdNWvWTPfdd5+effZZValSRefOndNvv/2mL774wu5Kpmu1bdtW999/v4YPH64LFy6ocePG+u6773IM2N26ddPo0aPVvXt3vfTSS7p06ZLeffddZWRkXLdGT09PTZ48WU8//bRat26tfv36yd/fX7/99pt2795td36lo3Xv3l2LFi1S+/bt9Y9//EN33323nJ2d9fvvv2v9+vV66KGH1KlTpxwfW6ZMGb366qt6+umn1alTJ/Xr109nz55VTExMvg7fdOzYUfPmzVOtWrXUoEED7dixQ2+88UaRD0uUxHzvvfde9e/fX0899ZS2b9+u+++/Xx4eHjpx4oQ2b96s+vXr69lnn83xscnJyYqMjFSPHj1Uq1YteXl5KS4uTl999ZVtFN/T01NTp05Vr169dPr0aXXp0kV+fn76888/tXv3bv3555/ZRqmzlC9fXqNGjdI///lP9ezZU4899piSkpI0duxYubq65nkFc1EV5f3z448/6vnnn9ejjz6q6tWry8XFRevWrdOPP/5oN3KfNcK/ZMkSVa1aVa6urqpfv746duyopUuXauDAgerSpYuOHTumV199VYGBgTpw4IDdc+W2H2vfvr18fHzUt29fjRs3Tk5OTpo3b56OHTuWrd7c6shJQfY114qIiFCFChU0YMAAjRkzRs7Ozlq0aJF2796dre97772n6Oho3XPPPRo8eLBCQkKUkJCg1atXZwtD19OmTRu5uLjoscce0/Dhw3Xp0iXNmDFDZ86cyXFdLF26VDNmzNCdd96pMmXK2H1/6dVq166tJ554QlOmTJGzs7Nat26tvXv36s0338x2mkVBXo+cFNf6KMr2npu8ssl1FfgSggLI6WpNb29vo2HDhsZbb71lXLp0ya5/UlKSMWDAACMwMNBwcnIyQkNDjREjRmTrd+3VmoZx5QqiWrVqGc7OztmujNm9e7fRtWtXw8/Pz3B2djYCAgKMli1bGjNnzrzuMsyZM8eoWbOmYbVajapVqxqxsbHG7Nmz83UVSa9evQwPD49s7c2bNzfq1q2brT00NNTo0KGDXduePXuM6Ohow9vb23BxcTHCw8NzvPLj119/Ndq2bWuUK1fOqFSpkvHCCy8YK1eutLta85dffjEee+wxo1q1aoabm5vh7e1t3H333ca8efPs5hUfH2/ce++9hru7uyHJdrVSamqqMWzYMKNy5cqGq6ur0ahRI2P58uU5XuV48eJFY/To0Ub16tUNFxcXw9fX12jZsqWxZcsWWx/lcDVe1nq49vU9fPiw0adPH6Ny5cqGs7OzUalSJSMiIsIYP358tsdf6+zZs0afPn2M8uXLG+7u7kabNm2MX375JccrqFatWmU0bNjQcHNzM6pWrWpMmzYtX1drXv345s2bGx4eHoa7u7tRp04d4/XXX7dNz+09kdNzXFtfYa7WzOm5DOPKVcNvvvmmER4ebri6uhqenp5GrVq1jGeeecY4cODAdZfzww8/tL22NWrUMObMmZPr1a5XO3PmjNG3b1/Dz8/PcHd3N5o1a2Zs2rQp2xWBWcuf36s18zvfvK7W/PPPP3Osec6cOUaTJk0MDw8Pw83NzahWrZrRs2dPY/v27bku56VLl4wBAwYYDRo0MMqVK2e4ubkZNWvWNMaMGWNcuHDBru/GjRuNDh06GD4+Poazs7NRuXJlo0OHDnavZ25Xrn344YdGgwYNDBcXF8Pb29t46KGHjJ9++smuT0HecznJ6bUp7Pvn5MmTRu/evY1atWoZHh4ehqenp9GgQQPj7bffNtLT0239jhw5YrRt29bw8vIyJNm9r1577TWjSpUqhtVqNWrXrm188MEHOS5LbvsxwzCMH374wYiIiDA8PDyMypUrG2PGjDE+/PDDbOs4rzpyUpB9zbW2bNliNG3a1HB3dzcqVapkPP3008bOnTtzvNpv69atRlRUlOHt7W1YrVajWrVqdldG5vaezul99MUXX9hex8qVKxsvvfSS7crTrM8OwzCM06dPG126dDHKly9vWCyW6753UlNTjaFDhxp+fn6Gq6urcc899xhbt27Ncf+e39cjN9dbH/m5WjNLfrb33D7Dc5pnXtkkLxbDMPkxGAAAgFuIw845AwAAQHaEMwAAABMhnAEAAJgI4QwAAMBECGcAAAAmQjgDAAAwEYf9fJOZZGZm6vjx4/Ly8rruj1YDAABzMAxD586dy/fvOZcWhDNd+S264OBgR5cBAAAK4dixY8XyA+hmQTjT/36o99ixY9l+WgIAAJhTSkqKgoOD8/yd7NKIcKb//fhruXLlCGcAAJQyN9spSTfPAVoAAICbAOEMAADARAhnAAAAJkI4AwAAMBHCGQAAgIkQzgAAAEyEcAYAAGAihDMAAAATIZwBAACYCOEMAADARAhnAAAAJkI4AwAAMBHCGQAAgIk4OboAAIDjXbp0SQkJCY4uA9cICQmRq6uro8vADUY4AwAoISFB/fv3d3QZuMasWbNUo0YNR5eBG4xwBgBQSEiIZs2a5egyiuzo0aOaMGGCRo4cqdDQUEeXU2QhISGOLgEO4NBwFhsbq6VLl+qXX36Rm5ubIiIi9Prrr6tmzZq2PoZhaOzYsZo1a5bOnDmjJk2a6L333lPdunVtfVJTUzVs2DB98sknunjxolq1aqXp06frtttuc8RiAUCp4+rqelON0ISGht5Uy4Nbi0MvCNi4caOee+45bdu2TWvWrFF6erratm2rCxcu2PpMmjRJb731lqZNm6a4uDgFBASoTZs2OnfunK3PoEGDtGzZMi1evFibN2/W+fPn1bFjR2VkZDhisQAAAArNoSNnX331ld39uXPnys/PTzt27ND9998vwzA0ZcoUjRw5Up07d5YkzZ8/X/7+/vr444/1zDPPKDk5WbNnz9ZHH32k1q1bS5IWLlyo4OBgrV27Vu3atbvhywUAAFBYpvoqjeTkZEmSj4+PJOnw4cNKTExU27ZtbX2sVquaN2+uLVu2SJJ27NihtLQ0uz5BQUGqV6+erc+1UlNTlZKSYncDAAAwA9OEM8MwNGTIEDVr1kz16tWTJCUmJkqS/P397fr6+/vbpiUmJsrFxUUVKlTItc+1YmNj5e3tbbsFBwcX9+IAAAAUimnC2fPPP68ff/xRn3zySbZpFovF7r5hGNnarpVXnxEjRig5Odl2O3bsWOELBwAAKEamCGcvvPCCVqxYofXr19tdYRkQECBJ2UbATp06ZRtNCwgI0OXLl3XmzJlc+1zLarWqXLlydjcAAAAzcGg4MwxDzz//vJYuXap169YpLCzMbnpYWJgCAgK0Zs0aW9vly5e1ceNGRURESJLuvPNOOTs72/U5ceKE9u7da+sDAABQWjj0as3nnntOH3/8sf7973/Ly8vLNkLm7e0tNzc3WSwWDRo0SBMnTlT16tVVvXp1TZw4Ue7u7urRo4etb9++fTV06FD5+vrKx8dHw4YNU/369W1XbwIAAJQWDg1nM2bMkCS1aNHCrn3u3Lnq3bu3JGn48OG6ePGiBg4caPsS2q+//lpeXl62/m+//bacnJzUtWtX25fQzps3T2XLlr1RiwIAAFAsLIZhGI4uwtFSUlLk7e2t5ORkzj8DgFLs119/Vf/+/flNylvEzfr5bYoLAgAAAHAF4QwAAMBECGcAAAAmQjgDAAAwEYderYnS5dKlS0pISHB0GbhGSEiIXF1dHV0GAKCYEM6QbwkJCerfv7+jy8A1uCoNAG4uhDPkW0hIiGbNmuXoMors6NGjmjBhgkaOHKnQ0FBHl1NkISEhji4BAFCMCGfIN1dX15tqhCY0NPSmWh4AwM2BCwIAAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwEQIZwAAACZCOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwEQIZwAAACZCOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwEQIZwAAACbi0HD27bffKjo6WkFBQbJYLFq+fLnddIvFkuPtjTfesPVp0aJFtundu3e/wUsCAABQPBwazi5cuKDw8HBNmzYtx+knTpywu82ZM0cWi0WPPPKIXb9+/frZ9Xv//fdvRPkAAADFzsmRTx4VFaWoqKhcpwcEBNjd//e//63IyEhVrVrVrt3d3T1bXwAAgNKo1JxzdvLkSa1cuVJ9+/bNNm3RokWqWLGi6tatq2HDhuncuXN5zis1NVUpKSl2NwAAADNw6MhZQcyfP19eXl7q3LmzXfvjjz+usLAwBQQEaO/evRoxYoR2796tNWvW5Dqv2NhYjR07tqRLBgAAKLBSE87mzJmjxx9/XK6urnbt/fr1s/2/Xr16ql69uho3bqydO3eqUaNGOc5rxIgRGjJkiO1+SkqKgoODS6ZwAACAAigV4WzTpk3av3+/lixZct2+jRo1krOzsw4cOJBrOLNarbJarcVdJgAAQJGVinPOZs+erTvvvFPh4eHX7fvTTz8pLS1NgYGBN6AyAACA4uXQkbPz58/rt99+s90/fPiw4uPj5ePjo5CQEElXDjl+9tlnmjx5crbHHzx4UIsWLVL79u1VsWJF/fzzzxo6dKjuuOMO3XvvvTdsOQAAAIqLQ8PZ9u3bFRkZabufdR5Yr169NG/ePEnS4sWLZRiGHnvssWyPd3Fx0TfffKN33nlH58+fV3BwsDp06KAxY8aobNmyN2QZAAAAipNDw1mLFi1kGEaeffr376/+/fvnOC04OFgbN24sidIAAAAcolSccwYAAHCrIJwBAACYCOEMAADARAhnAAAAJkI4AwAAMBHCGQAAgIkQzgAAAEyEcAYAAGAihDMAAAATIZwBAACYCOEMAADARAhnAAAAJkI4AwAAMBHCGQAAgIkQzgAAAEyEcAYAAGAihDMAAAATIZwBAACYCOEMAADARAhnAAAAJkI4AwAAMBHCGQAAgIkQzgAAAEyEcAYAAGAihDMAAAATIZwBAACYCOEMAADARAhnAAAAJkI4AwAAMBHCGQAAgIkQzgAAAEzEoeHs22+/VXR0tIKCgmSxWLR8+XK76b1795bFYrG73XPPPXZ9UlNT9cILL6hixYry8PDQgw8+qN9///0GLgUAAEDxcWg4u3DhgsLDwzVt2rRc+zzwwAM6ceKE7bZq1Sq76YMGDdKyZcu0ePFibd68WefPn1fHjh2VkZFR0uUDAAAUOydHPnlUVJSioqLy7GO1WhUQEJDjtOTkZM2ePVsfffSRWrduLUlauHChgoODtXbtWrVr167YawYAAChJpj/nbMOGDfLz81ONGjXUr18/nTp1yjZtx44dSktLU9u2bW1tQUFBqlevnrZs2ZLrPFNTU5WSkmJ3AwAAMANTh7OoqCgtWrRI69at0+TJkxUXF6eWLVsqNTVVkpSYmCgXFxdVqFDB7nH+/v5KTEzMdb6xsbHy9va23YKDg0t0OQAAAPLLoYc1r6dbt262/9erV0+NGzdWaGioVq5cqc6dO+f6OMMwZLFYcp0+YsQIDRkyxHY/JSWFgAYAAEzB1CNn1woMDFRoaKgOHDggSQoICNDly5d15swZu36nTp2Sv79/rvOxWq0qV66c3Q0AAMAMSlU4S0pK0rFjxxQYGChJuvPOO+Xs7Kw1a9bY+pw4cUJ79+5VRESEo8oEAAAoNIce1jx//rx+++032/3Dhw8rPj5ePj4+8vHxUUxMjB555BEFBgbqyJEj+uc//6mKFSuqU6dOkiRvb2/17dtXQ4cOla+vr3x8fDRs2DDVr1/fdvUmAABAaeLQcLZ9+3ZFRkba7medB9arVy/NmDFDe/bs0YIFC3T27FkFBgYqMjJSS5YskZeXl+0xb7/9tpycnNS1a1ddvHhRrVq10rx581S2bNkbvjwAAABF5dBw1qJFCxmGkev01atXX3cerq6umjp1qqZOnVqcpQEAADhEqTrnDAAA4GZHOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwEQIZwAAACZCOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwEQIZwAAACZCOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwEQIZwAAACZCOAMAADARwhkAAICJFCqcffvtt0pPT8/Wnp6erm+//bbIRQEAANyqChXOIiMjdfr06WztycnJioyMLHJRAAAAt6pChTPDMGSxWLK1JyUlycPDo8hFAQAA3KoKFM46d+6szp07y2KxqHfv3rb7nTt31kMPPaR27dopIiIi3/P79ttvFR0draCgIFksFi1fvtw2LS0tTS+//LLq168vDw8PBQUFqWfPnjp+/LjdPFq0aCGLxWJ36969e0EWCwAAwDScCtLZ29tb0pWRMy8vL7m5udmmubi46J577lG/fv3yPb8LFy4oPDxcTz31lB555BG7aX///bd27typUaNGKTw8XGfOnNGgQYP04IMPavv27XZ9+/Xrp3HjxtnuX10XAABAaVKgcDZ37lxJUpUqVTRs2LAiH8KMiopSVFRUjtO8vb21Zs0au7apU6fq7rvvVkJCgkJCQmzt7u7uCggIKFItAAAAZlCoc87GjBnjkHPLkpOTZbFYVL58ebv2RYsWqWLFiqpbt66GDRumc+fO5Tmf1NRUpaSk2N0AAADMoFDh7OTJk3ryyScVFBQkJycnlS1b1u5WEi5duqRXXnlFPXr0ULly5Wztjz/+uD755BNt2LBBo0aN0ueff67OnTvnOa/Y2Fh5e3vbbsHBwSVSMwAAQEEV6LBmlt69eyshIUGjRo1SYGBgjlduFqe0tDR1795dmZmZmj59ut20q89xq1evnqpXr67GjRtr586datSoUY7zGzFihIYMGWK7n5KSQkADAACmUKhwtnnzZm3atEkNGzYs5nKyS0tLU9euXXX48GGtW7fObtQsJ40aNZKzs7MOHDiQazizWq2yWq0lUS4AAECRFCqcBQcHyzCM4q4lm6xgduDAAa1fv16+vr7XfcxPP/2ktLQ0BQYGlnh9AAAAxa1Q55xNmTJFr7zyio4cOVKkJz9//rzi4+MVHx8vSTp8+LDi4+OVkJCg9PR0denSRdu3b9eiRYuUkZGhxMREJSYm6vLly5KkgwcPaty4cdq+fbuOHDmiVatW6dFHH9Udd9yhe++9t0i1AQAAOEKhRs66deumv//+W9WqVZO7u7ucnZ3tpuf000452b59u93PPWWdB9arVy/FxMRoxYoVkpTt8On69evVokULubi46JtvvtE777yj8+fPKzg4WB06dNCYMWNK7MIEAACAklSocDZlypRiefIWLVrkeXj0eodOg4ODtXHjxmKpBQAAwAwKFc569epV3HUAAABAhQxnCQkJeU6/+tv7AQAAkH+FCmdVqlTJ87vNMjIyCl0QAADAraxQ4WzXrl1299PS0rRr1y699dZbmjBhQrEUBgAAcCsqVDgLDw/P1ta4cWMFBQXpjTfeuO7PJwEAACBnhfqes9zUqFFDcXFxxTlLAACAW0qhRs5SUlLs7huGoRMnTigmJkbVq1cvlsIAAABuRYUKZ+XLl892QYBhGAoODtbixYuLpTAAAIBbUaHC2fr16+3ulylTRpUqVdLtt98uJ6dCzRIAAAAqZDhr3rx5cdcBAAAAFTKcSVd+dHzKlCnat2+fLBaLateurX/84x+qVq1acdYHAABwSynU1ZqrV69WnTp19MMPP6hBgwaqV6+evv/+e9WtW1dr1qwp7hoBAABuGYUaOXvllVc0ePBgvfbaa9naX375ZbVp06ZYigMAALjVFGrkbN++ferbt2+29j59+ujnn38uclEAAAC3qkKFs0qVKik+Pj5be3x8vPz8/IpaEwAAwC2rUIc1+/Xrp/79++vQoUOKiIiQxWLR5s2b9frrr2vo0KHFXSMAAMAto1DhbNSoUfLy8tLkyZM1YsQISVJQUJBiYmL04osvFmuBAAAAt5JChTOLxaLBgwdr8ODBOnfunCTJy8urWAsDgNLk5MmTSk5OdnQZt7yjR4/a/QvH8vb2lr+/v6PLKHWK/HX+hDIAt7qTJ0/qiSd7Ku1yqqNLwX9NmDDB0SVAkrOLVQs/WkBAK6BChbOkpCSNHj1a69ev16lTp5SZmWk3/fTp08VSHACUBsnJyUq7nKqLVZsr09Xb0eUAplDmUrJ0aKOSk5MJZwVUqHD2xBNP6ODBg+rbt6/8/f2z/Qg6ANyKMl29lelR0dFlACjlChXONm/erM2bNys8PLy46wEAALilFep7zmrVqqWLFy8Wdy0AAAC3vEKFs+nTp2vkyJHauHGjkpKSlJKSYncDAABA4RTqsGb58uWVnJysli1b2rUbhiGLxaKMjIxiKQ4AAOBWU6hw9vjjj8vFxUUff/wxFwQAAAAUo0KFs71792rXrl2qWbNmcdcDAABwSyvUOWeNGzfWsWPHirsWAACAW16hRs5eeOEF/eMf/9BLL72k+vXry9nZ2W56gwYNiqU4AACAW02hwlm3bt0kSX369LG1WSwWLggAAAAookKFs8OHDxd3HQAAAFAhzzkLDQ3N85Zf3377raKjoxUUFCSLxaLly5fbTTcMQzExMQoKCpKbm5tatGihn376ya5PamqqXnjhBVWsWFEeHh568MEH9fvvvxdmsQAAAByuUOEsy88//6yvvvpKK1assLvl14ULFxQeHq5p06blOH3SpEl66623NG3aNMXFxSkgIEBt2rTRuXPnbH0GDRqkZcuWafHixdq8ebPOnz+vjh07cmgVAACUSoU6rHno0CF16tRJe/bssZ1rJsn2fWf5DUZRUVGKiorKcZphGJoyZYpGjhypzp07S5Lmz58vf39/ffzxx3rmmWeUnJys2bNn66OPPlLr1q0lSQsXLlRwcLDWrl2rdu3aFWbxAAAAHKZQ4ewf//iHwsLCtHbtWlWtWlU//PCDkpKSNHToUL355pvFUtjhw4eVmJiotm3b2tqsVquaN2+uLVu26JlnntGOHTuUlpZm1ycoKEj16tXTli1bcg1nqampSk1Ntd2/UT85dfLkSSUnJ9+Q50Lujh49avcvHMvb21v+/v6OLgMATKNQ4Wzr1q1at26dKlWqpDJlyqhMmTJq1qyZYmNj9eKLL2rXrl1FLiwxMVGSsu20/f39bR+qiYmJcnFxUYUKFbL1yXp8TmJjYzV27Ngi11gQJ0+e1BNP9lTa5dTrd8YNMWHCBEeXAEnOLlYt/GgBAQ0A/qtQ4SwjI0Oenp6SpIoVK+r48eOqWbOmQkNDtX///mIt8Nqfhsr6uo68XK/PiBEjNGTIENv9lJQUBQcHF63Q60hOTlba5VRdrNpcma7eJfpcQGlR5lKydGijkpOTCWcA8F+FCmf16tXTjz/+qKpVq6pJkyaaNGmSXFxcNGvWLFWtWrVYCgsICJB0ZXQsMDDQ1n7q1CnbTjwgIECXL1/WmTNn7EbPTp06pYiIiFznbbVaZbVai6XOgsp09VamR0WHPDcAADC/Ql2t+a9//UuZmZmSpPHjx+vo0aO67777tGrVKr377rvFUlhYWJgCAgK0Zs0aW9vly5e1ceNGW/C688475ezsbNfnxIkT2rt3b57hDAAAwKwKNXJ29Yn2VatW1c8//6zTp0+rQoUKdocTf//9dwUFBalMmZwz4Pnz5/Xbb7/Z7h8+fFjx8fHy8fFRSEiIBg0apIkTJ6p69eqqXr26Jk6cKHd3d/Xo0UPSlROJ+/btq6FDh8rX11c+Pj4aNmyY6tevb7t6EwAAoDQpVDjLiY+PT7a2OnXqKD4+PtdDndu3b1dkZKTtftZ5YL169dK8efM0fPhwXbx4UQMHDtSZM2fUpEkTff311/Ly8rI95u2335aTk5O6du2qixcvqlWrVpo3b57Kli1bXIsGAABwwxRbOMtJ1vef5aZFixZ59rFYLIqJiVFMTEyufVxdXTV16lRNnTq1sGUCAACYRpF+IQAAAADFi3AGAABgIoQzAAAAEynRcHa9L4sFAACAvRINZ9e7IAAAAAD2SvRqzZ9//llBQUEl+RQAAAA3lXyHs86dO+d7pkuXLpWkEv+9SgAAgJtNvsOZtzc/1g0AAFDS8h3O5s6dW5J1AAAAQHyVBgAAgKkU+oKA//u//9Onn36qhIQEXb582W7azp07i1wYAADArahQI2fvvvuunnrqKfn5+WnXrl26++675evrq0OHDikqKqq4awQAALhlFCqcTZ8+XbNmzdK0adPk4uKi4cOHa82aNXrxxReVnJxc3DUCAADcMgoVzhISEhQRESFJcnNz07lz5yRJTz75pD755JPiqw4AAOAWU6hwFhAQoKSkJElSaGiotm3bJkk6fPgwvwoAAABQBIUKZy1bttQXX3whSerbt68GDx6sNm3aqFu3burUqVOxFggAQH5lehzR5dvnKNPjiKNLAQqtUFdrzpo1S5mZmZKkAQMGyMfHR5s3b1Z0dLQGDBhQrAUCAJAfhgxl+G+SXJOU4b9JlkOhssji6LKAAitUOPv999/tfpqpa9eu6tq1qwzD0LFjxxQSElJsBQIAkB+G5xEZ7olX/u+eKMPziCznwxxcFVBwhTqsGRYWpj///DNb++nTpxUWxoYAALixDBnK8NssGf8dKTMsyvDbLEOcB43Sp1DhzDAMWSzZh4rPnz8vV1fXIhcFAEBB2EbNLP8NYxbDNnoGlDYFOqw5ZMgQSZLFYtGoUaPk7u5um5aRkaHvv/9eDRs2LNYCAQDIi92omeWqkbL/jp5Zzlfh3DOUKgUKZ7t27ZJ0ZeRsz549cnFxsU1zcXFReHi4hg0bVrwVAgCQh6vPNbNz1egZ556hNClQOFu/fr0k6amnntI777yjcuXKlUhRAADkx/9GzaQcB8cMMXqGUqdQV2vOnTvX9v/ff/9dFotFlStXLraiAADIF0uGDOeUnIOZJFn03+kZklGojzzghivUOzUzM1Pjx4/X5MmTdf78eUmSl5eXhg4dqpEjR6pMmUJdZwAAQIFYDCc5H3pSRtmLufdJd5eFYIZSpFDv1pEjR2r27Nl67bXXdO+998owDH333XeKiYnRpUuXNGHChOKuEwCAHFnSysmSxmk2uHkUKpzNnz9fH374oR588EFbW3h4uCpXrqyBAwcSzgAAAAqpUMcfT58+rVq1amVrr1Wrlk6fPl3kogAAAG5VhQpn4eHhmjZtWrb2adOmKTw8vMhFAQAA3KoKdVhz0qRJ6tChg9auXaumTZvKYrFoy5YtOnbsmFatWlXcNQIAANwyCv3bmr/++qs6deqks2fP6vTp0+rcubP279+v0NDQYi2wSpUqslgs2W7PPfecJKl3797Zpt1zzz3FWgMAAMCNUqiRs7CwMJ04cSLbif9JSUkKDg5WRkZGsRQnSXFxcXbz27t3r9q0aaNHH33U1vbAAw/Yfffa1b9cAFwr0+OI0gPXyelES5W5UMXR5QAAYKdQ4cwwjBzbS+KHzytVqmR3/7XXXlO1atXUvHlzW5vValVAQECxPi9uToYMZfhvklyTlOG/SZZDoXxrOADAVAr9w+ejR4++4T98fvnyZS1cuFBDhgyRxfK/D9QNGzbIz89P5cuXV/PmzTVhwgT5+fnlOp/U1FSlpqba7qekpJRYzTCXq3+Dj9/cAwCYUan64fPly5fr7Nmz6t27t60tKipKjz76qEJDQ3X48GGNGjVKLVu21I4dO2S1WnOcT2xsrMaOHVtidcKc/vcbfBbJYkiGhd/cAwCYTqn64fPZs2crKipKQUFBtrZu3brZ/l+vXj01btxYoaGhWrlypTp37pzjfEaMGGEbBZSujJwFBweXXOEwhatHzSRJFoPRMwCA6RT5h89vlKNHj2rt2rVaunRpnv0CAwMVGhqqAwcO5NrHarXmOqqGm1O2UTPbBEbPAADmUmp+oXzu3Lny8/NThw4d8uyXlJSkY8eOKTAw8AZVhtLANmpmueZilqtGzwAAMINSEc4yMzM1d+5c9erVS05O/xvsO3/+vIYNG6atW7fqyJEj2rBhg6Kjo1WxYkV16tTJgRXDTP43apZrB2X4bZaRawcAAG6cQh3WvNHWrl2rhIQE9enTx669bNmy2rNnjxYsWKCzZ88qMDBQkZGRWrJkiby8vBxULUzHkiHDOUW5HrW06L/TMySjVGwSAICbWKn4JGrbtm2O363m5uam1atXO6AilCYWw0nOh56UUfZi7n3S3WUhmAEATIBPI9wSLGnlZEm7sVcX49ZT5uJZR5cAmAbbQ+ERzgCgmLgd/tbRJQC4CRDOAKCYXAy7X5lu5R1dBmAKZS6e5Q+WQiKcAUAxyXQrr0yPio4uA0ApVyq+SgMAAOBWQTgDAAAwEcIZAACAiRDOAAAATIRwBgAAYCKEMwAAABMhnAEAAJgI4QwAAMBECGcAAAAmQjgDAAAwEcIZAACAiRDOAAAATIRwBgAAYCJOji7gVlPm4llHlwCYBtsDAGRHOLvB3A5/6+gSAACAiRHObrCLYfcr0628o8sATKHMxbP8wQIA1yCc3WCZbuWV6VHR0WUAAACT4oIAAAAAEyGcAQAAmAjhDAAAwEQIZwAAACZCOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAEzF9OIuJiZHFYrG7BQQE2KYbhqGYmBgFBQXJzc1NLVq00E8//eTAigEAAArP9OFMkurWrasTJ07Ybnv27LFNmzRpkt566y1NmzZNcXFxCggIUJs2bXTu3DkHVgwAAFA4pSKcOTk5KSAgwHarVKmSpCujZlOmTNHIkSPVuXNn1atXT/Pnz9fff/+tjz/+2MFVAwAAFFypCGcHDhxQUFCQwsLC1L17dx06dEiSdPjwYSUmJqpt27a2vlarVc2bN9eWLVscVS4AAEChOTm6gOtp0qSJFixYoBo1aujkyZMaP368IiIi9NNPPykxMVGS5O/vb/cYf39/HT16NNd5pqamKjU11XY/JSWlZIoHAAAoINOHs6ioKNv/69evr6ZNm6patWqaP3++7rnnHkmSxWKxe4xhGNnarhYbG6uxY8eWTMEAAABFUCoOa17Nw8ND9evX14EDB2xXbWaNoGU5depUttG0q40YMULJycm227Fjx0q0ZgAAgPwqdeEsNTVV+/btU2BgoMLCwhQQEKA1a9bYpl++fFkbN25URERErvOwWq0qV66c3Q0AAMAMTH9Yc9iwYYqOjlZISIhOnTql8ePHKyUlRb169ZLFYtGgQYM0ceJEVa9eXdWrV9fEiRPl7u6uHj16OLp0ALeYMpeSHV0CYBpsD4Vn+nD2+++/67HHHtNff/2lSpUq6Z577tG2bdsUGhoqSRo+fLguXryogQMH6syZM2rSpIm+/vpreXl5ObhyALcKb29vObtYpUMbHV0KYCrOLlZ5e3s7uoxSx/ThbPHixXlOt1gsiomJUUxMzI0pCACu4e/vr4UfLVByMiMFjnb06FFNmDBBI0eOtP0RD8fx9vbO8xxw5Mz04QwASgN/f38+hEwkNDRUNWrUcHQZQKGUugsCAAAAbmaEMwAAABMhnAEAAJgI4QwAAMBECGcAAAAmQjgDAAAwEcIZAACAiRDOAAAATIRwBgAAYCKEMwAAABMhnAEAAJgIv615g5W5xA8jA1nYHgAgO8LZDeLt7S1nF6t0aKOjSwFMxdnFKm9vb0eXAQCmQTi7Qfz9/bXwowVKTmakwNGOHj2qCRMmaOTIkQoNDXV0Obc8b29v+fv7O7oMADANwtkN5O/vz4eQiYSGhqpGjRqOLgMAADtcEAAAAGAihDMAAAATIZwBAACYCOEMAADARAhnAAAAJkI4AwAAMBHCGQAAgIkQzgAAAEyEcAYAAGAihDMAAAATIZwBAACYCOEMAADARAhnAAAAJkI4AwAAMBHCGQAAgImYPpzFxsbqrrvukpeXl/z8/PTwww9r//79dn169+4ti8Vid7vnnnscVDEAAEDhmT6cbdy4Uc8995y2bdumNWvWKD09XW3bttWFCxfs+j3wwAM6ceKE7bZq1SoHVQwAAFB4To4u4Hq++uoru/tz586Vn5+fduzYofvvv9/WbrVaFRAQcKPLAwAAKFamHzm7VnJysiTJx8fHrn3Dhg3y8/NTjRo11K9fP506dSrXeaSmpiolJcXuBgAAYAalKpwZhqEhQ4aoWbNmqlevnq09KipKixYt0rp16zR58mTFxcWpZcuWSk1NzXE+sbGx8vb2tt2Cg4Nv1CIAAADkyfSHNa/2/PPP68cff9TmzZvt2rt162b7f7169dS4cWOFhoZq5cqV6ty5c7b5jBgxQkOGDLHdT0lJIaABAABTKDXh7IUXXtCKFSv07bff6rbbbsuzb2BgoEJDQ3XgwIEcp1utVlmt1pIoEwAAoEhMH84Mw9ALL7ygZcuWacOGDQoLC7vuY5KSknTs2DEFBgbegAoBAACKj+nPOXvuuee0cOFCffzxx/Ly8lJiYqISExN18eJFSdL58+c1bNgwbd26VUeOHNGGDRsUHR2tihUrqlOnTg6uHgAAoGBMP3I2Y8YMSVKLFi3s2ufOnavevXurbNmy2rNnjxYsWKCzZ88qMDBQkZGRWrJkiby8vBxQMQAAQOGZPpwZhpHndDc3N61evfoGVQMAAFCyTH9YEwAA4FZCOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwEQIZwAAACZCOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwEQIZwAAACZCOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwEQIZwAAACZCOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAE3FydAHFZfr06XrjjTd04sQJ1a1bV1OmTNF9993n6LIAoFS4dOmSEhISHF1GkR09etTu39IuJCRErq6uji4DN9hNEc6WLFmiQYMGafr06br33nv1/vvvKyoqSj///LNCQkIcXR4AmF5CQoL69+/v6DKKzYQJExxdQrGYNWuWatSo4egycIPdFOHsrbfeUt++ffX0009LkqZMmaLVq1drxowZio2NdXB1Nw/+sjYn/rJGcQgJCdGsWbMcXQauwQDDranUh7PLly9rx44deuWVV+za27Ztqy1btuT4mNTUVKWmptrup6SklGiNNwv+sjYn/rJGcXB1deV9BJhEqQ9nf/31lzIyMuTv72/X7u/vr8TExBwfExsbq7Fjx96I8m4q/GVtTvxlDQA3l1IfzrJYLBa7+4ZhZGvLMmLECA0ZMsR2PyUlRcHBwSVa382Av6wBACh5pT6cVaxYUWXLls02Snbq1Klso2lZrFarrFbrjSgPAACgQEr995y5uLjozjvv1Jo1a+za16xZo4iICAdVBQAAUDilfuRMkoYMGaInn3xSjRs3VtOmTTVr1iwlJCRowIABji4NAACgQG6KcNatWzclJSVp3LhxOnHihOrVq6dVq1YpNDTU0aUBAAAUiMUwDMPRRThaSkqKvL29lZycrHLlyjm6HAAAkA836+d3qT/nDAAA4GZCOAMAADARwhkAAICJEM4AAABMhHAGAABgIoQzAAAAEyGcAQAAmAjhDAAAwERuil8IKKqs7+FNSUlxcCUAACC/sj63b7bv0yecSTp37pwkKTg42MGVAACAgjp37py8vb0dXUax4eebJGVmZur48ePy8vKSxWJxdDkoYSkpKQoODtaxY8duqp/7AMD2fasxDEPnzp1TUFCQypS5ec7UYuRMUpkyZXTbbbc5ugzcYOXKlWPnDdyk2L5vHTfTiFmWmydmAgAA3AQIZwAAACZCOMMtx2q1asyYMbJarY4uBUAxY/vGzYALAgAAAEyEkTMAAAATIZwBAACYCOEMAADARAhnAAAAJkI4w01p+vTpCgsLk6urq+68805t2rQpz/4bN27UnXfeKVdXV1WtWlUzZ868QZUCKIhvv/1W0dHRCgoKksVi0fLly6/7GLZvlDaEM9x0lixZokGDBmnkyJHatWuX7rvvPkVFRSkhISHH/ocPH1b79u113333adeuXfrnP/+pF198UZ9//vkNrhzA9Vy4cEHh4eGaNm1avvqzfaM04qs0cNNp0qSJGjVqpBkzZtjaateurYcfflixsbHZ+r/88stasWKF9u3bZ2sbMGCAdu/era1bt96QmgEUnMVi0bJly/Twww/n2oftG6URI2e4qVy+fFk7duxQ27Zt7drbtm2rLVu25PiYrVu3Zuvfrl07bd++XWlpaSVWK4CSx/aN0ohwhpvKX3/9pYyMDPn7+9u1+/v7KzExMcfHJCYm5tg/PT1df/31V4nVCqDksX2jNCKc4aZksVjs7huGka3tev1zagdQ+rB9o7QhnOGmUrFiRZUtWzbbKNmpU6ey/fWcJSAgIMf+Tk5O8vX1LbFaAZQ8tm+URoQz3FRcXFx05513as2aNXbta9asUURERI6Padq0abb+X3/9tRo3bixnZ+cSqxVAyWP7RmlEOMNNZ8iQIfrwww81Z84c7du3T4MHD1ZCQoIGDBggSRoxYoR69uxp6z9gwAAdPXpUQ4YM0b59+zRnzhzNnj1bw4YNc9QiAMjF+fPnFR8fr/j4eElXviojPj7e9lU5bN+4GTg5ugCguHXr1k1JSUkaN26cTpw4oXr16mnVqlUKDQ2VJJ04ccLuO8/CwsK0atUqDR48WO+9956CgoL07rvv6pFHHnHUIgDIxfbt2xUZGWm7P2TIEElSr169NG/ePLZv3BT4njMAAAAT4bAmAACAiRDOAAAATIRwBgAAYCKEMwAAABMhnAEAAJgI4QwAAMBECGcAAAAmQjgDUGAxMTFq2LCho8u44TZs2CCLxaKzZ886uhQ7Zq0LQOEQzgAAAEyEcAYAkjIyMpSZmenoMgCAcAbcqhYsWCBfX1+lpqbatT/yyCN2Pxydl48++khVqlSRt7e3unfvrnPnztmmffXVV2rWrJnKly8vX19fdezYUQcPHrRNv3z5sp5//nkFBgbK1dVVVapUUWxsbL6e12KxaMaMGYqKipKbm5vCwsL02Wef2abndJgvPj5eFotFR44ckSTNmzdP5cuX15dffqk6derIarXq6NGjSk1N1fDhwxUcHCyr1arq1atr9uzZds+/Y8cONW7cWO7u7oqIiND+/ftt0w4ePKiHHnpI/v7+8vT01F133aW1a9faPX769OmqXr26XF1d5e/vry5dutimGYahSZMmqWrVqnJzc1N4eLj+7//+z+7xq1atUo0aNeTm5qbIyEjbMgG4ORDOgFvUo48+qoyMDK1YscLW9tdff+nLL7/UU089dd3HHzx4UMuXL9eXX36pL7/8Uhs3btRrr71mm37hwgUNGTJEcXFx+uabb1SmTBl16tTJNjr17rvvasWKFfr000+1f/9+LVy4UFWqVMl3/aNGjdIjjzyi3bt364knntBjjz2mffv25X8FSPr7778VGxurDz/8UD/99JP8/PzUs2dPLV68WO+++6727dunmTNnytPT0+5xI0eO1OTJk7V9+3Y5OTmpT58+tmnnz59X+/bttXbtWu3atUvt2rVTdHS07ce4t2/frhdffFHjxo3T/v379dVXX+n++++3Pf5f//qX5s6dqxkzZuinn37S4MGD9cQTT2jjxo2SpGPHjqlz585q37694uPj9fTTT+uVV14p0HIDMDkDwC3r2WefNaKiomz3p0yZYlStWtXIzMzM83Fjxowx3N3djZSUFFvbSy+9ZDRp0iTXx5w6dcqQZOzZs8cwDMN44YUXjJYtW173uXIiyRgwYIBdW5MmTYxnn33WMAzDWL9+vSHJOHPmjG36rl27DEnG4cOHDcMwjLlz5xqSjPj4eFuf/fv3G5KMNWvW5Pi8WfNdu3atrW3lypWGJOPixYu51lunTh1j6tSphmEYxueff26UK1fObt1lOX/+vOHq6mps2bLFrr1v377GY489ZhiGYYwYMcKoXbu23Xp7+eWXsy0vgNKLkTPgFtavXz99/fXX+uOPPyRJc+fOVe/evWWxWK772CpVqsjLy8t2PzAwUKdOnbLdP3jwoHr06KGqVauqXLlyCgsLkyTbCFLv3r0VHx+vmjVr6sUXX9TXX39doNqbNm2a7X5BR85cXFzUoEED2/34+HiVLVtWzZs3z/NxVz8mMDBQkmzLfuHCBQ0fPlx16tRR+fLl5enpqV9++cW23G3atFFoaKiqVq2qJ598UosWLdLff/8tSfr555916dIltWnTRp6enrbbggULbIeE9+3bp3vuucfuNbp2XQAo3ZwcXQAAx7njjjsUHh6uBQsWqF27dtqzZ4+++OKLfD3W2dnZ7r7FYrE7oT46OlrBwcH64IMPFBQUpMzMTNWrV0+XL1+WJDVq1EiHDx/Wf/7zH61du1Zdu3ZV69ats51fVRBZgaVMmSt/dxqGYZuWlpaWrb+bm5tdyHFzc8vX81y97FmPz1r2l156SatXr9abb76p22+/XW5uburSpYttub28vLRz505t2LBBX3/9tUaPHq2YmBjFxcXZ5rFy5UpVrlzZ7jmtVmu2ZQJwcyKcAbe4p59+Wm+//bb++OMPtW7dWsHBwUWeZ1JSkvbt26f3339f9913nyRp8+bN2fqVK1dO3bp1U7du3dSlSxc98MADOn36tHx8fK77HNu2bbO7cGHbtm264447JEmVKlWSJJ04cUIVKlSQdGVU7Hrq16+vzMxMbdy4Ua1bt75u/5xs2rRJvXv3VqdOnSRdOQft2hP2nZyc1Lp1a7Vu3VpjxoxR+fLltW7dOrVp00ZWq1UJCQm5jt7VqVNHy5cvt2vbtm1boWoFYE6EM+AW9/jjj2vYsGH64IMPtGDBgmKZZ4UKFeTr66tZs2YpMDBQCQkJ2U5af/vttxUYGKiGDRuqTJky+uyzzxQQEKDy5cvn6zk+++wzNW7cWM2aNdOiRYv0ww8/2K6qvP322xUcHKyYmBiNHz9eBw4c0OTJk687zypVqqhXr17q06eP3n33XYWHh+vo0aM6deqUunbtmq+6br/9di1dulTR0dGyWCwaNWqU3Yjil19+qUOHDun+++9XhQoVtGrVKmVmZqpmzZry8vLSsGHDNHjwYGVmZqpZs2ZKSUnRli1b5OnpqV69emnAgAGaPHmyhgwZomeeeUY7duzQvHnz8lUbgNKBc86AW1y5cuX0yCOPyNPTUw8//HCxzLNMmTJavHixduzYoXr16mnw4MF644037Pp4enrq9ddfV+PGjXXXXXfpyJEjWrVqle2Q5PWMHTtWixcvVoMGDTR//nwtWrRIderUkXTlsOMnn3yiX375ReHh4Xr99dc1fvz4fM13xowZ6tKliwYOHKhatWqpX79+unDhQr6X/e2331aFChUUERGh6OhotWvXTo0aNbJNL1++vJYuXaqWLVuqdu3amjlzpj755BPVrVtXkvTqq69q9OjRio2NVe3atdWuXTt98cUXtnP2QkJC9Pnnn+uLL75QeHi4Zs6cqYkTJ+a7PgDmZzE4gQG45bVp00a1a9fWu+++6+hS8sVisWjZsmXFFiYBwEw4rAncwk6fPq2vv/5a69at07Rp0xxdDgBAHNYEbmmNGjXSM888o9dff101a9a0tdetW9fuqxyuvi1atKhEa1q0aFGuz5116A8AbmYc1gSQzdGjR3P86glJ8vf3t/t+s+J27tw5nTx5Msdpzs7OCg0NLbHnBgAzIJwBAACYCIc1AQAATIRwBgAAYCKEMwAAABMhnAEAAJgI4QwAAMBECGcAAAAmQjgDAAAwEcIZAACAifw/SWFWeTLXhfgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#repartition Chiffre d'affaire selon y_has_purchased\n", + "\n", + "# Filtrer les données pour inclure uniquement les valeurs positives de total_amount et exclusion des valeur aberrantes\n", + "train_set_spectacle_filtered = train_set_spectacle[(train_set_spectacle['total_amount'] > 0) & (train_set_spectacle['total_amount'] <= 255)]\n", + "\n", + "# Créer le graphique en utilisant les données filtrées\n", + "sns.boxplot(data=train_set_spectacle_filtered, y=\"total_amount\", x=\"y_has_purchased\", showfliers=False, showmeans=True)\n", + "\n", + "# Titre du graphique\n", + "plt.title(\"Boite à moustache du chiffre d'affaire selon le statut d'achat du client\")\n", + "\n", + "# Afficher le graphique\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, "id": "6b55de4b-913e-4bc1-b4f2-cc0b1824d0e2", "metadata": {}, "outputs": [], @@ -6819,418 +6853,7 @@ }, { "cell_type": "code", - "execution_count": 94, - "id": "69aad59a-e93d-4edc-a559-8f2452d7f19d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
customer_idnb_ticketsnb_purchasestotal_amountnb_suppliersvente_internet_maxpurchase_date_minpurchase_date_maxtime_between_purchasenb_tickets_internet...gender_labelgender_femalegender_malegender_othercountry_frnb_campaignsnb_campaigns_openedtime_to_openy_has_purchasednumber_company
010_2993410.00.00.00.00.0NaNNaNNaN0.0...male0101.012.03.00 days 05:47:26.3333333330.010
110_637883.02.062.01.01.0393.205891281.017639112.1882523.0...female1001.03.01.00 days 05:13:511.010
210_7599460.00.00.00.00.0NaNNaNNaN0.0...other001NaN0.00.0NaN0.010
310_206530.00.00.00.00.0NaNNaNNaN0.0...male0101.011.010.01 days 00:45:540.010
410_8247050.00.00.00.00.0NaNNaNNaN0.0...other001NaN0.00.0NaN0.010
..................................................................
69729214_1199500.00.00.00.00.0NaNNaNNaN0.0...male0101.00.00.0NaN0.014
69729314_9380.00.00.00.00.0NaNNaNNaN0.0...male0101.00.00.0NaN0.014
69729414_50047070.00.00.00.00.0NaNNaNNaN0.0...male0101.02.01.02 days 16:42:510.014
69729514_1081840.00.00.00.00.0NaNNaNNaN0.0...other0011.00.00.0NaN0.014
69729614_46639810.00.00.00.00.0NaNNaNNaN0.0...other001NaN0.00.0NaN0.014
\n", - "

697297 rows × 41 columns

\n", - "
" - ], - "text/plain": [ - " customer_id nb_tickets nb_purchases total_amount nb_suppliers \\\n", - "0 10_299341 0.0 0.0 0.0 0.0 \n", - "1 10_63788 3.0 2.0 62.0 1.0 \n", - "2 10_759946 0.0 0.0 0.0 0.0 \n", - "3 10_20653 0.0 0.0 0.0 0.0 \n", - "4 10_824705 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... ... \n", - "697292 14_119950 0.0 0.0 0.0 0.0 \n", - "697293 14_938 0.0 0.0 0.0 0.0 \n", - "697294 14_5004707 0.0 0.0 0.0 0.0 \n", - "697295 14_108184 0.0 0.0 0.0 0.0 \n", - "697296 14_4663981 0.0 0.0 0.0 0.0 \n", - "\n", - " vente_internet_max purchase_date_min purchase_date_max \\\n", - "0 0.0 NaN NaN \n", - "1 1.0 393.205891 281.017639 \n", - "2 0.0 NaN NaN \n", - "3 0.0 NaN NaN \n", - "4 0.0 NaN NaN \n", - "... ... ... ... \n", - "697292 0.0 NaN NaN \n", - "697293 0.0 NaN NaN \n", - "697294 0.0 NaN NaN \n", - "697295 0.0 NaN NaN \n", - "697296 0.0 NaN NaN \n", - "\n", - " time_between_purchase nb_tickets_internet ... gender_label \\\n", - "0 NaN 0.0 ... male \n", - "1 112.188252 3.0 ... female \n", - "2 NaN 0.0 ... other \n", - "3 NaN 0.0 ... male \n", - "4 NaN 0.0 ... other \n", - "... ... ... ... ... \n", - "697292 NaN 0.0 ... male \n", - "697293 NaN 0.0 ... male \n", - "697294 NaN 0.0 ... male \n", - "697295 NaN 0.0 ... other \n", - "697296 NaN 0.0 ... other \n", - "\n", - " gender_female gender_male gender_other country_fr nb_campaigns \\\n", - "0 0 1 0 1.0 12.0 \n", - "1 1 0 0 1.0 3.0 \n", - "2 0 0 1 NaN 0.0 \n", - "3 0 1 0 1.0 11.0 \n", - "4 0 0 1 NaN 0.0 \n", - "... ... ... ... ... ... \n", - "697292 0 1 0 1.0 0.0 \n", - "697293 0 1 0 1.0 0.0 \n", - "697294 0 1 0 1.0 2.0 \n", - "697295 0 0 1 1.0 0.0 \n", - "697296 0 0 1 NaN 0.0 \n", - "\n", - " nb_campaigns_opened time_to_open y_has_purchased \\\n", - "0 3.0 0 days 05:47:26.333333333 0.0 \n", - "1 1.0 0 days 05:13:51 1.0 \n", - "2 0.0 NaN 0.0 \n", - "3 10.0 1 days 00:45:54 0.0 \n", - "4 0.0 NaN 0.0 \n", - "... ... ... ... \n", - "697292 0.0 NaN 0.0 \n", - "697293 0.0 NaN 0.0 \n", - "697294 1.0 2 days 16:42:51 0.0 \n", - "697295 0.0 NaN 0.0 \n", - "697296 0.0 NaN 0.0 \n", - "\n", - " number_company \n", - "0 10 \n", - "1 10 \n", - "2 10 \n", - "3 10 \n", - "4 10 \n", - "... ... \n", - "697292 14 \n", - "697293 14 \n", - "697294 14 \n", - "697295 14 \n", - "697296 14 \n", - "\n", - "[697297 rows x 41 columns]" - ] - }, - "execution_count": 94, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_set_spectacle" - ] - }, - { - "cell_type": "code", - "execution_count": 97, + "execution_count": 133, "id": "86fa4d7f-9b5f-4487-beb8-eb23771f724c", "metadata": {}, "outputs": [ @@ -7373,13 +6996,13 @@ "9 0.000000 " ] }, - "execution_count": 97, + "execution_count": 133, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "#Taux de ticket payé par en ligne selon y_has_purchase par compagnies avec la base de train\n", + "#Taux de ticket payé en ligne selon y_has_purchase par compagnies avec la base de train\n", "\n", "purchase_spectacle_train = train_set_spectacle.groupby([\"number_company\", \"y_has_purchased\"])[[\"nb_tickets\", \"nb_tickets_internet\"]].sum().reset_index()\n", "purchase_spectacle_train[\"Taux_ticket_internet\"] = purchase_spectacle_train[\"nb_tickets_internet\"]*100 / purchase_spectacle_train[\"nb_tickets\"]\n", @@ -7410,6 +7033,44 @@ " title = \"Taux de ticket achété en ligne selon y_has_purchased par compagnies de spectacle (train set)\")" ] }, + { + "cell_type": "code", + "execution_count": 140, + "id": "f8444cab-d4c5-4afd-b472-476e702c09cc", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHGCAYAAACYbuRTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIYElEQVR4nO3dd3QUZd/G8WsT0iAhEEIaxtAEqdIUiGIISgepgqJCEBAERUREeBQpgtHYsOKjKMUGFuBBwUILRQICUkQBERNAIFQhoQWS3O8fnOzrkkIWdxNgvp9z9pzMPffM/HZ2Z/bKlF2bMcYIAADAgjyKuwAAAIDiQhACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACUOS2bNmikiVL6s033yzuUgBY3FUThGw2W6EeiYmJxV0q8lGxYkXFxcW5bH7vvPOOpk+fnqs9JSVFNpstz3EFmT59umw2m9avX++S+p5//nnNmzfPJfNyB5vNpkceecRl89u/f7/GjRunTZs2FdgvPT1d3bt316OPPqpHH33UZct3lcTExGLbl8TFxalixYpFusxPP/1UkydP/lfzyG9bLOo6pNz7mZzXMyUl5V/POy+u3m9I0sKFCzVu3Lh/PZ/mzZurefPm/3o+zshr+xk3bpxsNptbl3v69GmNGzfusrbbqyYIJSUlOTzatWsnPz+/XO0NGjQo7lJRRPLb+YaHhyspKUnt27cv+qL+4UoPQq62f/9+jR8//pJBqF+/frrlllv0wgsvFE1hKNC1FoSuBQsXLtT48eOLuwyX6d+/v5KSkty6jNOnT2v8+PGXFYRKuL4c92jSpInDcPny5eXh4ZGrHfDx8eF9cQX7/PPPi7sEAEXouuuu03XXXVfcZeTrqjkiVBhvv/22br/9doWEhKhUqVKqU6eOEhISdP78eYd++Z2iufgw4qBBg+Tr66sNGzbY27Kzs3XHHXcoNDRUBw4cyLeWnNMzL730kl588UVVrFhRfn5+at68uX7//XedP39eo0aNUkREhAIDA9WlSxcdOnTIYR7Z2dlKSEjQjTfeKB8fH4WEhKh3797666+/7H2ee+45lShRQnv37s1Vw4MPPqhy5crp7Nmz9rbZs2eradOmKlWqlPz9/dW6dWtt3LjRYbq4uDj5+/vrjz/+ULt27eTv76/IyEg98cQTysjIyPc55zh//rxGjhypsLAwlSxZUrfddpt++umnPPumpqZq4MCBuu666+Tt7a1KlSpp/PjxyszMLHAZFStW1K+//qrly5fbT4vmnFLI79TY9u3bde+99yo0NFQ+Pj66/vrr1bt37wKf04EDB9SwYUPdcMMN2rlzpyQpLS1NI0aMUKVKleTt7a0KFSpo2LBhOnXqlH06m82mU6dOacaMGfb6ct5bp0+ftk/v6+uroKAgNWrUSJ999lmBz/nw4cMaPHiwatasKX9/f4WEhKhFixZauXJlrr4ZGRmaMGGCatSoIV9fX5UrV06xsbFavXp1rr4fffSRatSooZIlS+qmm27SN998k6vPzp071atXL4WEhMjHx0c1atTQ22+/bR+fmJiom2++WZLUt29f+3P+5+H99evX66677lJQUJB8fX1Vv379XKHoctdNYacrTA35mT9/vpo2baqSJUsqICBALVu2zPVfbs4pgF9//VX33nuvAgMDFRoaqgcffFAnTpwo1HIuZozRO++8o3r16snPz09ly5ZV9+7d9eeff15y2sOHD+uhhx5SZGSkfHx8VL58ed16661avHixpAv7vAULFmj37t0OlxjkGD9+vBo3bqygoCCVLl1aDRo00AcffCBjjL1PQdtizmmji09LXXz65FJ15MWZ/czFFi1apE6dOum6666Tr6+vqlatqoEDB+rIkSO5+hZ2v5Genq6HH35YwcHBKleunLp27ar9+/c79Jk9e7ZatWql8PBw+fn5qUaNGho1apTDviMuLs6+bf1zXRR0as8Yo4SEBEVFRcnX11cNGjTQt99+m6tfYV+PglzOfjS/U2Ou+jxKSUlR+fLlJV14z+ass8JeinHVHBEqjF27dqlXr172D6jNmzdr0qRJ2r59uz788EOn5zd58mStXbtWPXr00IYNG1SmTBn7obfvvvtO4eHhl5zH22+/rbp16+rtt9/W8ePH9cQTT6hjx45q3LixvLy89OGHH2r37t0aMWKE+vfvr/nz59unffjhh/Xee+/pkUceUYcOHZSSkqIxY8YoMTFRP//8s4KDgzVw4EBNmjRJ//3vfzVx4kT7tMeOHdOsWbP0yCOPyNfXV9KFUzXPPPOM+vbtq2eeeUbnzp3TSy+9pGbNmumnn35SzZo17dOfP39ed911l/r166cnnnhCK1as0HPPPafAwEA9++yzBT7nAQMGaObMmRoxYoRatmyprVu3qmvXrkpPT3fol5qaqltuuUUeHh569tlnVaVKFSUlJWnixIlKSUnRtGnT8l3G3Llz1b17dwUGBuqdd96RdOFIUH42b96s2267TcHBwZowYYJuuOEGHThwQPPnz9e5c+fynHbr1q1q166drrvuOiUlJSk4OFinT59WTEyM/vrrL/3nP/9R3bp19euvv+rZZ5/VL7/8osWLF8tmsykpKUktWrRQbGysxowZI0kqXbq0JGn48OH66KOPNHHiRNWvX1+nTp3S1q1bdfTo0QLX67FjxyRJY8eOVVhYmE6ePKm5c+eqefPmWrJkiT1oZWZmqm3btlq5cqWGDRumFi1aKDMzU2vWrNGePXsUHR1tn+eCBQu0bt06TZgwQf7+/kpISFCXLl20Y8cOVa5cWZL022+/KTo6Wtdff71eeeUVhYWF6fvvv9fQoUN15MgRjR07Vg0aNNC0adPs762c05I5/wUuW7ZMbdq0UePGjfXuu+8qMDBQs2bNUs+ePXX69Gn7Duty101hpitsDXn59NNPdd9996lVq1b67LPPlJGRoYSEBPu6v+222xz6d+vWTT179lS/fv30yy+/aPTo0ZJ0WfuhgQMHavr06Ro6dKhefPFFHTt2TBMmTFB0dLQ2b96s0NDQfKd94IEH9PPPP2vSpEmqVq2ajh8/rp9//tm+Xt555x099NBD2rVrl+bOnZtr+pSUFA0cOFDXX3+9JGnNmjV69NFHtW/fPvt+wNltMS+XqiMvhd3PNG/e3CG4SRc+K5o2bar+/fsrMDBQKSkpevXVV3Xbbbfpl19+kZeXlyTn9hv9+/dX+/bt9emnn2rv3r168skndf/992vp0qX2Pjt37lS7du00bNgwlSpVStu3b9eLL76on376yd5vzJgxOnXqlL788kuHoF3Q58348eM1fvx49evXT927d9fevXs1YMAAZWVlqXr16oVan4VxOfvR/Ljy8yg8PFzfffed2rRpo379+ql///6SZA9Hl2SuUn369DGlSpXKd3xWVpY5f/68mTlzpvH09DTHjh2zj4uKijJ9+vTJNU1MTIyJiYlxaNu5c6cpXbq06dy5s1m8eLHx8PAwzzzzzCXrS05ONpLMTTfdZLKysuztkydPNpLMXXfd5dB/2LBhRpI5ceKEMcaYbdu2GUlm8ODBDv3Wrl1rJJn//Oc/DusiJCTEZGRk2NtefPFF4+HhYZKTk40xxuzZs8eUKFHCPProow7zS09PN2FhYaZHjx4O85NkPv/8c4e+7dq1M9WrVy/weefU/fjjjzu0f/LJJ0aSw3ofOHCg8ff3N7t373bo+/LLLxtJ5tdffy1wWbVq1cr1ehnz/+t+2rRp9rYWLVqYMmXKmEOHDuU7v2nTphlJZt26dWbRokWmdOnSpnv37ubMmTP2PvHx8cbDw8OsW7fOYdovv/zSSDILFy60t5UqVSrP91nt2rVN586dC3xuhZGZmWnOnz9v7rjjDtOlSxd7+8yZM40k8/777xc4vSQTGhpq0tLS7G2pqanGw8PDxMfH29tat25trrvuOvt7M8cjjzxifH197dvWunXrcq33HDfeeKOpX7++OX/+vEN7hw4dTHh4uH0budx1U5jpClvDsmXLjCSzbNkyY8yFfUlERISpU6eOw7acnp5uQkJCTHR0tL1t7NixRpJJSEhwWMbgwYONr6+vyc7OLrDGPn36mKioKPtwUlKSkWReeeUVh3579+41fn5+ZuTIkQXOz9/f3wwbNqzAPu3bt3dYZn5y9qkTJkww5cqVc3gu+W2LOdtUzn4ox8Xr2Jk6jHFuP3Mp2dnZ5vz582b37t1Gkvnf//5nH+fMfuPifXVCQoKRZA4cOFDgcpcvX24kmc2bN9vHDRkyxBT24/nvv/82vr6+DvsAY4z58ccfjSSH18WZ1yMvhVkfec0rZ7vI4Y7Po8OHDxtJZuzYsQU+h7xcU6fGNm7cqLvuukvlypWTp6envLy81Lt3b2VlZen333+/rHlWrVpV77//vubNm6cOHTqoWbNmTl3N365dO3l4/P9qrlGjhiTlupA3p33Pnj2SLvz3KinXf6m33HKLatSooSVLltjbHnvsMR06dEhffPGFpAun1KZMmaL27dvbD1F///33yszMVO/evZWZmWl/+Pr6KiYmJtchUZvNpo4dOzq01a1bV7t37y7w+ebUfd999zm09+jRQyVKOB6A/OabbxQbG6uIiAiHmtq2bStJWr58eYHLKqzTp09r+fLl6tGjR6H+Q5gxY4batWun/v376/PPP7cfUcupuXbt2qpXr55Dza1bty70oeVbbrlF3377rUaNGqXExESdOXOm0M/l3XffVYMGDeTr66sSJUrIy8tLS5Ys0bZt2+x9vv32W/n6+urBBx+85PxiY2MVEBBgHw4NDVVISIj9dT579qyWLFmiLl26qGTJkg7PuV27djp79qzWrFlT4DL++OMPbd++3f6euHgeBw4c0I4dO/7VurnUdM7UcLEdO3Zo//79euCBBxy2ZX9/f3Xr1k1r1qzR6dOnHaa56667HIbr1q2rs2fP5jr9fSnffPONbDab7r//foeaw8LCdNNNN13y/XbLLbdo+vTpmjhxotasWZPrMoFLWbp0qe68804FBgba96nPPvusjh496vRzcSVn9jN5OXTokAYNGqTIyEj7dhQVFSVJ9m3J2f1GXq+5JId95p9//qlevXopLCzMvj5jYmIcluuspKQknT17Nte6iI6Otj8nV3B2fRSkqD6PCuuaCUJ79uxRs2bNtG/fPr3++utauXKl1q1bZz/X6syHzcXat2+v0NBQnT17VsOHD5enp2ehpw0KCnIY9vb2LrA953qenEPXeR0OjYiIcDjkX79+fTVr1sz+XL/55hulpKQ43Bp98OBBSdLNN98sLy8vh8fs2bNznRsvWbKkQwCQLhzu/uf1RnnJqSssLMyhvUSJEipXrpxD28GDB/X111/nqqdWrVqSlOf5+svx999/Kysrq9AX682aNUt+fn7q379/rvPaBw8e1JYtW3LVHBAQIGNMoWp+44039NRTT2nevHmKjY1VUFCQOnfubL8GKT+vvvqqHn74YTVu3FhfffWV1qxZo3Xr1qlNmzYO7+/Dhw8rIiLC4UM7Pxe/JtKF1zlnfkePHlVmZqbefPPNXM+5Xbt2ki79OuW890aMGJFrHoMHD3aYx+Wum0tN50wNF7vUtpidna2///7bof3i9ZpzysDZ/dDBgwdljFFoaGiuutesWXPJdT979mz16dNHU6dOVdOmTRUUFKTevXsrNTX1ksv+6aef1KpVK0nS+++/rx9//FHr1q3T008/fVnPxZWc2c9cLDs7W61atdKcOXM0cuRILVmyRD/99JM90Oc8L2f3G5d6zU+ePKlmzZpp7dq1mjhxohITE7Vu3TrNmTPHoZ+z8lsX+bVdLmfXR0GK6vOosK6Za4TmzZunU6dOac6cOQ4pOK9beX19ffO8sOvIkSMKDg7O1T5o0CClp6erVq1aGjp0qJo1a6ayZcu6tP6L5WxUBw4cyPXG279/f646hw4dqrvvvls///yz3nrrLVWrVk0tW7a0j8/p/+WXX7r0v4T86k5NTVWFChXs7ZmZmbmu8wgODlbdunU1adKkPOcVERHhkpqCgoLk6enpcJF5QT755BONGTNGMTEx+uGHH1SvXj37uODgYPn5+eV7rUde75+LlSpVyn5O/+DBg/YjGR07dtT27dvzne7jjz9W8+bNNWXKFIf2i6+JKF++vFatWqXs7OxChaGClC1bVp6ennrggQc0ZMiQPPtUqlSpwHnkrJPRo0era9euefbJuY7hctfNpaZzpoaL/XNbvNj+/fvl4eHhtv1BcHCwbDabVq5cmef1F5e6JiM4OFiTJ0/W5MmTtWfPHs2fP1+jRo3SoUOH9N133xU47axZs+Tl5aVvvvnG4UPIma+EyJnu4v3tv/0nx5n9zMW2bt2qzZs3a/r06erTp4+9/Y8//nDo5+x+41KWLl2q/fv3KzEx0X4USJKOHz/+r+b7z3VxsdTUVIfvpfo3r4cr10dRfR4V1jUThHL+c//njsEYo/fffz9X34oVK2rLli0Obb///rt27NiR64Ns6tSp+vjjj/Xhhx8qJiZGDRo0UN++fd3+/TAtWrSQdOHDL+duHElat26dtm3bZv+vLEeXLl10/fXX64knntDy5cv12muvORzNaN26tUqUKKFdu3apW7dubqs754LdTz75RA0bNrS3f/7557nuBOvQoYMWLlyoKlWqXNYHyT+PXBTEz89PMTEx+uKLLzRp0qRLhpWgoCAtXrxYHTp0UGxsrL799lv77fgdOnTQ888/r3Llyl0yABSmvtDQUMXFxWnz5s2aPHmyTp8+rZIlS+bZ12az5frg27Jli5KSkhQZGWlva9u2rT777DNNnz69UKfHClKyZEnFxsZq48aNqlu3rv3IZV7yO+pRvXp13XDDDdq8ebOef/75Qi/bmXVzqekut4ac+itUqKBPP/1UI0aMsG9Xp06d0ldffWW/k8wdOnTooBdeeEH79u1Tjx49/tW8rr/+ej3yyCNasmSJfvzxR3t7fu9Tm82mEiVKOBwBP3PmjD766KNcffObR86H8JYtWxyC5j9vCrnUPPLizH7mYnl9VkjSf//7X4dhZ/cbl1LY5f6zz5kzZ+Tn51fgfJs0aSJfX1998sknDvv21atXa/fu3Q5ByJnX42KuXB/u+Dy63KOu0jUUhFq2bClvb2/de++9GjlypM6ePaspU6bkOmQtXbiT4v7779fgwYPVrVs37d69WwkJCbnOe/7yyy8aOnSo+vTpo759+0qSPvjgA3Xv3l2TJ0/WsGHD3PZ8qlevroceekhvvvmmPDw81LZtW/tdY5GRkXr88ccd+nt6emrIkCF66qmnVKpUqVzXFlWsWFETJkzQ008/rT///FNt2rRR2bJldfDgQf3000/2/6j/rRo1auj+++/X5MmT5eXlpTvvvFNbt27Vyy+/bL9rKseECRO0aNEiRUdHa+jQoapevbrOnj2rlJQULVy4UO+++26Bh2Hr1KmjWbNmafbs2apcubJ8fX1Vp06dPPvm3BHSuHFjjRo1SlWrVtXBgwc1f/58/fe//3W4TkaSAgIC9N1336lr165q2bKl5s+fr9jYWA0bNkxfffWVbr/9dj3++OOqW7eusrOztWfPHv3www964okn1LhxY3t9iYmJ+vrrrxUeHq6AgABVr15djRs3VocOHVS3bl2VLVtW27Zt00cffXTJD9QOHTroueee09ixYxUTE6MdO3ZowoQJqlSpksPO/95779W0adM0aNAg7dixQ7GxscrOztbatWtVo0YN3XPPPZd8Hf/p9ddf12233aZmzZrp4YcfVsWKFZWenq4//vhDX3/9tf1ulypVqsjPz0+ffPKJatSoIX9/f0VERCgiIkL//e9/1bZtW7Vu3VpxcXGqUKGCjh07pm3btunnn3+2X992ueumMNMVtoaLeXh4KCEhQffdd586dOiggQMHKiMjQy+99JKOHz/u1i+GvPXWW/XQQw+pb9++Wr9+vW6//XaVKlVKBw4c0KpVq1SnTh09/PDDeU574sQJxcbGqlevXrrxxhsVEBCgdevW2d/XOerUqaM5c+ZoypQpatiwoTw8PNSoUSO1b99er776qnr16qWHHnpIR48e1csvv5znUaj8tsWbb75Z1atX14gRI5SZmamyZctq7ty5WrVqVZ7zyKuOvDizn7nYjTfeqCpVqmjUqFEyxigoKEhff/21Fi1alKuvs/uNgkRHR6ts2bIaNGiQxo4dKy8vL33yySfavHlznutCkl588UW1bdtWnp6e+f4jUrZsWY0YMUITJ05U//79dffdd2vv3r0aN25crlNjzrweeXHV+nDH51FAQICioqL0v//9T3fccYeCgoIUHBxcuG9qd/ry6itEXneNff311+amm24yvr6+pkKFCubJJ5803377ba4r2LOzs01CQoKpXLmy8fX1NY0aNTJLly51uGvs5MmT5sYbbzQ1a9Y0p06dcljOkCFDjJeXl1m7dm2+9eXcufTSSy85tOdcUf/FF184tP/zjqUcWVlZ5sUXXzTVqlUzXl5eJjg42Nx///1m7969eS4zJSXFSDKDBg3Kt6558+aZ2NhYU7p0aePj42OioqJM9+7dzeLFi+198rsj7+Ir//OTkZFhnnjiCRMSEmJ8fX1NkyZNTFJSUp536x0+fNgMHTrUVKpUyXh5eZmgoCDTsGFD8/TTT5uTJ08WuJyUlBTTqlUrExAQYCTZ7zjJ664xY4z57bffzN13323KlStnvL29zfXXX2/i4uLM2bNnjTF5vwYZGRmmW7duxtfX1yxYsMAYc+G98cwzz5jq1asbb29vExgYaOrUqWMef/xxk5qaap9206ZN5tZbbzUlS5Z0uHtj1KhRplGjRqZs2bLGx8fHVK5c2Tz++OPmyJEjl1yvI0aMMBUqVDC+vr6mQYMGZt68ebnuNDLGmDNnzphnn33W3HDDDcbb29uUK1fOtGjRwqxevdreR5IZMmRIruXk9TolJyebBx980FSoUMF4eXmZ8uXLm+joaDNx4kSHfp999pm58cYbjZeXV647ODZv3mx69OhhQkJCjJeXlwkLCzMtWrQw7777rr3P5a6bwk5XmBryu4Nm3rx5pnHjxsbX19eUKlXK3HHHHebHH3906JOzjRw+fNihPb+7dS6W12tpjDEffvihady4sSlVqpTx8/MzVapUMb179zbr16/Pd15nz541gwYNMnXr1jWlS5c2fn5+pnr16mbs2LEO+7Rjx46Z7t27mzJlyhibzeawjX/44YemevXq9nUaHx9vPvjgg1zPJb9t0Rhjfv/9d9OqVStTunRpU758efPoo4+aBQsW5FrHBdWRF2f2Mxf77bffTMuWLU1AQIApW7asufvuu82ePXvyvOvocvYbxuT9Plq9erVp2rSpKVmypClfvrzp37+/+fnnn3PtrzIyMkz//v1N+fLl7euioPdOdna2iY+PN5GRkcbb29vUrVvXfP3113neCV3Y16OgdVfQ+ijMXWM5XP15tHjxYlO/fn3j4+Pj1N2DNmMu+oIFXLXefPNNDR06VFu3brVfcAwAAPJHELoGbNy4UcnJyRo4cKBuvfVWS/2+FQAA/wZB6BpQsWJFpaamqlmzZvroo49cesskAADXMoIQAACwrGvmCxUBAACcRRACAACWRRACAACWdc18oWJ+srOztX//fgUEBOT63SgAAHBlMsYoPT290L+deLmu+SC0f/9+h58fAAAAV4+9e/e65Mde83PNB6Gcr/zeu3fvJb96HQAAXBnS0tIUGRnp1E+ZXI5rPgjlnA4rXbo0QQgAgKuMuy9r4WJpAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWSWKu4BrRcMnZxZ3CcAVZ8NLvYu7BAAoEEeEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRVrEIqPj9fNN9+sgIAAhYSEqHPnztqxY4dDn7i4ONlsNodHkyZNiqliAABwLSnWILR8+XINGTJEa9as0aJFi5SZmalWrVrp1KlTDv3atGmjAwcO2B8LFy4spooBAMC1pERxLvy7775zGJ42bZpCQkK0YcMG3X777fZ2Hx8fhYWFFXV5AADgGndFXSN04sQJSVJQUJBDe2JiokJCQlStWjUNGDBAhw4dynceGRkZSktLc3gAAADk5YoJQsYYDR8+XLfddptq165tb2/btq0++eQTLV26VK+88orWrVunFi1aKCMjI8/5xMfHKzAw0P6IjIwsqqcAAACuMjZjjCnuIiRpyJAhWrBggVatWqXrrrsu334HDhxQVFSUZs2apa5du+Yan5GR4RCS0tLSFBkZqRMnTqh06dJuqV2SGj45023zBq5WG17qXdwlALhKpaWlKTAw0O2f38V6jVCORx99VPPnz9eKFSsKDEGSFB4erqioKO3cuTPP8T4+PvLx8XFHmQAA4BpTrEHIGKNHH31Uc+fOVWJioipVqnTJaY4ePaq9e/cqPDy8CCoEAADXsmK9RmjIkCH6+OOP9emnnyogIECpqalKTU3VmTNnJEknT57UiBEjlJSUpJSUFCUmJqpjx44KDg5Wly5dirN0AABwDSjWI0JTpkyRJDVv3tyhfdq0aYqLi5Onp6d++eUXzZw5U8ePH1d4eLhiY2M1e/ZsBQQEFEPFAADgWlLsp8YK4ufnp++//76IqgEAAFZzxdw+DwAAUNQIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLKKNQjFx8fr5ptvVkBAgEJCQtS5c2ft2LHDoY8xRuPGjVNERIT8/PzUvHlz/frrr8VUMQAAuJY4HYRatGih48eP52pPS0tTixYtnJrX8uXLNWTIEK1Zs0aLFi1SZmamWrVqpVOnTtn7JCQk6NVXX9Vbb72ldevWKSwsTC1btlR6erqzpQMAADiwGWOMMxN4eHgoNTVVISEhDu2HDh1ShQoVdP78+csu5vDhwwoJCdHy5ct1++23yxijiIgIDRs2TE899ZQkKSMjQ6GhoXrxxRc1cODAS84zLS1NgYGBOnHihEqXLn3ZtV1Kwydnum3ewNVqw0u9i7sEAFepovr8LlHYjlu2bLH//dtvvyk1NdU+nJWVpe+++04VKlT4V8WcOHFCkhQUFCRJSk5OVmpqqlq1amXv4+Pjo5iYGK1evbpQQQgAACA/hQ5C9erVk81mk81my/MUmJ+fn958883LLsQYo+HDh+u2225T7dq1JcketkJDQx36hoaGavfu3XnOJyMjQxkZGfbhtLS0y64JAABc2wodhJKTk2WMUeXKlfXTTz+pfPny9nHe3t4KCQmRp6fnZRfyyCOPaMuWLVq1alWucTabzWHYGJOrLUd8fLzGjx9/2XUAAADrKHQQioqKkiRlZ2e7vIhHH31U8+fP14oVK3TdddfZ28PCwiRdODIUHh5ubz906FCuo0Q5Ro8ereHDh9uH09LSFBkZ6fKaAQDA1e+ybp//6KOPdOuttyoiIsJ+iuq1117T//73P6fmY4zRI488ojlz5mjp0qWqVKmSw/hKlSopLCxMixYtsredO3dOy5cvV3R0dJ7z9PHxUenSpR0eAAAAeXE6CE2ZMkXDhw9Xu3btdPz4cWVlZUmSypYtq8mTJzs1ryFDhujjjz/Wp59+qoCAAKWmpio1NVVnzpyRdOGU2LBhw/T8889r7ty52rp1q+Li4lSyZEn16tXL2dIBAAAcOB2E3nzzTb3//vt6+umnHa4JatSokX755Ren5jVlyhSdOHFCzZs3V3h4uP0xe/Zse5+RI0dq2LBhGjx4sBo1aqR9+/bphx9+UEBAgLOlAwAAOCj0NUI5kpOTVb9+/VztPj4+Dl+EWBiF+Qojm82mcePGady4cU7NGwAA4FKcPiJUqVIlbdq0KVf7t99+q5o1a7qiJgAAgCLh9BGhJ598UkOGDNHZs2dljNFPP/2kzz77TPHx8Zo6dao7agQAAHALp4NQ3759lZmZqZEjR+r06dPq1auXKlSooNdff1333HOPO2oEAABwC6eDkCQNGDBAAwYM0JEjR5SdnZ3rd8cAAACuBpcVhHIEBwe7qg4AAIAi5/TF0gcPHtQDDzygiIgIlShRQp6eng4PAACAq4XTR4Ti4uK0Z88ejRkzRuHh4fn+5hcAAMCVzukgtGrVKq1cuVL16tVzQzkAAABFx+lTY5GRkYX6IkQAAIArndNBaPLkyRo1apRSUlLcUA4AAEDRcfrUWM+ePXX69GlVqVJFJUuWlJeXl8P4Y8eOuaw4AAAAd3I6CDn7C/MAAABXKqeC0Pnz55WYmKgxY8aocuXK7qoJAACgSDh1jZCXl5fmzp3rrloAAACKlNMXS3fp0kXz5s1zQykAAABFy+lrhKpWrarnnntOq1evVsOGDVWqVCmH8UOHDnVZcQAAAO7kdBCaOnWqypQpow0bNmjDhg0O42w2G0EIAABcNZwOQsnJye6oAwAAoMg5fY1QjnPnzmnHjh3KzMx0ZT0AAABFxukgdPr0afXr108lS5ZUrVq1tGfPHkkXrg164YUXXF4gAACAuzgdhEaPHq3NmzcrMTFRvr6+9vY777xTs2fPdmlxAAAA7uT0NULz5s3T7Nmz1aRJE9lsNnt7zZo1tWvXLpcWBwAA4E5OHxE6fPiwQkJCcrWfOnXKIRgBAABc6ZwOQjfffLMWLFhgH84JP++//76aNm3qusoAAADczOlTY/Hx8WrTpo1+++03ZWZm6vXXX9evv/6qpKQkLV++3B01AgAAuIXTR4Sio6P1448/6vTp06pSpYp++OEHhYaGKikpSQ0bNnRHjQAAAG7h9BEhSapTp45mzJjh6loAAACKlNNHhDw9PXXo0KFc7UePHpWnp6dLigIAACgKTgchY0ye7RkZGfL29v7XBQEAABSVQp8ae+ONNyRduEts6tSp8vf3t4/LysrSihUrdOONN7q+QgAAADcpdBB67bXXJF04IvTuu+86nAbz9vZWxYoV9e6777q+QgAAADcpdBDK+dX52NhYzZkzR2XLlnVbUQAAAEXB6bvGli1b5o46AAAAipzTQSgrK0vTp0/XkiVLdOjQIWVnZzuMX7p0qcuKAwAAcCeng9Bjjz2m6dOnq3379qpduza/LwYAAK5aTgehWbNm6fPPP1e7du3cUQ8AAECRcfp7hLy9vVW1alV31AIAAFCknA5CTzzxhF5//fV8v1gRAADgauH0qbFVq1Zp2bJl+vbbb1WrVi15eXk5jJ8zZ47LigMAAHAnp4NQmTJl1KVLF3fUAgAAUKScDkLTpk1zRx0AAABFzulrhAAAAK4VhToi1KBBAy1ZskRly5ZV/fr1C/zuoJ9//tllxQEAALhToYJQp06d5OPjI0nq3LmzO+sBAAAoMoUKQmPHjs3zbwAAgKsZ1wgBAADLIggBAADLIggBAADLIggBAADL+tdBKCsrS5s2bdLff//tinoAAACKjNNBaNiwYfrggw8kXQhBMTExatCggSIjI5WYmOjq+gAAANzG6SD05Zdf6qabbpIkff3110pOTtb27ds1bNgwPf300y4vEAAAwF2cDkJHjhxRWFiYJGnhwoW6++67Va1aNfXr10+//PKLywsEAABwF6eDUGhoqH777TdlZWXpu+++05133ilJOn36tDw9PV1eIAAAgLs4/evzffv2VY8ePRQeHi6bzaaWLVtKktauXasbb7zR5QUCAAC4i9NHhMaNG6epU6fqoYce0o8//mj/DTJPT0+NGjXKqXmtWLFCHTt2VEREhGw2m+bNm+cwPi4uTjabzeHRpEkTZ0sGAADIk9NHhGbOnKmePXvaA1COe++9V7NmzXJqXqdOndJNN92kvn37qlu3bnn2adOmjaZNm2Yf9vb2drZkAACAPF3WqbE2bdooJCTEoT09PV19+/ZV7969Cz2vtm3bqm3btgX28fHxsV+cDQAA4EpOnxozxshms+Vq/+uvvxQYGOiSov4pMTFRISEhqlatmgYMGKBDhw4V2D8jI0NpaWkODwAAgLwU+ohQ/fr17dfp3HHHHSpR4v8nzcrKUnJystq0aePS4tq2bau7775bUVFRSk5O1pgxY9SiRQtt2LAh16m5HPHx8Ro/frxL6wAAANemQgehzp07S5I2bdqk1q1by9/f3z7O29tbFStWzPc6n8vVs2dP+9+1a9dWo0aNFBUVpQULFqhr1655TjN69GgNHz7cPpyWlqbIyEiX1gUAAK4NhQ5CY8eOlSRVrFhRPXv2lK+vr9uKyk94eLiioqK0c+fOfPv4+Pjke7QIAADgn5y+RqhPnz46e/aspk6dqtGjR+vYsWOSpJ9//ln79u1zeYH/dPToUe3du1fh4eFuXQ4AALAGp+8a27Jli+68804FBgYqJSVFAwYMUFBQkObOnavdu3dr5syZhZ7XyZMn9ccff9iHk5OTtWnTJgUFBSkoKEjjxo1Tt27dFB4erpSUFP3nP/9RcHCwunTp4mzZAAAAuTh9ROjxxx9XXFycdu7c6XB6rG3btlqxYoVT81q/fr3q16+v+vXrS5KGDx+u+vXr69lnn5Wnp6d++eUXderUSdWqVVOfPn1UrVo1JSUlKSAgwNmyAQAAcnH6iND69ev13nvv5WqvUKGCUlNTnZpX8+bNZYzJd/z333/vbHkAAACF5vQRIV9f3zy/m2fHjh0qX768S4oCAAAoCk4HoU6dOmnChAk6f/68JMlms2nPnj0aNWqUy2+fBwAAcCeng9DLL7+sw4cPKyQkRGfOnFFMTIyqVq2qgIAATZo0yR01AgAAuIXT1wiVLl1aq1at0tKlS/Xzzz8rOztbDRo00J133lng9T4AAABXGqeDUHx8vEaPHq0WLVqoRYsW9vasrCzdf//9+uyzz1xaIAAAgLs4fWps8uTJue4ay8rK0j333KNNmza5qi4AAAC3c/qI0MKFC3XnnXeqTJky6tGjh86fP6+ePXtq+/btWrZsmTtqBAAAcAung1DDhg01d+5cderUST4+Pvrggw+0a9cuLVu2TKGhoe6oEQAAwC2cPjUmXfgixI8++kjdu3dXSkqKli9fTggCAABXnUIdEeratWue7eXLl1eZMmX00EMP2dvmzJnjmsoAAADcrFBBKDAwMM/21q1bu7QYAACAolSoIDRt2jR31wEAAFDknL5GKDk5WTt37szVvnPnTqWkpLiiJgAAgCLhdBCKi4vT6tWrc7WvXbtWcXFxrqgJAACgSDgdhDZu3Khbb701V3uTJk34QkUAAHBVcToI2Ww2paen52o/ceKEsrKyXFIUAABAUXA6CDVr1kzx8fEOoScrK0vx8fG67bbbXFocAACAOzn9zdIJCQm6/fbbVb16dTVr1kyStHLlSqWlpWnp0qUuLxAAAMBdnD4iVLNmTW3ZskU9evTQoUOHlJ6ert69e2v79u2qXbu2O2oEAABwC6ePCElSRESEnn/+eVfXAgAAUKQKFYS2bNmi2rVry8PDQ1u2bCmwb926dV1SGAAAgLsVKgjVq1dPqampCgkJUb169WSz2WSMydXPZrNx5xgAALhqFCoIJScnq3z58va/AQAArgWFCkJRUVH2v3fv3q3o6GiVKOE4aWZmplavXu3QFwAA4Erm9F1jsbGxOnbsWK72EydOKDY21iVFAQAAFAWng5AxRjabLVf70aNHVapUKZcUBQAAUBQKfft8165dJV24IDouLk4+Pj72cVlZWdqyZYuio6NdXyEAAICbFDoIBQYGSrpwRCggIEB+fn72cd7e3mrSpIkGDBjg+goBAADcpNBBaNq0aZKkihUrasSIEZwGAwAAVz2nv1l67Nix7qgDAACgyDl9sTQAAMC1giAEAAAsiyAEAAAs618FobNnz7qqDgAAgCLndBDKzs7Wc889pwoVKsjf319//vmnJGnMmDH64IMPXF4gAACAuzgdhCZOnKjp06crISFB3t7e9vY6depo6tSpLi0OAADAnZwOQjNnztR7772n++67T56envb2unXravv27S4tDgAAwJ2cDkL79u1T1apVc7VnZ2fr/PnzLikKAACgKDgdhGrVqqWVK1fmav/iiy9Uv359lxQFAABQFC7rm6UfeOAB7du3T9nZ2ZozZ4527NihmTNn6ptvvnFHjQAAAG7h9BGhjh07avbs2Vq4cKFsNpueffZZbdu2TV9//bVatmzpjhoBAADcwukjQpLUunVrtW7d2tW1AAAAFCm+WRoAAFhWoY4IlS1bVjabrVAzPHbs2L8qCAAAoKgUKghNnjzZ/vfRo0c1ceJEtW7dWk2bNpUkJSUl6fvvv9eYMWPcUiQAAIA72IwxxpkJunXrptjYWD3yyCMO7W+99ZYWL16sefPmubK+fy0tLU2BgYE6ceKESpcu7bblNHxyptvmDVytNrzUu7hLAHCVKqrPb6evEfr+++/Vpk2bXO2tW7fW4sWLXVIUAABAUXA6CJUrV05z587N1T5v3jyVK1fOJUUBAAAUBadvnx8/frz69eunxMRE+zVCa9as0XfffcePrgIAgKuK00EoLi5ONWrU0BtvvKE5c+bIGKOaNWvqxx9/VOPGjd1RIwAAgFtc1hcqNm7cWJ988omrawEAAChSfKEiAACwLIIQAACwLIIQAACwrGINQitWrFDHjh0VEREhm82W68sYjTEaN26cIiIi5Ofnp+bNm+vXX38tnmIBAMA1x+kgdPDgwXzHbdmyxal5nTp1SjfddJPeeuutPMcnJCTo1Vdf1VtvvaV169YpLCxMLVu2VHp6ulPLAQAAyIvTQahOnTqaP39+rvaXX37Z6dvn27Ztq4kTJ6pr1665xhljNHnyZD399NPq2rWrateurRkzZuj06dP69NNPnS0bAAAgF6eD0FNPPaWePXtq0KBBOnPmjPbt26cWLVropZde0uzZs11WWHJyslJTU9WqVSt7m4+Pj2JiYrR69ep8p8vIyFBaWprDAwAAIC9OB6EnnnhCa9as0Y8//qi6deuqbt268vPz05YtW3TXXXe5rLDU1FRJUmhoqEN7aGiofVxe4uPjFRgYaH9ERka6rCYAAHBtuayLpStXrqxatWopJSVFaWlp6tGjR67A4io2m81h2BiTq+2fRo8erRMnTtgfe/fudUtdAADg6ud0EMo5EvTHH39oy5YtmjJlih599FH16NFDf//9t8sKCwsLk6RcR38OHTpUYOjy8fFR6dKlHR4AAAB5cToItWjRQj179lRSUpJq1Kih/v37a+PGjfrrr79Up04dlxVWqVIlhYWFadGiRfa2c+fOafny5YqOjnbZcgAAgHU5/VtjP/zwg2JiYhzaqlSpolWrVmnSpElOzevkyZP6448/7MPJycnatGmTgoKCdP3112vYsGF6/vnndcMNN+iGG27Q888/r5IlS6pXr17Olg0AAJCL00Ho4hCUw8PDQ2PGjHFqXuvXr1dsbKx9ePjw4ZKkPn36aPr06Ro5cqTOnDmjwYMH6++//1bjxo31ww8/KCAgwNmyAQAAcrEZY4wzE0yYMKHA8c8+++y/KsjV0tLSFBgYqBMnTrj1eqGGT85027yBq9WGl3oXdwkArlJF9fnt9BGhuXPnOgyfP39eycnJKlGihKpUqXLFBSEAAID8OB2ENm7cmKstLS1NcXFx6tKli0uKAgAAKAou+dHV0qVLa8KECU5fIwQAAFCcXPbr88ePH9eJEydcNTsAAAC3c/rU2BtvvOEwbIzRgQMH9NFHH6lNmzYuKwwAAMDdnA5Cr732msOwh4eHypcvrz59+mj06NEuKwwAAMDdnA5CycnJ7qgDAACgyDkdhADAavieMCC3a+V7wi4rCK1bt05ffPGF9uzZo3PnzjmMmzNnjksKAwAAcDen7xqbNWuWbr31Vv3222+aO3euzp8/r99++01Lly5VYGCgO2oEAABwC6eD0PPPP6/XXntN33zzjby9vfX6669r27Zt6tGjh66//np31AgAAOAWTgehXbt2qX379pIkHx8fnTp1SjabTY8//rjee+89lxcIAADgLk4HoaCgIKWnp0uSKlSooK1bt0q68IWKp0+fdm11AAAAblToIPTggw8qPT1dzZo106JFiyRJPXr00GOPPaYBAwbo3nvv1R133OG2QgEAAFyt0HeNzZgxQy+88ILeeustnT17VpI0evRoeXl5adWqVeratSu/NQYAAK4qhQ5CxhhJF06N5fDw8NDIkSM1cuRI11cGAADgZk5dI2Sz2dxVBwAAQJFz6gsVq1WrdskwdOzYsX9VEAAAQFFxKgiNHz+eL00EAADXDKeC0D333KOQkBB31QIAAFCkCn2NENcHAQCAa02hg1DOXWMAAADXikKfGsvOznZnHQAAAEXO6Z/YAAAAuFYQhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGVd0UFo3LhxstlsDo+wsLDiLgsAAFwjShR3AZdSq1YtLV682D7s6elZjNUAAIBryRUfhEqUKMFRIAAA4BZX9KkxSdq5c6ciIiJUqVIl3XPPPfrzzz8L7J+RkaG0tDSHBwAAQF6u6CDUuHFjzZw5U99//73ef/99paamKjo6WkePHs13mvj4eAUGBtofkZGRRVgxAAC4mlzRQaht27bq1q2b6tSpozvvvFMLFiyQJM2YMSPfaUaPHq0TJ07YH3v37i2qcgEAwFXmir9G6J9KlSqlOnXqaOfOnfn28fHxkY+PTxFWBQAArlZX9BGhi2VkZGjbtm0KDw8v7lIAAMA14IoOQiNGjNDy5cuVnJystWvXqnv37kpLS1OfPn2KuzQAAHANuKJPjf3111+69957deTIEZUvX15NmjTRmjVrFBUVVdylAQCAa8AVHYRmzZpV3CUAAIBr2BV9agwAAMCdCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyroog9M4776hSpUry9fVVw4YNtXLlyuIuCQAAXAOu+CA0e/ZsDRs2TE8//bQ2btyoZs2aqW3bttqzZ09xlwYAAK5yV3wQevXVV9WvXz/1799fNWrU0OTJkxUZGakpU6YUd2kAAOAqd0UHoXPnzmnDhg1q1aqVQ3urVq20evXqYqoKAABcK0oUdwEFOXLkiLKyshQaGurQHhoaqtTU1DynycjIUEZGhn34xIkTkqS0tDT3FSopK+OMW+cPXI3cvd0VFbZvIDd3b9858zfGuHU5V3QQymGz2RyGjTG52nLEx8dr/PjxudojIyPdUhuA/AW+Oai4SwDgJkW1faenpyswMNBt87+ig1BwcLA8PT1zHf05dOhQrqNEOUaPHq3hw4fbh7Ozs3Xs2DGVK1cu3/CEa0daWpoiIyO1d+9elS5durjLAeBCbN/WYoxRenq6IiIi3LqcKzoIeXt7q2HDhlq0aJG6dOlib1+0aJE6deqU5zQ+Pj7y8fFxaCtTpow7y8QVqHTp0uwogWsU27d1uPNIUI4rOghJ0vDhw/XAAw+oUaNGatq0qd577z3t2bNHgwZxyB0AAPw7V3wQ6tmzp44ePaoJEybowIEDql27thYuXKioqKjiLg0AAFzlrvggJEmDBw/W4MGDi7sMXAV8fHw0duzYXKdHAVz92L7hDjbj7vvSAAAArlBX9BcqAgAAuBNBCAAAWBZBCAAAWBZBCAAAWBZBCFedd955R5UqVZKvr68aNmyolStXFth/+fLlatiwoXx9fVW5cmW9++67RVQpAGesWLFCHTt2VEREhGw2m+bNm3fJadi+8W8RhHBVmT17toYNG6ann35aGzduVLNmzdS2bVvt2bMnz/7Jyclq166dmjVrpo0bN+o///mPhg4dqq+++qqIKwdwKadOndJNN92kt956q1D92b7hCtw+j6tK48aN1aBBA02ZMsXeVqNGDXXu3Fnx8fG5+j/11FOaP3++tm3bZm8bNGiQNm/erKSkpCKpGYDzbDab5s6dq86dO+fbh+0brsARIVw1zp07pw0bNqhVq1YO7a1atdLq1avznCYpKSlX/9atW2v9+vU6f/6822oF4H5s33AFghCuGkeOHFFWVpZCQ0Md2kNDQ5WamprnNKmpqXn2z8zM1JEjR9xWKwD3Y/uGKxCEcNWx2WwOw8aYXG2X6p9XO4CrD9s3/i2CEK4awcHB8vT0zHX059ChQ7n+K8wRFhaWZ/8SJUqoXLlybqsVgPuxfcMVCEK4anh7e6thw4ZatGiRQ/uiRYsUHR2d5zRNmzbN1f+HH35Qo0aN5OXl5bZaAbgf2zdcgSCEq8rw4cM1depUffjhh9q2bZsef/xx7dmzR4MGDZIkjR49Wr1797b3HzRokHbv3q3hw4dr27Zt+vDDD/XBBx9oxIgRxfUUAOTj5MmT2rRpkzZt2iTpwu3xmzZtsn89Bts33MIAV5m3337bREVFGW9vb9OgQQOzfPly+7g+ffqYmJgYh/6JiYmmfv36xtvb21SsWNFMmTKliCsGUBjLli0zknI9+vTpY4xh+4Z78D1CAADAsjg1BgAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBMBlmjdvrmHDhl2187+UcePGqV69em5dRsWKFTV58mT7sM1m07x589y6TMDKCEJAMTp06JAGDhyo66+/Xj4+PgoLC1Pr1q2VlJRk73O5H4QXf6AWVlxcnDp37uz0dHlp3ry5pk+f7pJ5ucr06dNVpkyZ4i6j0A4cOKC2bdu6dJ6X+94ArkUlirsAwMq6deum8+fPa8aMGapcubIOHjyoJUuW6NixY8VdGq4QYWFhxV0CcE3jiBBQTI4fP65Vq1bpxRdfVGxsrKKionTLLbdo9OjRat++vaQL/7lLUpcuXWSz2ezDu3btUqdOnRQaGip/f3/dfPPNWrx4sX3ezZs31+7du/X444/LZrPJZrNJyvvUzuTJk+3zHTdunGbMmKH//e9/9ukSExPzrP/UqVPq3bu3/P39FR4erldeeeWSz/nVV19VnTp1VKpUKUVGRmrw4ME6efKkQ58ff/xRMTExKlmypMqWLavWrVvr77//to/Pzs7WyJEjFRQUpLCwMI0bN67Qy0hMTFTfvn114sQJ+/O7ePp/euGFFxQaGqqAgAD169dPZ8+edRif16m6zp07Ky4ursD1MH/+fDVq1Ei+vr4KDg5W165d8+178RHBffv2qWfPnipbtqzKlSunTp06KSUlxT4+54jeyy+/rPDwcJUrV05DhgzR+fPn7TXn9d4ArIogBBQTf39/+fv7a968ecrIyMizz7p16yRJ06ZN04EDB+zDJ0+eVLt27bR48WJt3LhRrVu3VseOHe2/0j1nzhxdd911mjBhgg4cOKADBw4UqqYRI0aoR48eatOmjX266OjoPPs++eSTWrZsmebOnasffvhBiYmJ2rBhQ4Hz9/Dw0BtvvKGtW7dqxowZWrp0qUaOHGkfv2nTJt1xxx2qVauWkpKStGrVKnXs2FFZWVn2PjNmzFCpUqW0du1aJSQkaMKECVq0aFGhlhEdHa3JkyerdOnS9ueX3y+Vf/755xo7dqwmTZqk9evXKzw8XO+8806h1mNBFixYoK5du6p9+/bauHGjlixZokaNGhVq2tOnTys2Nlb+/v5asWKFVq1aJX9/f7Vp00bnzp2z91u2bJl27dqlZcuWacaMGZo+fbr9FOXlvjeAa1Zx/+orYGVffvmlKVu2rPH19TXR0dFm9OjRZvPmzQ59JJm5c+decl41a9Y0b775pn04KirKvPbaaw59xo4da2666SaHttdee81ERUXZh/v06WM6depU4LLS09ONt7e3mTVrlr3t6NGjxs/Pzzz22GOXrDXH559/bsqVK2cfvvfee82tt96ab/+YmBhz2223ObTdfPPN5qmnnir0MqZNm2YCAwMvWVvTpk3NoEGDHNoaN27ssP5iYmJyPd9OnTrZfy09v/ned999+Y6/+HX75+v/wQcfmOrVq5vs7Gz7+IyMDOPn52e+//57Y8yF1y8qKspkZmba+9x9992mZ8+e+S4DsDKOCAHFqFu3btq/f7/mz5+v1q1bKzExUQ0aNLjkBcanTp3SyJEjVbNmTZUpU0b+/v7avn27/YiQu+3atUvnzp1T06ZN7W1BQUGqXr16gdMtW7ZMLVu2VIUKFRQQEKDevXvr6NGjOnXqlKT/PyJUkLp16zoMh4eH69ChQ4VeRmFt27bN4flJyjV8OQrzHPOzYcMG/fHHHwoICLAfUQwKCtLZs2e1a9cue79atWrJ09PTPnzxOgLw/whCQDHz9fVVy5Yt9eyzz2r16tWKi4vT2LFjC5zmySef1FdffaVJkyZp5cqV2rRpk+rUqeNweiQvHh4eMsY4tOVcO+KMi+dRGLt371a7du1Uu3ZtffXVV9qwYYPefvtthxr8/PwuOR8vLy+HYZvNpuzs7EIvw5UuZ30W5jnmJzs7Ww0bNtSmTZscHr///rt69epl71fQOgLgiCAEXGFq1qzpcPTCy8vL4RoZSVq5cqXi4uLUpUsX1alTR2FhYQ4XzEqSt7d3runKly+v1NRUhw/vTZs2XXK6i1WtWlVeXl5as2aNve3vv//W77//nu8069evV2Zmpl555RU1adJE1apV0/79+x361K1bV0uWLClw2QUpzDIK8/wkqUaNGg7PT1Ku4fLlyztcY5OVlaWtW7cWON9/8xwbNGignTt3KiQkRFWrVnV4BAYGFno+hV0HgBUQhIBicvToUbVo0UIff/yxtmzZouTkZH3xxRdKSEhQp06d7P0qVqyoJUuWKDU11X73VNWqVTVnzhxt2rRJmzdvVq9evXL9x1+xYkWtWLFC+/bt05EjRyRduGPo8OHDSkhI0K5du/T222/r22+/zTXdli1btGPHDh05ciTPIxz+/v7q16+fnnzySS1ZskRbt25VXFycPDzy36VUqVJFmZmZevPNN/Xnn3/qo48+0rvvvuvQZ/To0Vq3bp0GDx6sLVu2aPv27ZoyZYq9/kspzDIqVqyokydPasmSJTpy5IhOnz6d57wee+wxffjhh/rwww/1+++/a+zYsfr1118d+rRo0UILFizQggULtH37dg0ePFjHjx8vsMaxY8fqs88+09ixY7Vt2zb98ssvSkhIKNTzu++++xQcHKxOnTpp5cqVSk5O1vLly/XYY4/pr7/+KtQ8pLzfG4BlFe8lSoB1nT171owaNco0aNDABAYGmpIlS5rq1aubZ555xpw+fdreb/78+aZq1aqmRIkS9ouak5OTTWxsrPHz8zORkZHmrbfeynXhblJSkqlbt67x8fEx/9zUp0yZYiIjI02pUqVM7969zaRJkxwulj506JBp2bKl8ff3N5LMsmXL8qw/PT3d3H///aZkyZImNDTUJCQk5Hnx8D+9+uqrJjw83Pj5+ZnWrVubmTNnGknm77//tvdJTEw00dHRxsfHx5QpU8a0bt3aPr4wFycXZhmDBg0y5cqVM5LM2LFj86130qRJJjg42Pj7+5s+ffqYkSNHOlwsfe7cOfPwww+boKAgExISYuLj4y95sbQxxnz11VemXr16xtvb2wQHB5uuXbvaxxV0sbQxxhw4cMD07t3bBAcHGx8fH1O5cmUzYMAAc+LECWNM3he7P/bYYyYmJsY+nN97A7AimzGXcbIfAADgGsCpMQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFn/B0EldqNf4SzuAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "\n", + "# Créer le graphique à barres\n", + "sns.barplot(data=purchase_spectacle_train, x=\"y_has_purchased\", y=\"Taux_ticket_internet\",ci=None)\n", + "\n", + "\n", + "# Titre du graphique\n", + "plt.title(\"Taux moyen de tickets achetés selon le statut d'achat du client\")\n", + "\n", + "# Ajouter une étiquette à l'axe des abscisses\n", + "plt.xlabel(\"Statut d'achat du client\")\n", + "\n", + "# Ajouter une étiquette à l'axe des ordonnées\n", + "plt.ylabel(\"Taux de tickets internet\")\n", + "\n", + "# Afficher le graphique\n", + "plt.show()\n" + ] + }, { "cell_type": "code", "execution_count": 107,