From f55ade48b44349d9fac368d9afb3e4afbf9884c2 Mon Sep 17 00:00:00 2001 From: tpique-ensae Date: Wed, 27 Mar 2024 15:06:31 +0000 Subject: [PATCH] minor change --- 0_6_segmentation_V2TP.py | 7 +------ .../segment_analysis_sport_0_6.ipynb | 20 +++++++++---------- 2 files changed, 11 insertions(+), 16 deletions(-) diff --git a/0_6_segmentation_V2TP.py b/0_6_segmentation_V2TP.py index 2037149..38d3dc6 100644 --- a/0_6_segmentation_V2TP.py +++ b/0_6_segmentation_V2TP.py @@ -48,15 +48,12 @@ model = load_model(type_of_activity, model_name) ### Preprocessing of data X_test = dataset_test[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max', 'time_between_purchase', 'nb_tickets_internet', 'is_email_true', 'opt_in', #'is_partner', - 'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened']] + 'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened', 'country_fr']] y_test = dataset_test[['y_has_purchased']] - X_test_segment = X_test -X_test_segment.insert(X_test.shape[1], "country_fr", dataset_test["country_fr"]) - # add y_has_purchased to X_test X_test_segment["has_purchased"] = y_test @@ -100,5 +97,3 @@ categories = list(X_test_segment_caract.drop("segment", axis=1).columns) radar_mp_plot_all(df=X_test_segment_caract, categories=categories) save_file_s3_mp(File_name = "spider_chart_all_", type_of_activity = activity) - - diff --git a/Sport/Modelization/segment_analysis_sport_0_6.ipynb b/Sport/Modelization/segment_analysis_sport_0_6.ipynb index 5d84692..032fff5 100644 --- a/Sport/Modelization/segment_analysis_sport_0_6.ipynb +++ b/Sport/Modelization/segment_analysis_sport_0_6.ipynb @@ -484,7 +484,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 180, "id": "e4287c1a-eab6-4897-91d6-d21804518dc4", "metadata": {}, "outputs": [ @@ -884,7 +884,7 @@ "[96096 rows x 21 columns]" ] }, - "execution_count": 88, + "execution_count": 180, "metadata": {}, "output_type": "execute_result" } @@ -893,14 +893,14 @@ "# Processing\n", "X_test = dataset_test[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max', \n", " 'time_between_purchase', 'nb_tickets_internet', 'is_email_true', 'opt_in', #'is_partner',\n", - " 'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened']]\n", + " 'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened', 'country_fr']]\n", "\n", "y_test = dataset_test[['y_has_purchased']]\n", "\n", "\n", "X_test_segment = X_test\n", "\n", - "X_test_segment.insert(X_test.shape[1], \"country_fr\", dataset_test[\"country_fr\"])\n", + "# X_test_segment.insert(X_test.shape[1], \"country_fr\", dataset_test[\"country_fr\"])\n", "\n", "# add y_has_purchased to X_test\n", "X_test_segment[\"has_purchased\"] = y_test\n", @@ -929,7 +929,7 @@ }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 181, "id": "3067d919-50c9-49e9-b0a6-b676a5dbae56", "metadata": {}, "outputs": [ @@ -1022,7 +1022,7 @@ "4 112518.0 " ] }, - "execution_count": 106, + "execution_count": 181, "metadata": {}, "output_type": "execute_result" } @@ -1051,7 +1051,7 @@ }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 182, "id": "bd63d787-3ef8-4f23-9069-e9b16b4a0de8", "metadata": {}, "outputs": [ @@ -1133,7 +1133,7 @@ "3 4 9.345862 78.717714 68.223837 82.758529 15.937376" ] }, - "execution_count": 172, + "execution_count": 182, "metadata": {}, "output_type": "execute_result" } @@ -1467,7 +1467,7 @@ }, { "cell_type": "code", - "execution_count": 166, + "execution_count": 183, "id": "5f908232-b0fe-4707-a8c5-5cadb7d8653f", "metadata": {}, "outputs": [ @@ -1560,7 +1560,7 @@ "3 0.170582 0.657373 " ] }, - "execution_count": 166, + "execution_count": 183, "metadata": {}, "output_type": "execute_result" }