diff --git a/utils_ml.py b/utils_ml.py index 767f7db..e8598d3 100644 --- a/utils_ml.py +++ b/utils_ml.py @@ -28,7 +28,7 @@ import warnings def load_train_test(type_of_activity): - BUCKET = f"projet-bdc2324-team1/Generalization/{type_of_activity}" + BUCKET = f"projet-bdc2324-team1/Generalization_v2/{type_of_activity}" File_path_train = BUCKET + "/Train_set.csv" File_path_test = BUCKET + "/Test_set.csv" @@ -83,9 +83,7 @@ def compute_recall_companies(dataset_test, y_pred, type_of_activity, model): def features_target_split(dataset_train, dataset_test): - features_l = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max', - 'time_between_purchase', 'nb_tickets_internet', 'is_email_true', 'opt_in', #'is_partner', - 'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened', 'country_fr'] + features_l = ['] X_train = dataset_train[features_l] y_train = dataset_train[['y_has_purchased']] @@ -94,30 +92,29 @@ def features_target_split(dataset_train, dataset_test): return X_train, X_test, y_train, y_test -def preprocess(type_of_model): +def preprocess(type_of_model, type_of_activity): + + numeric_features = ['nb_campaigns', 'taux_ouverture_mail', 'prop_purchases_internet', 'nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', + 'purchases_10_2021','purchases_10_2022', 'purchases_11_2021', 'purchases_12_2021','purchases_1_2022', 'purchases_2_2022', 'purchases_3_2022', + 'purchases_4_2022', 'purchases_5_2021', 'purchases_5_2022', 'purchases_6_2021', 'purchases_6_2022', 'purchases_7_2021', 'purchases_7_2022', 'purchases_8_2021', + 'purchases_8_2022','purchases_9_2021', 'purchases_9_2022', 'purchase_date_min', 'purchase_date_max', 'nb_targets'] + + binary_features = ['gender_female', 'gender_male', 'country_fr', 'achat_internet', 'categorie_age_0_10', 'categorie_age_10_20', 'categorie_age_20_30','categorie_age_30_40', + 'categorie_age_40_50', 'categorie_age_50_60', 'categorie_age_60_70', 'categorie_age_70_80', 'categorie_age_plus_80','categorie_age_inconnue', + 'country_fr', 'is_profession_known', 'is_zipcode_known', 'opt_in'] + if type_of_model=='premium': - numeric_features = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', - 'purchase_date_min', 'purchase_date_max', 'time_between_purchase', 'nb_tickets_internet', - 'nb_campaigns', 'nb_campaigns_opened'] + if type_of_activity=='musique': + binary_features.extend(['target_optin', 'target_newsletter']) + elif type_of_activity=='sport': + binary_features.extend(['target_jeune', 'target_entreprise', 'target_abonne']) + else: + binary_features.extend([ 'target_scolaire', 'target_entreprise', 'target_famille', 'target_newsletter']) + - binary_features = ['gender_female', 'gender_male', 'gender_other', 'country_fr'] - categorical_features = ['opt_in'] - - else: - numeric_features = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', - 'purchase_date_min', 'purchase_date_max', 'time_between_purchase', 'nb_tickets_internet', - 'nb_campaigns', 'nb_campaigns_opened'] - - binary_features = ['gender_female', 'gender_male', 'gender_other', 'country_fr'] - categorical_features = ['opt_in'] - numeric_transformer = Pipeline(steps=[ ("scaler", StandardScaler()) ]) - categorical_features = ['opt_in'] - categorical_transformer = Pipeline(steps=[ - ("onehot", OneHotEncoder(handle_unknown='ignore', sparse_output=False)) - ]) binary_transformer = Pipeline(steps=[ ("imputer", SimpleImputer(strategy="most_frequent")), @@ -125,7 +122,6 @@ def preprocess(type_of_model): preproc = ColumnTransformer( transformers=[ ("num", numeric_transformer, numeric_features), - ("cat", categorical_transformer, categorical_features), ("bin", binary_transformer, binary_features) ] )