diff --git a/utils_ml.py b/utils_ml.py index b276600..c622f86 100644 --- a/utils_ml.py +++ b/utils_ml.py @@ -161,7 +161,7 @@ def preprocess(type_of_model, type_of_activity): def draw_confusion_matrix(y_test, y_pred, model): conf_matrix = confusion_matrix(y_test, y_pred) - sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Class 0', 'Class 1'], yticklabels=['Class 0', 'Class 1']) + sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Class 0', 'Class 1'], yticklabels=['Class 0', 'Class 1'], annot_kws={"size": 14}) plt.xlabel('Predicted') plt.ylabel('Actual') plt.title('Confusion Matrix') @@ -180,10 +180,10 @@ def draw_roc_curve(X_test, y_pred_prob, model): plt.plot(fpr, tpr, label="ROC curve(area = %0.3f)" % roc_auc) plt.plot([0, 1], [0, 1], color="red",label="Random Baseline", linestyle="--") plt.grid(color='gray', linestyle='--', linewidth=0.5) - plt.xlabel("False Positive Rate") - plt.ylabel("True Positive Rate") + plt.xlabel("False Positive Rate", fontsize=14) + plt.ylabel("True Positive Rate", fontsize=14) plt.title("ROC Curve", size=18) - plt.legend(loc="lower right") + plt.legend(loc="lower right", fontsize=14) plt.show() save_file_s3("Roc_curve_", type_of_activity, type_of_model, model)