Compare commits

..

No commits in common. "main" and "data_construction" have entirely different histories.

30 changed files with 34696 additions and 2760 deletions

View File

@ -6,14 +6,13 @@ import os
import s3fs
import re
import warnings
import time
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import cleaning and merge functions
exec(open('utils_cleaning_and_merge.py').read())
exec(open('0_Cleaning_and_merge_functions.py').read())
# Output folder
BUCKET_OUT = "projet-bdc2324-team1"
@ -21,20 +20,15 @@ BUCKET_OUT = "projet-bdc2324-team1"
# Ignore warning
warnings.filterwarnings('ignore')
start_all = time.time()
def export_dataset(df, output_name):
print('Export of dataset :', output_name)
print('Exportation of dataset :', output_name)
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + output_name
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
df.to_csv(file_out, index = False)
## 1 - Cleaning of the datasets
for tenant_id in ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14"]:#, "101"
# Timer
start = time.time()
for tenant_id in ("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "101"):
# Cleaning customerplus
df1_customerplus_clean = preprocessing_customerplus(directory_path = tenant_id)
@ -51,22 +45,14 @@ for tenant_id in ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12",
## Exportation
export_dataset(df = df1_campaigns_information, output_name = "0_Input/Company_"+ tenant_id +"/campaigns_information.csv")
if tenant_id == "101":
# Cleaning product area
products_purchased_reduced, products_purchased_reduced_1 = uniform_product_df(directory_path = tenant_id)
# Exportation
export_dataset(df = products_purchased_reduced, output_name = "0_Input/Company_"+ tenant_id +"/products_purchased_reduced.csv")
export_dataset(df = products_purchased_reduced_1, output_name = "0_Input/Company_"+ tenant_id +"/products_purchased_reduced_1.csv")
else :
# Cleaning product area
products_purchased_reduced = uniform_product_df(directory_path = tenant_id)
# Exportation
export_dataset(df = products_purchased_reduced, output_name = "0_Input/Company_"+ tenant_id +"/products_purchased_reduced.csv")
## Exportation
# export_dataset(df = df1_campaigns_information, output_name = "0_Temp/Company 1 - Campaigns dataset clean.csv")
# Cleaning product area
df1_products_purchased_reduced = uniform_product_df(directory_path = tenant_id)
## Exportation
export_dataset(df = df1_products_purchased_reduced, output_name = "0_Input/Company_"+ tenant_id +"/products_purchased_reduced.csv")
#Exportation
# export_dataset(df = df1_products_purchased_reduced, output_name = "1_Temp/Company 1 - Purchases.csv")
print("Time to run the cleaning of company ", tenant_id , " : " ,time.time() - start)
print("\n ------------------------------------------------------------------ \n --------------------- END CLEANING COMPANY " + tenant_id + " --------------------- \n ------------------------------------------------------------------")
# export_dataset(df = df1_products_purchased_reduced, output_name = "0_Temp/Company 1 - Purchases.csv")
print("Time to run the cleaning of all used datasets : " , time.time() - start_all)
print("\n ------------------------------------------------------------------ \n --------------------- END CLEANING COMPANY " + tenant_id + " --------------------- \n ------------------------------------------------------------------")

128
0_2_Dataset_construction.py Normal file
View File

@ -0,0 +1,128 @@
# Business Data Challenge - Team 1
import pandas as pd
import numpy as np
import os
import s3fs
import re
import warnings
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import cleaning and merge functions
exec(open('0_KPI_functions.py').read())
# Ignore warning
warnings.filterwarnings('ignore')
def dataset_construction(min_date, end_features_date, max_date, directory_path):
# Import customerplus
df_customerplus_clean = display_databases(directory_path, file_name = "customerplus_cleaned")
df_campaigns_information = display_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])
df_products_purchased_reduced = display_databases(directory_path, file_name = "products_purchased_reduced", datetime_col = ['purchase_date'])
# Filtre de cohérence pour la mise en pratique de notre méthode
max_date = pd.to_datetime(max_date, utc = True, format = 'ISO8601')
end_features_date = pd.to_datetime(end_features_date, utc = True, format = 'ISO8601')
min_date = pd.to_datetime(min_date, utc = True, format = 'ISO8601')
#Filtre de la base df_campaigns_information
df_campaigns_information = df_campaigns_information[(df_campaigns_information['sent_at'] <= end_features_date) & (df_campaigns_information['sent_at'] >= min_date)]
df_campaigns_information['opened_at'][df_campaigns_information['opened_at'] >= end_features_date] = np.datetime64('NaT')
#Filtre de la base df_products_purchased_reduced
df_products_purchased_reduced = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= end_features_date) & (df_products_purchased_reduced['purchase_date'] >= min_date)]
print("Data filtering : SUCCESS")
# Fusion de l'ensemble et creation des KPI
# KPI sur les campagnes publicitaires
df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_information)
# KPI sur le comportement d'achat
df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_reduced)
# KPI sur les données socio-demographique
## Le genre
df_customerplus_clean["gender_label"] = df_customerplus_clean["gender"].map({
0: 'female',
1: 'male',
2: 'other'
})
gender_dummies = pd.get_dummies(df_customerplus_clean["gender_label"], prefix='gender').astype(int)
df_customerplus_clean = pd.concat([df_customerplus_clean, gender_dummies], axis=1)
## Indicatrice si individue vit en France
df_customerplus_clean["country_fr"] = df_customerplus_clean["country"].apply(lambda x : int(x=="fr") if pd.notna(x) else np.nan)
print("KPIs construction : SUCCESS")
# Fusion avec KPI liés au customer
df_customer = pd.merge(df_customerplus_clean, df_campaigns_kpi, on = 'customer_id', how = 'left')
# Fill NaN values
df_customer[['nb_campaigns', 'nb_campaigns_opened']] = df_customer[['nb_campaigns', 'nb_campaigns_opened']].fillna(0)
# Fusion avec KPI liés au comportement d'achat
df_customer_product = pd.merge(df_tickets_kpi, df_customer, on = 'customer_id', how = 'outer')
# Fill NaN values
df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']] = df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']].fillna(0)
print("Explanatory variable construction : SUCCESS")
# 2. Construction of the explained variable
df_products_purchased_to_predict = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= max_date) & (df_products_purchased_reduced['purchase_date'] > end_features_date)]
# Indicatrice d'achat
df_products_purchased_to_predict['y_has_purchased'] = 1
y = df_products_purchased_to_predict[['customer_id', 'y_has_purchased']].drop_duplicates()
print("Explained variable construction : SUCCESS")
# 3. Merge between explained and explanatory variables
dataset = pd.merge(df_customer_product, y, on = ['customer_id'], how = 'left')
# 0 if there is no purchase
dataset[['y_has_purchased']].fillna(0)
return dataset
## Exportation
# Dossier d'exportation
BUCKET_OUT = "projet-bdc2324-team1/1_Output/Logistique Regression databases - First approach"
# Dataset test
dataset_test = dataset_construction(min_date = "2021-08-01", end_features_date = "2023-08-01", max_date = "2023-11-01", directory_path = "1")
# # Exportation
# FILE_KEY_OUT_S3 = "dataset_test.csv"
# FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
# with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
# dataset_test.to_csv(file_out, index = False)
# print("Exportation dataset test : SUCCESS")
# Dataset train
dataset_train = dataset_construction(min_date = "2021-05-01", end_features_date = "2023-05-01", max_date = "2023-08-01", directory_path = "1")
# Exportation
# FILE_KEY_OUT_S3 = "dataset_train.csv"
# FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
# with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
# dataset_train.to_csv(file_out, index = False)
# print("Exportation dataset train : SUCCESS")
print("FIN DE LA GENERATION DES DATASETS : SUCCESS")

2850
0_Cleaning_and_merge.ipynb Normal file

File diff suppressed because it is too large Load Diff

View File

@ -74,11 +74,53 @@ def preprocessing_customerplus(directory_path):
cleaning_date(customerplus_copy, 'last_visiting_date')
# Selection des variables
customerplus_copy.drop(['lastname', 'firstname', 'birthdate', 'language', 'email', 'civility', 'note', 'extra', 'reference', 'extra_field', 'need_reload'], axis = 1, inplace=True) # 'preferred_category', 'preferred_supplier', 'preferred_formula', 'mcp_contact_id', 'last_visiting_date', 'deleted_at', 'last_buying_date', 'max_price', 'ticket_sum', 'average_price', 'average_purchase_delay' , 'average_price_basket', 'average_ticket_basket', 'total_price', 'purchase_count', 'first_buying_date', 'fidelity'
customerplus_copy.drop(['lastname', 'firstname', 'birthdate', 'profession', 'language', 'age', 'email', 'civility', 'note', 'extra', 'reference', 'extra_field', 'need_reload', 'preferred_category', 'preferred_supplier', 'preferred_formula', 'zipcode', 'last_visiting_date'], axis = 1, inplace=True)
customerplus_copy.rename(columns = {'id' : 'customer_id'}, inplace = True)
return customerplus_copy
def preprocessing_tickets_area(directory_path):
# Datasets loading
tickets = load_dataset(directory_path, name = "tickets")
purchases = load_dataset(directory_path, name = "purchases")
suppliers = load_dataset(directory_path, name = "suppliers")
type_ofs = load_dataset(directory_path, name = "type_ofs")
# Base des tickets
tickets = tickets[['id', 'purchase_id', 'product_id', 'is_from_subscription', 'type_of', 'supplier_id']]
tickets.rename(columns = {'id' : 'ticket_id'}, inplace = True)
# Base des fournisseurs
suppliers = suppliers[['id', 'name']]
suppliers.rename(columns = {'name' : 'supplier_name'}, inplace = True)
suppliers['supplier_name'] = suppliers['supplier_name'].fillna('')
# Base des types de billets
type_ofs = type_ofs[['id', 'name', 'children']]
type_ofs.rename(columns = {'name' : 'type_of_ticket_name'}, inplace = True)
# Base des achats
# Nettoyage de la date d'achat
# cleaning_date(purchases, 'purchase_date')
# Selection des variables
purchases = purchases[['id', 'purchase_date', 'customer_id']]
# Fusions
# Fusion avec fournisseurs
ticket_information = pd.merge(tickets, suppliers, left_on = 'supplier_id', right_on = 'id', how = 'inner')
ticket_information.drop(['supplier_id', 'id'], axis = 1, inplace=True)
# Fusion avec type de tickets
ticket_information = pd.merge(ticket_information, type_ofs, left_on = 'type_of', right_on = 'id', how = 'inner')
ticket_information.drop(['type_of', 'id'], axis = 1, inplace=True)
# Fusion avec achats
ticket_information = pd.merge(ticket_information, purchases, left_on = 'purchase_id', right_on = 'id', how = 'inner')
ticket_information.drop(['id'], axis = 1, inplace=True)
return ticket_information
def preprocessing_target_area(directory_path):
# Datasets loading
@ -127,69 +169,6 @@ def preprocessing_campaigns_area(directory_path):
return campaigns_full
def preprocessing_tickets_area(directory_path):
# Datasets loading
tickets = load_dataset(directory_path, name = "tickets")
# Supplementary tickets dataset for tenant 101
if directory_path == '101':
tickets_1 = load_dataset(directory_path, name = "tickets_1")
purchases = load_dataset(directory_path, name = "purchases")
suppliers = load_dataset(directory_path, name = "suppliers")
# type_ofs = load_dataset(directory_path, name = "type_ofs")
# Base des tickets
tickets = tickets[['id', 'purchase_id', 'product_id', 'is_from_subscription', 'type_of', 'supplier_id']]
tickets.rename(columns = {'id' : 'ticket_id'}, inplace = True)
if directory_path == '101':
tickets_1 = tickets_1[['id', 'purchase_id', 'product_id', 'is_from_subscription', 'type_of', 'supplier_id']]
tickets_1.rename(columns = {'id' : 'ticket_id'}, inplace = True)
# Base des fournisseurs
suppliers = suppliers[['id', 'name']]
suppliers.rename(columns = {'name' : 'supplier_name'}, inplace = True)
suppliers['supplier_name'] = suppliers['supplier_name'].fillna('')
# Base des types de billets
# type_ofs = type_ofs[['id', 'name', 'children']]
# type_ofs.rename(columns = {'name' : 'type_of_ticket_name'}, inplace = True)
# Base des achats
# Nettoyage de la date d'achat
# cleaning_date(purchases, 'purchase_date')
# Selection des variables
purchases = purchases[['id', 'purchase_date', 'customer_id']]
# Fusions
# Fusion avec fournisseurs
ticket_information = pd.merge(tickets, suppliers, left_on = 'supplier_id', right_on = 'id', how = 'inner')
ticket_information.drop(['supplier_id', 'id'], axis = 1, inplace=True)
# Fusion avec type de tickets
# ticket_information = pd.merge(ticket_information, type_ofs, left_on = 'type_of', right_on = 'id', how = 'inner')
# ticket_information.drop(['type_of', 'id'], axis = 1, inplace=True)
# Fusion avec achats
ticket_information = pd.merge(ticket_information, purchases, left_on = 'purchase_id', right_on = 'id', how = 'inner')
ticket_information.drop(['id'], axis = 1, inplace=True)
if directory_path == '101':
# Fusion avec fournisseurs
ticket_information_1 = pd.merge(tickets_1, suppliers, left_on = 'supplier_id', right_on = 'id', how = 'inner')
ticket_information_1.drop(['supplier_id', 'id'], axis = 1, inplace=True)
# Fusion avec achats
ticket_information_1 = pd.merge(ticket_information_1, purchases, left_on = 'purchase_id', right_on = 'id', how = 'inner')
ticket_information_1.drop(['id'], axis = 1, inplace=True)
return ticket_information, ticket_information_1
else :
return ticket_information
def create_products_table(directory_path):
# first merge products and categories
print("first merge products and categories")
@ -200,21 +179,23 @@ def create_products_table(directory_path):
categories = categories.drop(columns = ['extra_field', 'quota'])
#Merge
products_theme = products.merge(categories, how = 'left', left_on = 'category_id', right_on = 'id', suffixes=('_products', '_categories'))
products_theme = products.merge(categories, how = 'left', left_on = 'category_id',
right_on = 'id', suffixes=('_products', '_categories'))
products_theme = products_theme.rename(columns = {"name" : "name_categories"})
# Second merge products_theme and type of categories
# print("Second merge products_theme and type of categories")
# type_of_categories = load_dataset(directory_path, name = "type_of_categories")
# type_of_categories = type_of_categories.drop(columns = 'id')
# products_theme = products_theme.merge(type_of_categories, how = 'left', left_on = 'category_id',
# right_on = 'category_id' )
print("Second merge products_theme and type of categories")
type_of_categories = load_dataset(directory_path, name = "type_of_categories")
type_of_categories = type_of_categories.drop(columns = 'id')
products_theme = products_theme.merge(type_of_categories, how = 'left', left_on = 'category_id',
right_on = 'category_id' )
# Index cleaning
products_theme = products_theme.drop(columns = ['id_categories'])
products_theme = order_columns_id(products_theme)
return products_theme
def create_events_table(directory_path):
# first merge events and seasons :
print("first merge events and seasons : ")
@ -252,12 +233,16 @@ def create_events_table(directory_path):
def create_representations_table(directory_path):
representations = load_dataset(directory_path, name = "representations")
representations = representations.drop(columns = ['serial', 'satisfaction', 'is_display', 'expected_filling', 'max_filling', 'extra_field', 'name', 'representation_type_id']) # 'start_date_time', 'end_date_time', 'open'
representations = representations.drop(columns = ['serial', 'open', 'satisfaction', 'is_display', 'expected_filling',
'max_filling', 'extra_field', 'start_date_time', 'end_date_time', 'name',
'representation_type_id'])
representations_capacity = load_dataset(directory_path, name = "representation_category_capacities")
representations_capacity = representations_capacity.drop(columns = ['expected_filling', 'max_filling'])
representations_theme = representations.merge(representations_capacity, how='left', left_on='id', right_on='representation_id', suffixes=('_representation', '_representation_cap'))
representations_theme = representations.merge(representations_capacity, how='left',
left_on='id', right_on='representation_id',
suffixes=('_representation', '_representation_cap'))
# index cleaning
representations_theme = representations_theme.drop(columns = ["id_representation"])
representations_theme = order_columns_id(representations_theme)
@ -270,29 +255,20 @@ def uniform_product_df(directory_path):
products_theme = create_products_table(directory_path)
representation_theme = create_representations_table(directory_path)
events_theme = create_events_table(directory_path)
if directory_path == '101':
ticket_information, ticket_information_1 = preprocessing_tickets_area(directory_path)
else :
ticket_information = preprocessing_tickets_area(directory_path)
ticket_information = preprocessing_tickets_area(directory_path)
print("Products theme columns : ", products_theme.columns)
print("\n Representation theme columns : ", representation_theme.columns)
print("\n Events theme columns : ", events_theme.columns)
products_global = pd.merge(products_theme, representation_theme, how='left', on= ["representation_id", "category_id"])
products_global = pd.merge(products_theme, representation_theme, how='left',
on= ["representation_id", "category_id"])
products_global = pd.merge(products_global, events_theme, how='left', on='event_id', suffixes = ("_representation", "_event"))
products_global = pd.merge(products_global, events_theme, how='left', on='event_id',
suffixes = ("_representation", "_event"))
products_purchased = pd.merge(ticket_information, products_global, left_on = 'product_id', right_on = 'id_products', how = 'inner')
products_purchased_reduced = products_purchased[['ticket_id', 'customer_id', 'purchase_id' ,'event_type_id', 'supplier_name', 'purchase_date', 'amount', 'is_full_price', 'name_event_types', 'name_facilities', 'name_categories', 'name_events', 'name_seasons', 'start_date_time', 'end_date_time', 'open']] # 'type_of_ticket_name', 'children',
if directory_path == '101':
products_purchased_1 = pd.merge(ticket_information_1, products_global, left_on = 'product_id', right_on = 'id_products', how = 'inner')
products_purchased_reduced_1 = products_purchased_1[['ticket_id', 'customer_id', 'purchase_id' ,'event_type_id', 'supplier_name', 'purchase_date', 'amount', 'is_full_price', 'name_event_types', 'name_facilities', 'name_categories', 'name_events', 'name_seasons', 'start_date_time', 'end_date_time', 'open']] # 'type_of_ticket_name', 'children',
return products_purchased_reduced, products_purchased_reduced_1
else :
return products_purchased_reduced
products_purchased_reduced = products_purchased[['ticket_id', 'customer_id', 'purchase_id' ,'event_type_id', 'supplier_name', 'purchase_date', 'type_of_ticket_name', 'amount', 'children', 'is_full_price', 'name_event_types', 'name_facilities', 'name_categories', 'name_events', 'name_seasons']]
return products_purchased_reduced

97
0_KPI_functions.py Normal file
View File

@ -0,0 +1,97 @@
# Function de construction de KPI
def custom_date_parser(date_string):
return pd.to_datetime(date_string, utc = True, format = 'ISO8601')
def display_databases(directory_path, file_name, datetime_col = None):
"""
This function returns the file from s3 storage
"""
file_path = "projet-bdc2324-team1" + "/0_Input/Company_" + directory_path + "/" + file_name + ".csv"
print("File path : ", file_path)
with fs.open(file_path, mode="rb") as file_in:
df = pd.read_csv(file_in, sep=",", parse_dates = datetime_col, date_parser=custom_date_parser)
return df
def campaigns_kpi_function(campaigns_information = None):
# Nombre de campagnes de mails
nb_campaigns = campaigns_information[['customer_id', 'campaign_name']].groupby('customer_id').count().reset_index()
nb_campaigns.rename(columns = {'campaign_name' : 'nb_campaigns'}, inplace = True)
# Temps d'ouverture en min moyen
campaigns_information['time_to_open'] = pd.to_datetime(campaigns_information['opened_at'], utc = True, format = 'ISO8601') - pd.to_datetime(campaigns_information['delivered_at'], utc = True, format = 'ISO8601')
time_to_open = campaigns_information[['customer_id', 'time_to_open']].groupby('customer_id').mean().reset_index()
# Nombre de mail ouvert
opened_campaign = campaigns_information[['customer_id', 'campaign_name', 'opened_at']]
opened_campaign.dropna(subset=['opened_at'], inplace=True)
opened_campaign = opened_campaign[['customer_id', 'campaign_name']].groupby('customer_id').count().reset_index()
opened_campaign.rename(columns = {'campaign_name' : 'nb_campaigns_opened' }, inplace = True)
# Fusion des indicateurs
campaigns_reduced = pd.merge(nb_campaigns, opened_campaign, on = 'customer_id', how = 'left')
campaigns_reduced = pd.merge(campaigns_reduced, time_to_open, on = 'customer_id', how = 'left')
# Remplir les NaN : nb_campaigns_opened
campaigns_reduced['nb_campaigns_opened'].fillna(0)
# Remplir les NaT : time_to_open (??)
return campaigns_reduced
def tickets_kpi_function(tickets_information = None):
tickets_information_copy = tickets_information.copy()
# Dummy : Canal de vente en ligne
liste_mots = ['en ligne', 'internet', 'web', 'net', 'vad', 'online'] # vad = vente à distance
tickets_information_copy['vente_internet'] = tickets_information_copy['supplier_name'].str.contains('|'.join(liste_mots), case=False).astype(int)
# Proportion de vente en ligne
prop_vente_internet = tickets_information_copy[tickets_information_copy['vente_internet'] == 1].groupby(['customer_id'])['ticket_id'].count().reset_index()
prop_vente_internet.rename(columns = {'ticket_id' : 'nb_tickets_internet'}, inplace = True)
# Average amount
# avg_amount = (tickets_information_copy.groupby(["event_type_id", 'name_event_types'])
# .agg({"amount" : "mean"}).reset_index()
# .rename(columns = {'amount' : 'avg_amount'}))
tickets_kpi = (tickets_information_copy[['customer_id', 'purchase_id' ,'ticket_id','supplier_name', 'purchase_date', 'amount', 'vente_internet']]
.groupby(['customer_id'])
.agg({'ticket_id': 'count',
'purchase_id' : 'nunique',
'amount' : 'sum',
'supplier_name': 'nunique',
'vente_internet' : 'max',
'purchase_date' : ['min', 'max']})
.reset_index()
)
tickets_kpi.columns = tickets_kpi.columns.map('_'.join)
tickets_kpi.rename(columns = {'ticket_id_count' : 'nb_tickets',
'purchase_id_nunique' : 'nb_purchases',
'amount_sum' : 'total_amount',
'supplier_name_nunique' : 'nb_suppliers',
'customer_id_' : 'customer_id'}, inplace = True)
tickets_kpi['time_between_purchase'] = tickets_kpi['purchase_date_max'] - tickets_kpi['purchase_date_min']
tickets_kpi['time_between_purchase'] = tickets_kpi['time_between_purchase'] / np.timedelta64(1, 'D') # En nombre de jours
# Convertir date et en chiffre
max_date = tickets_kpi['purchase_date_max'].max()
tickets_kpi['purchase_date_max'] = (max_date - tickets_kpi['purchase_date_max']) / np.timedelta64(1, 'D')
tickets_kpi['purchase_date_min'] = (max_date - tickets_kpi['purchase_date_min']) / np.timedelta64(1, 'D')
tickets_kpi = tickets_kpi.merge(prop_vente_internet, on = ['customer_id'], how = 'left')
tickets_kpi['nb_tickets_internet'] = tickets_kpi['nb_tickets_internet'].fillna(0)
# tickets_kpi = tickets_kpi.merge(avg_amount, how='left', on= 'event_type_id')
return tickets_kpi

File diff suppressed because one or more lines are too long

View File

@ -1,176 +0,0 @@
# Purpose of the script : Construction of training and test datasets for modelling by company
# Input : KPI construction function and clean databases in the 0_Input folder
# Output : Train and test datasets by compagnies
# Packages
import pandas as pd
import numpy as np
import os
import s3fs
import re
import warnings
from datetime import date, timedelta, datetime
from sklearn.model_selection import train_test_split
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import KPI construction functions
exec(open('utils_features_construction.py').read())
# Ignore warning
warnings.filterwarnings('ignore')
def dataset_construction(min_date, end_features_date, max_date, directory_path):
# Import of cleaned and merged datasets
df_customerplus_clean_0 = display_input_databases(directory_path, file_name = "customerplus_cleaned")
df_campaigns_information = display_input_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])
df_products_purchased_reduced = display_input_databases(directory_path, file_name = "products_purchased_reduced", datetime_col = ['purchase_date'])
df_target_information = display_input_databases(directory_path, file_name = "target_information")
# Dates in datetime format
max_date = pd.to_datetime(max_date, utc = True, format = 'ISO8601')
end_features_date = pd.to_datetime(end_features_date, utc = True, format = 'ISO8601')
min_date = pd.to_datetime(min_date, utc = True, format = 'ISO8601')
# Filter for database df_campaigns_information
df_campaigns_information = df_campaigns_information[(df_campaigns_information['sent_at'] < end_features_date) & (df_campaigns_information['sent_at'] >= min_date)]
df_campaigns_information['opened_at'][df_campaigns_information['opened_at'] >= end_features_date] = np.datetime64('NaT')
# Filter for database df_products_purchased_reduced
df_products_purchased_features = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] < end_features_date) & (df_products_purchased_reduced['purchase_date'] >= min_date)]
print("Data filtering : SUCCESS")
# Building and merging features
# Campaigns features
df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_information, max_date = end_features_date)
# Purchasing behavior features
df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_features)
# Socio-demographic features
df_customerplus_clean = customerplus_kpi_function(customerplus_clean = df_customerplus_clean_0)
# Targets features
df_targets_kpi = targets_KPI(df_target = df_target_information)
print("KPIs construction : SUCCESS")
# Merge - campaigns features
df_customer = pd.merge(df_customerplus_clean, df_campaigns_kpi, on = 'customer_id', how = 'left')
# Fill NaN values
df_customer[['nb_campaigns', 'nb_campaigns_opened', 'taux_ouverture_mail']] = df_customer[['nb_campaigns', 'nb_campaigns_opened', 'taux_ouverture_mail']].fillna(0)
df_customer['time_to_open'] = df_customer['time_to_open'].fillna(df_customer['time_to_open'].mean())
# Merge - targets features
df_customer = pd.merge(df_customer, df_targets_kpi, on = 'customer_id', how = 'left')
# Fill NaN values
targets_columns = list(df_targets_kpi.columns)
targets_columns.remove('customer_id')
df_customer[targets_columns] = df_customer[targets_columns].fillna(0)
# We standardise the number of targets closely linked to the company's operations
df_customer['nb_targets'] = (df_customer['nb_targets'] - (df_customer['nb_targets'].mean())) / (df_customer['nb_targets'].std())
# Merge - purchasing behavior features
df_customer_product = pd.merge(df_customer, df_tickets_kpi, on = 'customer_id', how = 'left')
# Fill NaN values
special_fill_nan = ['customer_id', 'purchase_date_min', 'purchase_date_max', 'time_between_purchase']
simple_fill_nan = [column for column in list(df_tickets_kpi.columns) if column not in special_fill_nan]
df_customer_product[simple_fill_nan] = df_customer_product[simple_fill_nan].fillna(0)
max_interval = (end_features_date - min_date) / np.timedelta64(1, 'D') + 1
df_customer_product[['purchase_date_max', 'purchase_date_min']] = df_customer_product[['purchase_date_max', 'purchase_date_min']].fillna(max_interval)
df_customer_product[['time_between_purchase']] = df_customer_product[['time_between_purchase']].fillna(-1)
# Customers who have neither received an e-mail nor made a purchase during the feature estimation period are removed
df_customer_product = df_customer_product[(df_customer_product['nb_purchases'] > 0) | (df_customer_product['nb_campaigns'] > 0)]
print("Explanatory variable construction : SUCCESS")
# 2. Construction of the explained variable
df_products_purchased_to_predict = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] < max_date) & (df_products_purchased_reduced['purchase_date'] >= end_features_date)]
# Construction of the dependant variable
df_products_purchased_to_predict['y_has_purchased'] = 1
y = df_products_purchased_to_predict[['customer_id', 'y_has_purchased']].drop_duplicates()
print("Explained variable construction : SUCCESS")
# 3. Merge between explained and explanatory variables
dataset = pd.merge(df_customer_product, y, on = ['customer_id'], how = 'left')
# 0 if there is no purchase
dataset[['y_has_purchased']] = dataset[['y_has_purchased']].fillna(0)
# add id_company prefix to customer_id
dataset['customer_id'] = directory_path + '_' + dataset['customer_id'].astype('str')
return dataset
## Exportation
# Sectors
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
'sport': ['5', '6', '7', '8', '9'],
'musique' : ['10', '11', '12', '13', '14']}
# Choosed sector
type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
list_of_comp = companies[type_of_comp]
# Export folder
BUCKET_OUT = f'projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}'
# Dates used for the construction of features and the dependant variable
start_date = "2021-05-01"
end_of_features = "2022-11-01"
final_date = "2023-11-01"
# Anonymous customer to be deleted from the datasets
anonymous_customer = {'1' : '1_1', '2' : '2_12184', '3' : '3_1', '4' : '4_2', '101' : '101_1',
'5' : '5_191835', '6' : '6_591412', '7' : '7_49632', '8' : '8_1942', '9' : '9_19683',
'10' : '10_19521', '11' : '11_36', '12' : '12_1706757', '13' : '13_8422', '14' : '14_6354'}
for company in list_of_comp:
dataset = dataset_construction(min_date = start_date, end_features_date = end_of_features,
max_date = final_date, directory_path = company)
# Deletion of the anonymous customer
dataset = dataset[dataset['customer_id'] != anonymous_customer[company]]
# Split between train and test
dataset_train, dataset_test = train_test_split(dataset, test_size=0.3, random_state=42)
# Dataset Test
# Export
FILE_KEY_OUT_S3 = "dataset_test" + company + ".csv"
FILE_PATH_OUT_S3 = BUCKET_OUT + "/Test_set/" + FILE_KEY_OUT_S3
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
dataset_test.to_csv(file_out, index = False)
print("Export of dataset test : SUCCESS")
# Dataset train
# Export
FILE_KEY_OUT_S3 = "dataset_train" + company + ".csv"
FILE_PATH_OUT_S3 = BUCKET_OUT + "/Train_set/" + FILE_KEY_OUT_S3
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
dataset_train.to_csv(file_out, index = False)
print("Export of dataset train : SUCCESS")
print("End of dataset generation for ", type_of_comp," compagnies : SUCCESS")

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,68 +0,0 @@
# Business Data Challenge - Team 1
import pandas as pd
import numpy as np
import os
import s3fs
import re
import warnings
from datetime import date, timedelta, datetime
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import KPI construction functions
exec(open('utils_features_construction.py').read())
# Ignore warning
warnings.filterwarnings('ignore')
# functions
def generate_test_set(type_of_comp):
file_path_list = fs.ls(f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}/Test_set")
test_set = pd.DataFrame()
for file in file_path_list:
print(file)
with fs.open(file, mode="rb") as file_in:
df = pd.read_csv(file_in, sep=",")
test_set = pd.concat([test_set, df], ignore_index = True)
return test_set
def generate_train_set(type_of_comp):
file_path_list = fs.ls(f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}/Train_set")
train_set = pd.DataFrame()
for file in file_path_list:
print(file)
with fs.open(file, mode="rb") as file_in:
df = pd.read_csv(file_in, sep=",")
train_set = pd.concat([train_set, df], ignore_index = True)
return train_set
type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
BUCKET_OUT = f'projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}/'
# create test and train datasets
test_set = generate_test_set(type_of_comp)
train_set = generate_train_set(type_of_comp)
# Exportation test set
FILE_KEY_OUT_S3 = "Test_set.csv"
FILE_PATH_OUT_S3 = BUCKET_OUT + FILE_KEY_OUT_S3
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
test_set.to_csv(file_out, index = False)
print("Exportation dataset test : SUCCESS")
# Exportation train set
FILE_KEY_OUT_S3 = "Train_set.csv"
FILE_PATH_OUT_S3 = BUCKET_OUT + FILE_KEY_OUT_S3
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
train_set.to_csv(file_out, index = False)
print("Exportation dataset train : SUCCESS")

View File

@ -1,82 +0,0 @@
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import warnings
from datetime import date, timedelta, datetime
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
# Ignore warning
warnings.filterwarnings('ignore')
exec(open('utils_features_construction.py').read())
exec(open('utils_stat_desc.py').read())
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
'sport': ['5', '6', '7', '8', '9'],
'musique' : ['10', '11', '12', '13', '14']}
# type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
for type_of_activity in ['musee', 'sport', 'musique'] :
list_of_comp = companies[type_of_activity]
# Load files
customer, campaigns_kpi, campaigns_brut, tickets, products, targets = load_files(list_of_comp)
# Identify anonymous customer for each company and remove them from our datasets
outlier_list = outlier_detection(tickets, list_of_comp)
# Identify valid customer (customer who bought tickets after starting date or received mails after starting date)
customer_valid_list = valid_customer_detection(products, campaigns_brut)
databases = [customer, campaigns_kpi, campaigns_brut, tickets, products]
for dataset in databases:
dataset['customer_id'] = dataset['customer_id'].apply(lambda x: remove_elements(x, outlier_list))# remove outlier
dataset = dataset[dataset['customer_id'].isin(customer_valid_list)] # keep only valid customer
#print(f'shape of {dataset} : ', dataset.shape)
# Identify customer who bought during the period of y
customer_target_period = identify_purchase_during_target_periode(products)
customer['has_purchased_target_period'] = np.where(customer['customer_id'].isin(customer_target_period), 1, 0)
# Generate graph and automatically saved them in the bucket
compute_nb_clients(customer, type_of_activity)
#maximum_price_paid(customer, type_of_activity)
target_proportion(customer, type_of_activity)
mailing_consent(customer, type_of_activity)
mailing_consent_by_target(customer, type_of_activity)
gender_bar(customer, type_of_activity)
country_bar(customer, type_of_activity)
lazy_customer_plot(campaigns_kpi, type_of_activity)
campaigns_effectiveness(customer, type_of_activity)
sale_dynamics(products, campaigns_brut, type_of_activity)
tickets_internet(tickets, type_of_activity)
already_bought_online(tickets, type_of_activity)
box_plot_price_tickets(tickets, type_of_activity)
target_description(targets, type_of_activity)

View File

@ -1,87 +0,0 @@
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, recall_score
from sklearn.utils import class_weight
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.calibration import calibration_curve
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler, MaxAbsScaler, MinMaxScaler
from sklearn.metrics import make_scorer, f1_score, balanced_accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score
from sklearn.exceptions import ConvergenceWarning, DataConversionWarning
import pickle
import warnings
exec(open('utils_ml.py').read())
warnings.filterwarnings('ignore')
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=DataConversionWarning)
# choose the type of companies for which you want to run the pipeline
type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
# choose the type of model
type_of_model = input('Choisissez le type de model : standard ? premium ?')
# load train and test set
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
dataset_train, dataset_test = load_train_test(type_of_activity, type_of_model)
X_train, X_test, y_train, y_test = features_target_split(dataset_train, dataset_test)
print("Shape train : ", X_train.shape)
print("Shape test : ", X_test.shape)
# processing
weights = class_weight.compute_class_weight(class_weight = 'balanced', classes = np.unique(y_train['y_has_purchased']),
y = y_train['y_has_purchased'])
weight_dict = {np.unique(y_train['y_has_purchased'])[i]: weights[i] for i in range(len(np.unique(y_train['y_has_purchased'])))}
preproc = preprocess(type_of_model, type_of_activity)
# Object for storing results
model_result = pd.DataFrame(columns= ["Model", "Accuracy", "Recall", "F1_score", "AUC"])
# Naive Bayes
model_result = pipeline_naiveBayes_benchmark(X_train, y_train, X_test, y_test, model_result)
save_result_set_s3(model_result , "resultat", type_of_activity, type_of_model)
print("Naive Bayes : Done")
# Logistic Regression
model_result = pipeline_logreg_benchmark(X_train, y_train, X_test, y_test, model_result)
print("Logistic : Done")
model_result = pipeline_logreg_cv(X_train, y_train, X_test, y_test, model_result)
save_result_set_s3(model_result , "resultat", type_of_activity, type_of_model)
print("Logistic CV : Done")
# Random Forest
model_result = pipeline_randomF_benchmark(X_train, y_train, X_test, y_test, model_result)
save_result_set_s3(model_result , "resultat", type_of_activity, type_of_model)
print("Random Forest : Done")
model_result = pipeline_randomF_cv(X_train, y_train, X_test, y_test, model_result)
save_result_set_s3(model_result , "resultat", type_of_activity, type_of_model)
print("Random Forest CV: Done")
# Save result
save_result_set_s3(model_result , "resultat", type_of_activity, type_of_model)

View File

@ -1,86 +0,0 @@
# Packages
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import pickle
import warnings
import matplotlib.pyplot as plt
from tabulate import tabulate
###################################
# choose the model we use for the segmentation
# model_name = "LogisticRegression_Benchmark"
model_name = "LogisticRegression_cv"
###################################
# execute file including functions we need
exec(open('utils_segmentation.py').read())
warnings.filterwarnings('ignore')
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# choose the type of companies for which you want to run the pipeline
# type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
for type_of_activity in ['musee', 'sport', 'musique'] :
# load test set
dataset_test = load_test_file(type_of_activity)
# Load Model
model = load_model(type_of_activity, model_name)
### Preprocessing of data
X_test = dataset_test.drop(columns = 'y_has_purchased')
y_test = dataset_test[['y_has_purchased']]
X_test_segment = X_test
# add y_has_purchased to X_test
X_test_segment["has_purchased"] = y_test
# Add prediction and probability to dataset_test
y_pred = model.predict(X_test)
X_test_segment["has_purchased_estim"] = y_pred
y_pred_prob = model.predict_proba(X_test)[:, 1]
X_test_segment['score'] = y_pred_prob
X_test_segment["segment"] = np.where(X_test_segment['score']<0.25, '1',
np.where(X_test_segment['score']<0.5, '2',
np.where(X_test_segment['score']<0.75, '3', '4')))
### 1. business KPIs
business_var = ["nb_tickets", "nb_purchases", "total_amount", "nb_campaigns"]
X_test_business_fig = df_business_fig(X_test_segment, "segment", business_var)
print(f"business figures for {type_of_activity} companies :\n")
print(X_test_business_fig)
print("\n")
# save histogram to Minio
hist_segment_business_KPIs(X_test_business_fig, "segment", "size", "nb_tickets",
"nb_purchases", "total_amount", "nb_campaigns", type_of_activity)
save_file_s3_mp(File_name = "segments_business_KPI_", type_of_activity = type_of_activity)
### 2. description of marketing personae
## A. Spider chart
radar_mp_plot_all(df = X_test_segment, type_of_activity = type_of_activity)
save_file_s3_mp(File_name = "spider_chart_all_", type_of_activity = type_of_activity)
## B. Latex table
known_sociodemo_caracteristics(df = X_test_segment, type_of_activity = type_of_activity)

View File

@ -1,112 +0,0 @@
# importations
import pandas as pd
from pandas import DataFrame
import numpy as np
import os
import s3fs
import matplotlib.pyplot as plt
from scipy.optimize import fsolve
import pickle
import warnings
import io
# ignore warnings
warnings.filterwarnings('ignore')
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# importation of functions defined
exec(open('utils_sales_forecast.py').read())
# from utils_CA_segment import *
# define type of activity
type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
PATH = f"projet-bdc2324-team1/2_Output/2_3_Sales_Forecast/{type_of_activity}/"
# type of model for the score
type_of_model = "LogisticRegression_cv"
# type_of_model = "LogisticRegression_Benchmark"
# load train and test sets
dataset_train, dataset_test = load_train_test(type_of_activity)
# make features - define X train and X test
X_train, X_test, y_train, y_test = features_target_split(dataset_train, dataset_test)
# choose model - logit cross validated
model = load_model(type_of_activity, type_of_model)
# create table X test segment from X test
X_test_segment = df_segment(X_test, y_test, model)
# comparison with bias of the train set - X train to be defined
X_train_score = model.predict_proba(X_train)[:, 1]
bias_train_set = find_bias(odd_ratios = odd_ratio(adjust_score_1(X_train_score)),
y_objective = y_train["y_has_purchased"].sum(),
initial_guess=10)
print("Bias estimated :", np.log(bias_train_set))
# create a score adjusted with the bias computed
score_adjusted_train = adjusted_score(odd_ratio(adjust_score_1(X_test_segment["score"])), bias = bias_train_set)
X_test_segment["score_adjusted"] = score_adjusted_train
print("The score was successfully adjusted")
MAE_score = abs(X_test_segment["score"]-X_test_segment["has_purchased"]).mean()
MAE_ajusted_score = abs(X_test_segment["score_adjusted"]-X_test_segment["has_purchased"]).mean()
print(f"MAE for score : {MAE_score}")
print(f"MAE for adjusted score : {MAE_ajusted_score}")
### 1. plot adjusted scores and save (to be tested)
plot_hist_scores(X_test_segment, score = "score", score_adjusted = "score_adjusted", type_of_activity = type_of_activity)
save_file_s3_ca("hist_score_adjusted_", type_of_activity)
### 2. comparison between score and adjusted score
X_test_table_adjusted_scores = (100 * X_test_segment.groupby("quartile")[["score","score_adjusted", "has_purchased"]].mean()).round(2).reset_index()
X_test_table_adjusted_scores = X_test_table_adjusted_scores.rename(columns = {col : f"{col} (%)" for col in X_test_table_adjusted_scores.columns if col in ["score","score_adjusted", "has_purchased"]})
print("Table of scores :\n")
print(X_test_table_adjusted_scores)
print("\n")
# save table
file_name = "table_adjusted_score_"
FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".csv"
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
X_test_table_adjusted_scores.to_csv(file_out, index = False)
# project revenue
X_test_segment = project_tickets_CA (X_test_segment, "nb_purchases", "nb_tickets", "total_amount", "score_adjusted",
duration_ref=17, duration_projection=12)
### 3. table summarizing projections (nb tickets, revenue)
"""
X_test_expected_CA = round(summary_expected_CA(df=X_test_segment, segment="quartile",
nb_tickets_expected="nb_tickets_expected", total_amount_expected="total_amount_expected",
total_amount="total_amount", pace_purchase="pace_purchase"),2)
"""
X_test_expected_CA = round(summary_expected_CA(df=X_test_segment, segment="quartile",
nb_tickets_expected="nb_tickets_expected", total_amount_expected="total_amount_expected",
total_amount="total_amount_corrected", pace_purchase="pace_purchase"),2)
# rename columns
mapping_dict = {col: col.replace("perct", "(%)").replace("_", " ") for col in X_test_expected_CA.columns}
X_test_expected_CA = X_test_expected_CA.rename(columns=mapping_dict)
print("Summary of forecast :\n")
print(X_test_expected_CA)
print("\n")
# save table
file_name = "table_expected_CA_"
FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".csv"
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
X_test_expected_CA.to_csv(file_out, index = False)

1295
Exploration_billet_AJ.ipynb Normal file

File diff suppressed because it is too large Load Diff

8490
Notebook_AR.ipynb Normal file

File diff suppressed because one or more lines are too long

825
Notebook_Fanta.ipynb Normal file
View File

@ -0,0 +1,825 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "aa74dbe0-f974-4b5c-94f4-4dba9fbc64fa",
"metadata": {},
"source": [
"# Business Data Challenge - Team 1"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "94c498e7-7c50-45f9-b3f4-a1ab19b7ccc4",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "7a3b50ac-b1ff-4f3d-9938-e048fdc8e027",
"metadata": {},
"source": [
"Configuration de l'accès aux données"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0b029d42-fb02-481e-a407-7e41886198a6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['bdc2324-data/1',\n",
" 'bdc2324-data/10',\n",
" 'bdc2324-data/101',\n",
" 'bdc2324-data/11',\n",
" 'bdc2324-data/12',\n",
" 'bdc2324-data/13',\n",
" 'bdc2324-data/14',\n",
" 'bdc2324-data/2',\n",
" 'bdc2324-data/3',\n",
" 'bdc2324-data/4',\n",
" 'bdc2324-data/5',\n",
" 'bdc2324-data/6',\n",
" 'bdc2324-data/7',\n",
" 'bdc2324-data/8',\n",
" 'bdc2324-data/9']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"import s3fs\n",
"# Create filesystem object\n",
"S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n",
"fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})\n",
"\n",
"BUCKET = \"bdc2324-data\"\n",
"fs.ls(BUCKET)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "fbaf9aa7-ff70-4dbe-a969-b801c593510b",
"metadata": {},
"outputs": [],
"source": [
"# Chargement des fichiers campaign_stats.csv\n",
"FILE_PATH_S3 = 'bdc2324-data/1/1campaign_stats.csv'\n",
"\n",
"with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" campaign_stats_1 = pd.read_csv(file_in, sep=\",\")\n",
"\n",
"FILE_PATH_S3 = 'bdc2324-data/2/2campaign_stats.csv'\n",
"\n",
"with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" campaign_stats_2 = pd.read_csv(file_in, sep=\",\")\n",
"\n",
"FILE_PATH_S3 = 'bdc2324-data/3/3campaign_stats.csv'\n",
"\n",
"with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" campaign_stats_3 = pd.read_csv(file_in, sep=\",\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1e0418bc-8e97-4a04-b7f3-bda3bef7d36e",
"metadata": {},
"outputs": [],
"source": [
"# Conversion des dates 'sent_at'\n",
"campaign_stats_1['sent_at'] = pd.to_datetime(campaign_stats_1['sent_at'], format = 'ISO8601', utc = True)\n",
"campaign_stats_2['sent_at'] = pd.to_datetime(campaign_stats_2['sent_at'], format = 'ISO8601', utc = True)\n",
"campaign_stats_3['sent_at'] = pd.to_datetime(campaign_stats_3['sent_at'], format = 'ISO8601', utc = True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "cc5c20ba-e827-4e5a-97a5-7f3947e0621c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-11-09 18:10:45+00:00\n",
"2020-06-02 08:24:08+00:00\n",
"2023-10-12 01:39:48+00:00\n",
"2023-10-10 17:06:29+00:00\n",
"2023-11-01 09:20:48+00:00\n",
"2021-03-31 14:59:02+00:00\n"
]
}
],
"source": [
"# Chaque unites correspond à une période ? --> Non, les dossiers ont juste pour but de réduire la taille des fichiers\n",
"print(campaign_stats_1['sent_at'].max())\n",
"print(campaign_stats_1['sent_at'].min())\n",
"\n",
"print(campaign_stats_2['sent_at'].max())\n",
"print(campaign_stats_2['sent_at'].min())\n",
"\n",
"print(campaign_stats_3['sent_at'].max())\n",
"print(campaign_stats_3['sent_at'].min())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c75632df-b018-4bb8-a99d-83f15af94369",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 2021-03-28 16:01:09+00:00\n",
"1 2021-03-28 16:01:09+00:00\n",
"2 2021-03-28 16:00:59+00:00\n",
"3 2021-03-28 16:00:59+00:00\n",
"4 2021-03-28 16:01:06+00:00\n",
" ... \n",
"6214803 2023-10-23 09:32:33+00:00\n",
"6214804 2023-10-23 09:32:49+00:00\n",
"6214805 2023-10-23 09:33:28+00:00\n",
"6214806 2023-10-23 09:31:53+00:00\n",
"6214807 2023-10-23 09:33:54+00:00\n",
"Name: sent_at, Length: 6214808, dtype: datetime64[ns, UTC]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"campaign_stats_1['sent_at']"
]
},
{
"cell_type": "markdown",
"id": "f4c0c63e-0418-4cfe-a57d-7af57bca0c22",
"metadata": {},
"source": [
"### Customersplus.csv"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d3bf880d-1065-4d5b-9954-1830aa5081af",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_1362/4118060109.py:9: DtypeWarning: Columns (20) have mixed types. Specify dtype option on import or set low_memory=False.\n",
" customers_plus_2 = pd.read_csv(file_in, sep=\",\")\n"
]
}
],
"source": [
"FILE_PATH_S3 = 'bdc2324-data/1/1customersplus.csv'\n",
"\n",
"with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" customers_plus_1 = pd.read_csv(file_in, sep=\",\")\n",
"\n",
"FILE_PATH_S3 = 'bdc2324-data/2/2customersplus.csv'\n",
"\n",
"with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" customers_plus_2 = pd.read_csv(file_in, sep=\",\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "7368f381-db8e-4a4d-9fe2-5947eb55be58",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['id', 'lastname', 'firstname', 'birthdate', 'email', 'street_id',\n",
" 'created_at', 'updated_at', 'civility', 'is_partner', 'extra',\n",
" 'deleted_at', 'reference', 'gender', 'is_email_true', 'extra_field',\n",
" 'identifier', 'opt_in', 'structure_id', 'note', 'profession',\n",
" 'language', 'mcp_contact_id', 'need_reload', 'last_buying_date',\n",
" 'max_price', 'ticket_sum', 'average_price', 'fidelity',\n",
" 'average_purchase_delay', 'average_price_basket',\n",
" 'average_ticket_basket', 'total_price', 'preferred_category',\n",
" 'preferred_supplier', 'preferred_formula', 'purchase_count',\n",
" 'first_buying_date', 'last_visiting_date', 'zipcode', 'country', 'age',\n",
" 'tenant_id'],\n",
" dtype='object')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"customers_plus_1.columns"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08091935-b159-47fa-806c-e1444f3b227e",
"metadata": {},
"outputs": [],
"source": [
"customers_plus_1.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f8c8868-c1ac-4cee-af08-533d928f6764",
"metadata": {},
"outputs": [],
"source": [
"customers_plus_1['id'].nunique()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bf95daf2-4852-4718-b474-207a1ebd8ac4",
"metadata": {},
"outputs": [],
"source": [
"customers_plus_2['id'].nunique()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1425c385-3216-4e4f-ae8f-a121624721ba",
"metadata": {},
"outputs": [],
"source": [
"common_id = set(customers_plus_2['id']).intersection(customers_plus_1['id'])"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "92533026-e27c-4f1f-81ca-64eda32a34c0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"common_id = set(customers_plus_2['id']).intersection(customers_plus_1['id'])\n",
"# Exemple id commun = caractéristiques communes\n",
"print(customers_plus_2[customers_plus_2['id'] == list(common_id)[0]])\n",
"\n",
"print(customers_plus_1[customers_plus_1['id'] == list(common_id)[0]])"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "bf9ebc94-0ba6-443d-8e53-22477a6e79a7",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"id 0.000000\n",
"lastname 43.461341\n",
"firstname 44.995588\n",
"birthdate 96.419870\n",
"email 8.622075\n",
"street_id 0.000000\n",
"created_at 0.000000\n",
"updated_at 0.000000\n",
"civility 100.000000\n",
"is_partner 0.000000\n",
"extra 100.000000\n",
"deleted_at 100.000000\n",
"reference 100.000000\n",
"gender 0.000000\n",
"is_email_true 0.000000\n",
"extra_field 100.000000\n",
"identifier 0.000000\n",
"opt_in 0.000000\n",
"structure_id 88.072380\n",
"note 99.403421\n",
"profession 95.913503\n",
"language 99.280945\n",
"mcp_contact_id 34.876141\n",
"need_reload 0.000000\n",
"last_buying_date 51.653431\n",
"max_price 51.653431\n",
"ticket_sum 0.000000\n",
"average_price 8.639195\n",
"fidelity 0.000000\n",
"average_purchase_delay 51.653431\n",
"average_price_basket 51.653431\n",
"average_ticket_basket 51.653431\n",
"total_price 43.014236\n",
"preferred_category 100.000000\n",
"preferred_supplier 100.000000\n",
"preferred_formula 100.000000\n",
"purchase_count 0.000000\n",
"first_buying_date 51.653431\n",
"last_visiting_date 100.000000\n",
"zipcode 71.176564\n",
"country 5.459418\n",
"age 96.419870\n",
"tenant_id 0.000000\n",
"dtype: float64\n"
]
}
],
"source": [
"pd.DataFrame(customers_plus_1.isna().mean()*100)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "6d62e73f-3925-490f-9fd4-d0e838903cb2",
"metadata": {},
"outputs": [],
"source": [
"# Chargement de toutes les données\n",
"liste_base = ['customer_target_mappings', 'customersplus', 'target_types', 'tags', 'events', 'tickets', 'representations', 'purchases', 'products']\n",
"\n",
"for nom_base in liste_base:\n",
" FILE_PATH_S3 = 'bdc2324-data/11/11' + nom_base + '.csv'\n",
" with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" globals()[nom_base] = pd.read_csv(file_in, sep=\",\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "12b24f1c-eb3e-45be-aaf3-b9273180caa3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>lastname</th>\n",
" <th>firstname</th>\n",
" <th>birthdate</th>\n",
" <th>email</th>\n",
" <th>street_id</th>\n",
" <th>created_at</th>\n",
" <th>updated_at</th>\n",
" <th>civility</th>\n",
" <th>is_partner</th>\n",
" <th>...</th>\n",
" <th>tenant_id</th>\n",
" <th>id_x</th>\n",
" <th>customer_id</th>\n",
" <th>purchase_date</th>\n",
" <th>type_of</th>\n",
" <th>is_from_subscription</th>\n",
" <th>amount</th>\n",
" <th>is_full_price</th>\n",
" <th>start_date_time</th>\n",
" <th>event_name</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>405082</td>\n",
" <td>lastname405082</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>6</td>\n",
" <td>2023-01-12 06:30:31.197484+01:00</td>\n",
" <td>2023-01-12 06:30:31.197484+01:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>992423</td>\n",
" <td>405082</td>\n",
" <td>2023-01-11 17:08:41+01:00</td>\n",
" <td>3</td>\n",
" <td>False</td>\n",
" <td>13.0</td>\n",
" <td>False</td>\n",
" <td>2023-02-06 20:00:00+01:00</td>\n",
" <td>zaide</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>405082</td>\n",
" <td>lastname405082</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>6</td>\n",
" <td>2023-01-12 06:30:31.197484+01:00</td>\n",
" <td>2023-01-12 06:30:31.197484+01:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>992423</td>\n",
" <td>405082</td>\n",
" <td>2023-01-11 17:08:41+01:00</td>\n",
" <td>3</td>\n",
" <td>False</td>\n",
" <td>13.0</td>\n",
" <td>False</td>\n",
" <td>2023-02-06 20:00:00+01:00</td>\n",
" <td>zaide</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>411168</td>\n",
" <td>lastname411168</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>6</td>\n",
" <td>2023-03-17 06:30:35.431967+01:00</td>\n",
" <td>2023-03-17 06:30:35.431967+01:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1053934</td>\n",
" <td>411168</td>\n",
" <td>2023-03-16 16:23:10+01:00</td>\n",
" <td>3</td>\n",
" <td>False</td>\n",
" <td>62.0</td>\n",
" <td>False</td>\n",
" <td>2023-03-19 16:00:00+01:00</td>\n",
" <td>luisa miller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>411168</td>\n",
" <td>lastname411168</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>6</td>\n",
" <td>2023-03-17 06:30:35.431967+01:00</td>\n",
" <td>2023-03-17 06:30:35.431967+01:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1053934</td>\n",
" <td>411168</td>\n",
" <td>2023-03-16 16:23:10+01:00</td>\n",
" <td>3</td>\n",
" <td>False</td>\n",
" <td>62.0</td>\n",
" <td>False</td>\n",
" <td>2023-03-19 16:00:00+01:00</td>\n",
" <td>luisa miller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4380</td>\n",
" <td>lastname4380</td>\n",
" <td>firstname4380</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1</td>\n",
" <td>2021-04-22 14:51:55.432952+02:00</td>\n",
" <td>2022-04-14 11:41:33.738500+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1189141</td>\n",
" <td>4380</td>\n",
" <td>2020-11-26 13:12:53+01:00</td>\n",
" <td>3</td>\n",
" <td>False</td>\n",
" <td>51.3</td>\n",
" <td>False</td>\n",
" <td>2020-12-01 20:00:00+01:00</td>\n",
" <td>iphigenie en tauride</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>318964</th>\n",
" <td>19095</td>\n",
" <td>lastname19095</td>\n",
" <td>firstname19095</td>\n",
" <td>1979-07-16</td>\n",
" <td>email19095</td>\n",
" <td>6</td>\n",
" <td>2021-04-22 15:06:30.120537+02:00</td>\n",
" <td>2023-09-12 18:27:36.904104+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1090839</td>\n",
" <td>19095</td>\n",
" <td>2019-05-19 21:18:36+02:00</td>\n",
" <td>1</td>\n",
" <td>False</td>\n",
" <td>4.5</td>\n",
" <td>False</td>\n",
" <td>2019-05-27 20:00:00+02:00</td>\n",
" <td>entre femmes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>318965</th>\n",
" <td>19095</td>\n",
" <td>lastname19095</td>\n",
" <td>firstname19095</td>\n",
" <td>1979-07-16</td>\n",
" <td>email19095</td>\n",
" <td>6</td>\n",
" <td>2021-04-22 15:06:30.120537+02:00</td>\n",
" <td>2023-09-12 18:27:36.904104+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1090839</td>\n",
" <td>19095</td>\n",
" <td>2019-05-19 21:18:36+02:00</td>\n",
" <td>1</td>\n",
" <td>False</td>\n",
" <td>4.5</td>\n",
" <td>False</td>\n",
" <td>2019-05-27 20:00:00+02:00</td>\n",
" <td>entre femmes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>318966</th>\n",
" <td>19095</td>\n",
" <td>lastname19095</td>\n",
" <td>firstname19095</td>\n",
" <td>1979-07-16</td>\n",
" <td>email19095</td>\n",
" <td>6</td>\n",
" <td>2021-04-22 15:06:30.120537+02:00</td>\n",
" <td>2023-09-12 18:27:36.904104+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1090839</td>\n",
" <td>19095</td>\n",
" <td>2019-05-19 21:18:36+02:00</td>\n",
" <td>1</td>\n",
" <td>False</td>\n",
" <td>4.5</td>\n",
" <td>False</td>\n",
" <td>2019-05-27 20:00:00+02:00</td>\n",
" <td>entre femmes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>318967</th>\n",
" <td>19095</td>\n",
" <td>lastname19095</td>\n",
" <td>firstname19095</td>\n",
" <td>1979-07-16</td>\n",
" <td>email19095</td>\n",
" <td>6</td>\n",
" <td>2021-04-22 15:06:30.120537+02:00</td>\n",
" <td>2023-09-12 18:27:36.904104+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1244277</td>\n",
" <td>19095</td>\n",
" <td>2019-12-31 11:04:07+01:00</td>\n",
" <td>1</td>\n",
" <td>False</td>\n",
" <td>5.5</td>\n",
" <td>False</td>\n",
" <td>2020-02-03 20:00:00+01:00</td>\n",
" <td>a boire et a manger</td>\n",
" </tr>\n",
" <tr>\n",
" <th>318968</th>\n",
" <td>19095</td>\n",
" <td>lastname19095</td>\n",
" <td>firstname19095</td>\n",
" <td>1979-07-16</td>\n",
" <td>email19095</td>\n",
" <td>6</td>\n",
" <td>2021-04-22 15:06:30.120537+02:00</td>\n",
" <td>2023-09-12 18:27:36.904104+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1244277</td>\n",
" <td>19095</td>\n",
" <td>2019-12-31 11:04:07+01:00</td>\n",
" <td>1</td>\n",
" <td>False</td>\n",
" <td>5.5</td>\n",
" <td>False</td>\n",
" <td>2020-02-03 20:00:00+01:00</td>\n",
" <td>a boire et a manger</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>318969 rows × 52 columns</p>\n",
"</div>"
],
"text/plain": [
" id lastname firstname birthdate email \\\n",
"0 405082 lastname405082 NaN NaN NaN \n",
"1 405082 lastname405082 NaN NaN NaN \n",
"2 411168 lastname411168 NaN NaN NaN \n",
"3 411168 lastname411168 NaN NaN NaN \n",
"4 4380 lastname4380 firstname4380 NaN NaN \n",
"... ... ... ... ... ... \n",
"318964 19095 lastname19095 firstname19095 1979-07-16 email19095 \n",
"318965 19095 lastname19095 firstname19095 1979-07-16 email19095 \n",
"318966 19095 lastname19095 firstname19095 1979-07-16 email19095 \n",
"318967 19095 lastname19095 firstname19095 1979-07-16 email19095 \n",
"318968 19095 lastname19095 firstname19095 1979-07-16 email19095 \n",
"\n",
" street_id created_at \\\n",
"0 6 2023-01-12 06:30:31.197484+01:00 \n",
"1 6 2023-01-12 06:30:31.197484+01:00 \n",
"2 6 2023-03-17 06:30:35.431967+01:00 \n",
"3 6 2023-03-17 06:30:35.431967+01:00 \n",
"4 1 2021-04-22 14:51:55.432952+02:00 \n",
"... ... ... \n",
"318964 6 2021-04-22 15:06:30.120537+02:00 \n",
"318965 6 2021-04-22 15:06:30.120537+02:00 \n",
"318966 6 2021-04-22 15:06:30.120537+02:00 \n",
"318967 6 2021-04-22 15:06:30.120537+02:00 \n",
"318968 6 2021-04-22 15:06:30.120537+02:00 \n",
"\n",
" updated_at civility is_partner ... \\\n",
"0 2023-01-12 06:30:31.197484+01:00 NaN False ... \n",
"1 2023-01-12 06:30:31.197484+01:00 NaN False ... \n",
"2 2023-03-17 06:30:35.431967+01:00 NaN False ... \n",
"3 2023-03-17 06:30:35.431967+01:00 NaN False ... \n",
"4 2022-04-14 11:41:33.738500+02:00 NaN False ... \n",
"... ... ... ... ... \n",
"318964 2023-09-12 18:27:36.904104+02:00 NaN False ... \n",
"318965 2023-09-12 18:27:36.904104+02:00 NaN False ... \n",
"318966 2023-09-12 18:27:36.904104+02:00 NaN False ... \n",
"318967 2023-09-12 18:27:36.904104+02:00 NaN False ... \n",
"318968 2023-09-12 18:27:36.904104+02:00 NaN False ... \n",
"\n",
" tenant_id id_x customer_id purchase_date type_of \\\n",
"0 1556 992423 405082 2023-01-11 17:08:41+01:00 3 \n",
"1 1556 992423 405082 2023-01-11 17:08:41+01:00 3 \n",
"2 1556 1053934 411168 2023-03-16 16:23:10+01:00 3 \n",
"3 1556 1053934 411168 2023-03-16 16:23:10+01:00 3 \n",
"4 1556 1189141 4380 2020-11-26 13:12:53+01:00 3 \n",
"... ... ... ... ... ... \n",
"318964 1556 1090839 19095 2019-05-19 21:18:36+02:00 1 \n",
"318965 1556 1090839 19095 2019-05-19 21:18:36+02:00 1 \n",
"318966 1556 1090839 19095 2019-05-19 21:18:36+02:00 1 \n",
"318967 1556 1244277 19095 2019-12-31 11:04:07+01:00 1 \n",
"318968 1556 1244277 19095 2019-12-31 11:04:07+01:00 1 \n",
"\n",
" is_from_subscription amount is_full_price start_date_time \\\n",
"0 False 13.0 False 2023-02-06 20:00:00+01:00 \n",
"1 False 13.0 False 2023-02-06 20:00:00+01:00 \n",
"2 False 62.0 False 2023-03-19 16:00:00+01:00 \n",
"3 False 62.0 False 2023-03-19 16:00:00+01:00 \n",
"4 False 51.3 False 2020-12-01 20:00:00+01:00 \n",
"... ... ... ... ... \n",
"318964 False 4.5 False 2019-05-27 20:00:00+02:00 \n",
"318965 False 4.5 False 2019-05-27 20:00:00+02:00 \n",
"318966 False 4.5 False 2019-05-27 20:00:00+02:00 \n",
"318967 False 5.5 False 2020-02-03 20:00:00+01:00 \n",
"318968 False 5.5 False 2020-02-03 20:00:00+01:00 \n",
"\n",
" event_name \n",
"0 zaide \n",
"1 zaide \n",
"2 luisa miller \n",
"3 luisa miller \n",
"4 iphigenie en tauride \n",
"... ... \n",
"318964 entre femmes \n",
"318965 entre femmes \n",
"318966 entre femmes \n",
"318967 a boire et a manger \n",
"318968 a boire et a manger \n",
"\n",
"[318969 rows x 52 columns]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Jointure\n",
"merge_1 = pd.merge(purchases, tickets, left_on='id', right_on='purchase_id', how='inner')[['id_x', 'customer_id','product_id', 'purchase_date', 'type_of', 'is_from_subscription']]\n",
"merge_2 = pd.merge(products, merge_1, left_on='id', right_on='product_id', how='inner')[['id_x', 'customer_id', 'representation_id', 'purchase_date', 'type_of', 'is_from_subscription', 'amount', 'is_full_price']]\n",
"merge_3 = pd.merge(representations, merge_2, left_on='id', right_on='representation_id', how='inner')[['id_x', 'customer_id', 'event_id', 'purchase_date', 'type_of', 'is_from_subscription', 'amount', 'is_full_price', 'start_date_time']]\n",
"merge_4 = pd.merge(events, merge_3, left_on='id', right_on='event_id', how='inner')[['id_x', 'customer_id', 'purchase_date', 'type_of', 'is_from_subscription', 'amount', 'is_full_price', 'start_date_time', 'name']]\n",
"merge_4 = merge_4.rename(columns={'name': 'event_name'})\n",
"df_customer_event = pd.merge(customersplus, merge_4, left_on = 'id', right_on = 'customer_id', how = 'inner')[['id_x', 'purchase_date', 'type_of', 'is_from_subscription', 'amount', 'is_full_price', 'start_date_time', 'event_name']]\n",
"df_customer_event"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,69 +0,0 @@
# Business data challenge 2023-2024 | ENSAE Paris
# Arenametrix : customer segmentation
<p align="center">
<img src="https://dev.arenametrix.fr/assets/logo_ax-806e8204f49bcc2c5e8cd34e9748d16a6038404e37fdb2dc9d61455bb06c6461.png" width=300>
</p>
## Team 1
* Antoine JOUBREL
* Alexis REVELLE
* Fanta RODRIGUE
* Thomas PIQUÉ
## Coaches
* Elia LAPENTA
* Michael VISSER
## Support team
* Patrice MICHEL (Datastorm)
* Hassan MAISSORO (Datastorm)
* Alexandre PRINC (Arenametrix)
## Microeconomics coordinator
* Yuanzhe TANG
### Description of the problematic
The goal of this project is to create segments of customers from 15 companies belonging to 3 different types of activities (sports companies, museum, and music companies).
### More detailled instructions provided by Arenamtrix
- Definition of “marketing personae” that can be match with a probability to buy a future event
- Matching between future event and people in the database (with for instance a probability to buy a future event)
- And thus, a forecast of the quantity of ticket sold by event by “marketing personae” or by a segment of the database
- BONUS : What is the best timing to send a communication to each contact in the database and each “marketing personae”
- BONUS : What should we tell to each contact in the database and each “marketing personae”to make them come back
### Our approach
We opted for a sector-based approach, which means that 3 segmentations have been performed (one for each type of activity).
As the segments have to be linked to a probability of future purchase, we directly used the probability of purchase during the incoming year to make segments. The first step of the modelization is a pipeline that fits 3 ML models (naive bayes, random forest, and logistic regression) on the data to predict whether the customer will purchase during the year. We then use the probability of purchase estimated to split the customers into 4 segments. For each segment, we can estimate the potential number of tickets and revenue for the incoming year.
### How run the code
Codes have to be run in an order following their numbers. Each of them is described below :
- `1_Input_cleaning.py` \
Clean raw data and generate dataframes that will be used to build datasets with insightful variables. Datasets are exported to location 0_Input/.
- `2_Datasets_generation.py` \
Use dataframes previously created and aggregate them to create test and train set for each company. Databases are exported to location 1_Temp/1_0_Modelling_Datasets/ in a folder containing all 5 databases for a type of activity.
- `3_Modelling_datasets.py` \
For each type of activity, the test and train sets of the 5 tenants are concatenated. Databases are exported to location 1_Temp/1_0_Modelling_Datasets/.
- `4_Descriptive_statistics.py` \
Generate graphics providing some descriptive statistics about the data at the activity level. All graphics are exported to location 2_Output/2_0_Descriptive_Statistics/.
- `5_Modelling.py` \
3 ML models will be fitted on the data, and results will be exported for all 3 types of activities. \
3 pipelines are built, one by type of model (Naive Bayes, Random Forest, Logistic Regression). For the 2 latter ML methods, cross validation was performed to ensure generalization. Graphics displaying the quality of the training are provided. Optimal parameters found are saved in a pickle file (which will be used in the 6th step to add propensity scores to the test set and then determine the segments of the customers). All these files are exported to location 2_Output/2_1_Modeling_results/
- `6_Segmentation_and_Marketing_Personae.py` \
The test set will be fitted with the optimal parameters computed previously, and a propensity score (probability of a future purchase) will be assigned to each customer of this dataset. Segmentation is performed according to the scores provided. Graphics describing the marketing personae associated to the segments as well as their business value are exported to location 2_Output/2_2_Segmentation_and_Marketing_Personae/.
- `7_Sales_Forecast.py` \
To ensure a decent recall, and because of the unbalancing of the target variable y (the global probability of purchase is between 4 and 14 %), the probabilities of purchasing are overestimated.The scores will therefore be adjusted so that their mean approximates the overall probability of a purchase. This score adjusted is used to estimate, for each customer, the number of tickets sold and the revenue generated during the incoming year. Results are aggregated at segment level. A histogram displaying the adjusted propensity scores and 2 tables summarizing the forecast outcome are exported to location 2_Output/2_3_Sales_Forecast/.

1215
TP_access_merge_data.ipynb Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

1760
TP_merge_tables_clean.ipynb Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

1833
Traitement_Fanta.ipynb Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,249 +0,0 @@
Package Version
------------------------- ---------------
aiohttp 3.9.1
aiosignal 1.3.1
alembic 1.13.1
anyio 4.2.0
archspec 0.2.2
argon2-cffi 23.1.0
argon2-cffi-bindings 21.2.0
arrow 1.3.0
astroid 3.0.2
asttokens 2.4.1
async-lru 2.0.4
attrs 23.2.0
Babel 2.14.0
bcrypt 4.1.2
beautifulsoup4 4.12.3
bleach 6.1.0
blinker 1.7.0
bokeh 3.3.4
boltons 23.1.1
boto3 1.34.29
botocore 1.34.29
branca 0.7.0
Brotli 1.1.0
cached-property 1.5.2
cachetools 5.3.2
certifi 2023.11.17
cffi 1.16.0
charset-normalizer 3.3.2
click 8.1.7
click-plugins 1.1.1
cligj 0.7.2
cloudpickle 3.0.0
colorama 0.4.6
comm 0.2.1
conda 23.11.0
conda-libmamba-solver 23.12.0
conda-package-handling 2.2.0
conda_package_streaming 0.9.0
configparser 5.3.0
contourpy 1.2.0
cryptography 41.0.7
cycler 0.12.1
cytoolz 0.12.2
dask 2024.1.1
databricks-cli 0.18.0
debugpy 1.8.0
decorator 5.1.1
defusedxml 0.7.1
dill 0.3.8
distributed 2024.1.1
distro 1.8.0
docker 7.0.0
duckdb 0.9.2
entrypoints 0.4
exceptiongroup 1.2.0
executing 2.0.1
fastjsonschema 2.19.1
fiona 1.9.5
flake8 7.0.0
Flask 3.0.1
folium 0.15.1
fonttools 4.47.2
fqdn 1.5.1
frozenlist 1.4.1
fsspec 2023.12.2
GDAL 3.8.3
gensim 4.3.2
geopandas 0.14.2
gitdb 4.0.11
GitPython 3.1.41
google-auth 2.27.0
greenlet 3.0.3
gunicorn 21.2.0
hvac 2.1.0
idna 3.6
importlib-metadata 7.0.1
importlib-resources 6.1.1
ipykernel 6.29.0
ipython 8.20.0
ipywidgets 8.1.1
isoduration 20.11.0
isort 5.13.2
itsdangerous 2.1.2
jedi 0.19.1
Jinja2 3.1.3
jmespath 1.0.1
joblib 1.3.2
json5 0.9.14
jsonpatch 1.33
jsonpointer 2.4
jsonschema 4.21.1
jsonschema-specifications 2023.12.1
jupyter-cache 1.0.0
jupyter_client 8.6.0
jupyter_core 5.7.1
jupyter-events 0.9.0
jupyter-lsp 2.2.2
jupyter_server 2.12.5
jupyter-server-mathjax 0.2.6
jupyter_server_terminals 0.5.2
jupyterlab 4.0.11
jupyterlab_git 0.50.0
jupyterlab_pygments 0.3.0
jupyterlab_server 2.25.2
jupyterlab-widgets 3.0.9
kiwisolver 1.4.5
kubernetes 29.0.0
libmambapy 1.5.5
llvmlite 0.41.1
locket 1.0.0
lz4 4.3.3
Mako 1.3.1
mamba 1.5.5
mapclassify 2.6.1
Markdown 3.5.2
MarkupSafe 2.1.4
matplotlib 3.8.2
matplotlib-inline 0.1.6
mccabe 0.7.0
menuinst 2.0.2
mistune 3.0.2
mlflow 2.10.0
msgpack 1.0.7
multidict 6.0.4
munkres 1.1.4
mypy 1.8.0
mypy-extensions 1.0.0
nbclient 0.8.0
nbconvert 7.14.2
nbdime 4.0.1
nbformat 5.9.2
nest_asyncio 1.6.0
networkx 3.2.1
nltk 3.8.1
notebook_shim 0.2.3
numba 0.58.1
numpy 1.26.3
oauthlib 3.2.2
opencv-python-headless 4.9.0.80
overrides 7.7.0
packaging 23.2
pandas 2.2.0
pandocfilters 1.5.0
paramiko 3.4.0
parso 0.8.3
partd 1.4.1
patsy 0.5.6
pexpect 4.9.0
pickleshare 0.7.5
pillow 10.2.0
pip 23.3.2
pkgutil_resolve_name 1.3.10
platformdirs 4.1.0
plotly 5.18.0
pluggy 1.3.0
polars 0.20.6
prometheus-client 0.19.0
prometheus-flask-exporter 0.23.0
prompt-toolkit 3.0.42
protobuf 4.24.4
psutil 5.9.8
ptyprocess 0.7.0
pure-eval 0.2.2
pyarrow 14.0.2
pyarrow-hotfix 0.6
pyasn1 0.5.1
pyasn1-modules 0.3.0
pycodestyle 2.11.1
pycosat 0.6.6
pycparser 2.21
pyflakes 3.2.0
Pygments 2.17.2
PyJWT 2.8.0
pylint 3.0.3
PyNaCl 1.5.0
pyOpenSSL 23.3.0
pyparsing 3.1.1
pyproj 3.6.1
PySocks 1.7.1
python-dateutil 2.8.2
python-json-logger 2.0.7
pytz 2023.3.post1
pyu2f 0.1.5
PyYAML 6.0.1
pyzmq 25.1.2
querystring-parser 1.2.4
referencing 0.32.1
regex 2023.12.25
requests 2.31.0
requests-oauthlib 1.3.1
rfc3339-validator 0.1.4
rfc3986-validator 0.1.1
rpds-py 0.17.1
rsa 4.9
Rtree 1.2.0
ruamel.yaml 0.18.5
ruamel.yaml.clib 0.2.7
s3fs 0.4.2
s3transfer 0.10.0
scikit-learn 1.4.0
scipy 1.12.0
seaborn 0.13.2
Send2Trash 1.8.2
setuptools 68.2.2
shapely 2.0.2
six 1.16.0
smart-open 6.4.0
smmap 5.0.0
sniffio 1.3.0
sortedcontainers 2.4.0
soupsieve 2.5
SQLAlchemy 2.0.25
sqlparse 0.4.4
stack-data 0.6.2
statsmodels 0.14.1
tabulate 0.9.0
tblib 3.0.0
tenacity 8.2.3
terminado 0.18.0
threadpoolctl 3.2.0
tinycss2 1.2.1
tomli 2.0.1
tomlkit 0.12.3
toolz 0.12.1
tornado 6.3.3
tqdm 4.66.1
traitlets 5.14.1
truststore 0.8.0
types-python-dateutil 2.8.19.20240106
typing_extensions 4.9.0
typing-utils 0.1.0
tzdata 2023.4
uri-template 1.3.0
urllib3 1.26.18
wcwidth 0.2.13
webcolors 1.13
webencodings 0.5.1
websocket-client 1.7.0
Werkzeug 3.0.1
wheel 0.42.0
widgetsnbextension 4.0.9
xgboost 2.0.3
xyzservices 2023.10.1
yarl 1.9.4
zict 3.0.0
zipp 3.17.0
zstandard 0.22.0

2116
code_valeur manquante.ipynb Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,165 +0,0 @@
# Function de construction de KPI
def custom_date_parser(date_string):
return pd.to_datetime(date_string, utc = True, format = 'ISO8601')
def display_input_databases(directory_path, file_name, datetime_col = None):
"""
This function returns the file from s3 storage
"""
file_path = "projet-bdc2324-team1" + "/0_Input/Company_" + directory_path + "/" + file_name + ".csv"
print("File path : ", file_path)
with fs.open(file_path, mode="rb") as file_in:
df = pd.read_csv(file_in, sep=",", parse_dates = datetime_col, date_parser=custom_date_parser)
return df
def campaigns_kpi_function(campaigns_information = None, max_date = "2023-12-01"):
# Nombre de campagnes de mails
nb_campaigns = campaigns_information[['customer_id', 'campaign_name']].groupby('customer_id').count().reset_index()
nb_campaigns.rename(columns = {'campaign_name' : 'nb_campaigns'}, inplace = True)
# Temps d'ouverture moyen (en minutes)
campaigns_information['time_to_open'] = ((pd.to_datetime(campaigns_information['opened_at'], utc = True, format = 'ISO8601') - pd.to_datetime(campaigns_information['delivered_at'], utc = True, format = 'ISO8601')) / np.timedelta64(1, 'h'))
campaigns_information['time_to_open'] = campaigns_information['time_to_open'].fillna((pd.to_datetime(campaigns_information['delivered_at'], utc = True, format = 'ISO8601') - pd.to_datetime(max_date, utc = True, format = 'ISO8601')) / np.timedelta64(1, 'h'))
time_to_open = campaigns_information[['customer_id', 'time_to_open']].groupby('customer_id').mean().reset_index()
# Nombre de mail ouvert
opened_campaign = campaigns_information[['customer_id', 'campaign_name', 'opened_at']]
opened_campaign.dropna(subset=['opened_at'], inplace=True)
opened_campaign = opened_campaign[['customer_id', 'campaign_name']].groupby('customer_id').count().reset_index()
opened_campaign.rename(columns = {'campaign_name' : 'nb_campaigns_opened' }, inplace = True)
# Fusion des indicateurs
campaigns_reduced = pd.merge(nb_campaigns, opened_campaign, on = 'customer_id', how = 'left')
campaigns_reduced = pd.merge(campaigns_reduced, time_to_open, on = 'customer_id', how = 'left')
# Taux de mails ouvert
campaigns_reduced['taux_ouverture_mail'] = campaigns_reduced['nb_campaigns_opened'] / campaigns_reduced['nb_campaigns']
# Fill NaN values
campaigns_reduced[['nb_campaigns', 'nb_campaigns_opened', 'taux_ouverture_mail']] = campaigns_reduced[['nb_campaigns', 'nb_campaigns_opened', 'taux_ouverture_mail']].fillna(0)
# Remplir les NaT : time_to_open (??)
return campaigns_reduced
def tickets_kpi_function(tickets_information = None):
tickets_information_copy = tickets_information.copy()
# Dummy : Canal de vente en ligne
liste_mots = ['en ligne', 'internet', 'web', 'net', 'vad', 'online'] # vad = vente à distance
tickets_information_copy['vente_internet'] = tickets_information_copy['supplier_name'].fillna('').str.contains('|'.join(liste_mots), case=False).astype(int)
# Proportion de vente en ligne
prop_vente_internet = tickets_information_copy[tickets_information_copy['vente_internet'] == 1].groupby(['customer_id'])['purchase_id'].nunique().reset_index()
prop_vente_internet.rename(columns = {'purchase_id' : 'nb_purchases_internet'}, inplace = True)
# Mixte KPI comportement achat
tickets_kpi = (tickets_information_copy[['customer_id', 'purchase_id' ,'ticket_id','supplier_name', 'purchase_date', 'amount', 'vente_internet']]
.groupby(['customer_id'])
.agg(nb_tickets=('ticket_id', 'nunique'),
nb_purchases=('purchase_id', 'nunique'),
total_amount=('amount', 'sum'),
nb_suppliers=('supplier_name', 'nunique'),
achat_internet=('vente_internet', 'max'),
purchase_date_min=('purchase_date', 'min'),
purchase_date_max=('purchase_date', 'max'))
.reset_index())
tickets_kpi['time_between_purchase'] = tickets_kpi['purchase_date_max'] - tickets_kpi['purchase_date_min']
tickets_kpi['time_between_purchase'] = tickets_kpi['time_between_purchase'] / np.timedelta64(1, 'D') # En nombre de jours
# Convertir date et en chiffre
max_date = tickets_kpi['purchase_date_max'].max()
tickets_kpi['purchase_date_max'] = (max_date - tickets_kpi['purchase_date_max']) / np.timedelta64(1, 'D')
tickets_kpi['purchase_date_min'] = (max_date - tickets_kpi['purchase_date_min']) / np.timedelta64(1, 'D')
# Proportion de ticket internet
tickets_kpi = tickets_kpi.merge(prop_vente_internet, on = ['customer_id'], how = 'left')
tickets_kpi['nb_purchases_internet'] = tickets_kpi['nb_purchases_internet'].fillna(0)
tickets_kpi['prop_purchases_internet'] = tickets_kpi['nb_purchases_internet'] / tickets_kpi['nb_purchases']
# Nombre d'achat à choisir
tickets_information_copy['month_year_purchase'] = 'purchases_' + tickets_information_copy['purchase_date'].dt.month.astype(str) + '_' + tickets_information_copy['purchase_date'].dt.year.astype(str)
purchases_by_month = tickets_information_copy.pivot_table(index='customer_id', columns='month_year_purchase', values='purchase_id', aggfunc='nunique', fill_value=0)
tickets_kpi = pd.merge(tickets_kpi, purchases_by_month, on = 'customer_id', how = 'left')
return tickets_kpi
def customerplus_kpi_function(customerplus_clean = None):
# KPI sur les données socio-demographique
# Le genre
customerplus_clean["gender_label"] = customerplus_clean["gender"].map({
0: 'female',
1: 'male',
2: 'other'
})
gender_dummies = pd.get_dummies(customerplus_clean["gender_label"], prefix='gender').astype(int)
customerplus_clean = pd.concat([customerplus_clean, gender_dummies], axis=1)
customerplus_clean.drop(columns = "gender", inplace = True)
# Age
customerplus_clean['categorie_age_0_10'] = ((customerplus_clean['age'] >= 0) & (customerplus_clean['age'] < 10)).astype(int)
customerplus_clean['categorie_age_10_20'] = ((customerplus_clean['age'] >= 10) & (customerplus_clean['age'] < 20)).astype(int)
customerplus_clean['categorie_age_20_30'] = ((customerplus_clean['age'] >= 20) & (customerplus_clean['age'] < 30)).astype(int)
customerplus_clean['categorie_age_30_40'] = ((customerplus_clean['age'] >= 30) & (customerplus_clean['age'] < 40)).astype(int)
customerplus_clean['categorie_age_40_50'] = ((customerplus_clean['age'] >= 40) & (customerplus_clean['age'] < 50)).astype(int)
customerplus_clean['categorie_age_50_60'] = ((customerplus_clean['age'] >= 50) & (customerplus_clean['age'] < 60)).astype(int)
customerplus_clean['categorie_age_60_70'] = ((customerplus_clean['age'] >= 60) & (customerplus_clean['age'] < 70)).astype(int)
customerplus_clean['categorie_age_70_80'] = ((customerplus_clean['age'] >= 70) & (customerplus_clean['age'] < 80)).astype(int)
customerplus_clean['categorie_age_plus_80'] = (customerplus_clean['age'] >= 80).astype(int)
customerplus_clean['categorie_age_inconnue'] = customerplus_clean['age'].apply(lambda x: 1 if pd.isna(x) else 0)
# customerplus_clean.drop(columns = "age", inplace = True)
# Consentement au mailing
customerplus_clean['opt_in'] = customerplus_clean['opt_in'].astype(int)
# Indicatrice si individue vit en France
customerplus_clean["country_fr"] = customerplus_clean["country"].apply(lambda x : int(x=="fr") if pd.notna(x) else np.nan)
# customerplus_clean.drop(columns = "country", inplace = True)
customerplus_clean['is_profession_known'] = customerplus_clean['profession'].notna().astype(int)
# customerplus_clean.drop(columns = "profession", inplace = True)
customerplus_clean['is_zipcode_known'] = customerplus_clean['zipcode'].notna().astype(int)
# customerplus_clean.drop(columns = "zipcode", inplace = True)
return customerplus_clean
def targets_KPI(df_target = None):
df_target['target_name'] = df_target['target_name'].fillna('').str.lower()
# Target name cotegory musees /
df_target['target_jeune'] = df_target['target_name'].str.contains('|'.join(['jeune', 'pass_culture', 'etudiant', '12-25 ans', 'student', 'jeunesse']), case=False).astype(int)
df_target['target_optin'] = df_target['target_name'].str.contains('|'.join(['optin' ,'opt-in']), case=False).astype(int)
df_target['target_optout'] = df_target['target_name'].str.contains('|'.join(['optout', 'unsubscribed']), case=False).astype(int)
df_target['target_scolaire'] = df_target['target_name'].str.contains('|'.join(['scolaire' , 'enseignant', 'chercheur', 'schulen', 'école']), case=False).astype(int)
df_target['target_entreprise'] = df_target['target_name'].str.contains('|'.join(['b2b', 'btob', 'cse']), case=False).astype(int)
df_target['target_famille'] = df_target['target_name'].str.contains('|'.join(['famille', 'enfants', 'family']), case=False).astype(int)
df_target['target_newsletter'] = df_target['target_name'].str.contains('|'.join(['nl', 'newsletter']), case=False).astype(int)
# Target name category for sport compagnies
df_target['target_abonne'] = ((
df_target['target_name']
.str.contains('|'.join(['abo', 'adh']), case=False)
& ~df_target['target_name'].str.contains('|'.join(['hors abo', 'anciens abo']), case=False)
).astype(int))
df_target_categorie = df_target.groupby('customer_id')[['target_jeune', 'target_optin', 'target_optout', 'target_scolaire', 'target_entreprise', 'target_famille', 'target_newsletter', 'target_abonne']].max()
target_agg = df_target.groupby('customer_id').agg(
nb_targets=('target_name', 'nunique') # Utilisation de tuples pour spécifier les noms de colonnes
# all_targets=('target_name', concatenate_names),
# all_target_types=('target_type_name', concatenate_names)
).reset_index()
target_agg = pd.merge(target_agg, df_target_categorie, how='left', on='customer_id')
return target_agg

View File

@ -1,425 +0,0 @@
import pandas as pd
import numpy as np
import os
import s3fs
import re
import io
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, recall_score
from sklearn.utils import class_weight
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.calibration import calibration_curve
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler, MaxAbsScaler, MinMaxScaler
from sklearn.metrics import make_scorer, f1_score, balanced_accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score
from sklearn.exceptions import ConvergenceWarning, DataConversionWarning
import pickle
import warnings
def load_train_test(type_of_activity, type_of_model):
BUCKET = f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_activity}"
File_path_train = BUCKET + "/Train_set.csv"
File_path_test = BUCKET + "/Test_set.csv"
with fs.open( File_path_train, mode="rb") as file_in:
dataset_train = pd.read_csv(file_in, sep=",")
# dataset_train['y_has_purchased'] = dataset_train['y_has_purchased'].fillna(0)
with fs.open(File_path_test, mode="rb") as file_in:
dataset_test = pd.read_csv(file_in, sep=",")
# dataset_test['y_has_purchased'] = dataset_test['y_has_purchased'].fillna(0)
if type_of_model=='premium':
dataset_train['company'] = dataset_train['customer_id'].apply(lambda x: x.split('_')[0])
dataset_test['company'] = dataset_test['customer_id'].apply(lambda x: x.split('_')[0])
dataset_train = dataset_train[dataset_train['company'].isin(['1', '3', '4', '5', '6', '7', '8', '10', '11', '13'])]
dataset_test = dataset_test[dataset_test['company'].isin(['1', '3', '4', '5', '6', '7', '8', '10', '11', '13'])]
return dataset_train, dataset_test
def save_file_s3(File_name, type_of_activity, type_of_model, model):
"""
save plot into s3 storage
"""
image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png')
image_buffer.seek(0)
FILE_PATH = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/{type_of_model}/{type_of_activity}/{model}/"
FILE_PATH_OUT_S3 = FILE_PATH + File_name + type_of_activity + '_' + model + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read())
plt.close()
def save_result_set_s3(result_set, File_name, type_of_activity, type_of_model, model=None, model_path=False):
"""
save result into s3 storage
"""
if model_path:
FILE_PATH_OUT_S3 = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/{type_of_model}/{type_of_activity}/{model}/" + File_name + '.csv'
else:
FILE_PATH_OUT_S3 = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/{type_of_model}/{type_of_activity}/" + File_name + '.csv'
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
result_set.to_csv(file_out, index = False)
def save_model_s3(File_name, type_of_activity, type_of_model, model, classifier):
"""
save model into pickle file
"""
model_bytes = pickle.dumps(classifier)
FILE_PATH_OUT_S3 = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/{type_of_model}/{type_of_activity}/{model}/" + File_name + '.pkl'
with fs.open(FILE_PATH_OUT_S3, 'wb') as f:
f.write(model_bytes)
def compute_recall(group):
return recall_score(group['y_has_purchased'], group['prediction'])
def compute_recall_companies(dataset_test, y_pred, type_of_activity, model):
test = dataset_test.copy()
test['prediction'] = y_pred
test['company'] = dataset_test['customer_id'].str.split('_', expand=True)[0]
recall_scores_by_company = test.groupby('company').apply(compute_recall).reset_index(name='recall_score')
save_result_set_s3(recall_scores_by_company, 'recall_scores_by_company', type_of_activity, type_of_model, model=model, model_path=True)
def features_target_split(dataset_train, dataset_test):
"""
return train and test set
"""
features_l = ['nb_campaigns', 'taux_ouverture_mail', 'prop_purchases_internet', 'nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'time_to_open',
'purchases_10_2021','purchases_10_2022', 'purchases_11_2021', 'purchases_12_2021','purchases_1_2022', 'purchases_2_2022', 'purchases_3_2022',
'purchases_4_2022', 'purchases_5_2021', 'purchases_5_2022', 'purchases_6_2021', 'purchases_6_2022', 'purchases_7_2021', 'purchases_7_2022', 'purchases_8_2021',
'purchases_8_2022','purchases_9_2021', 'purchases_9_2022', 'purchase_date_min', 'purchase_date_max', 'nb_targets', 'gender_female', 'gender_male',
'achat_internet', 'categorie_age_0_10', 'categorie_age_10_20', 'categorie_age_20_30','categorie_age_30_40',
'categorie_age_40_50', 'categorie_age_50_60', 'categorie_age_60_70', 'categorie_age_70_80', 'categorie_age_plus_80','categorie_age_inconnue',
'country_fr', 'is_profession_known', 'is_zipcode_known', 'opt_in', 'target_optin', 'target_newsletter', 'target_scolaire', 'target_entreprise', 'target_famille',
'target_jeune', 'target_abonne']
X_train = dataset_train[features_l]
y_train = dataset_train[['y_has_purchased']]
X_test = dataset_test[features_l]
y_test = dataset_test[['y_has_purchased']]
return X_train, X_test, y_train, y_test
def preprocess(type_of_model, type_of_activity):
"""
preprocess variables before running machine learning pipeline
"""
numeric_features = ['nb_campaigns', 'taux_ouverture_mail', 'prop_purchases_internet', 'nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers',
'purchases_10_2021','purchases_10_2022', 'purchases_11_2021', 'purchases_12_2021','purchases_1_2022', 'purchases_2_2022', 'purchases_3_2022',
'purchases_4_2022', 'purchases_5_2021', 'purchases_5_2022', 'purchases_6_2021', 'purchases_6_2022', 'purchases_7_2021', 'purchases_7_2022', 'purchases_8_2021',
'purchases_8_2022','purchases_9_2021', 'purchases_9_2022', 'purchase_date_min', 'purchase_date_max', 'nb_targets', 'time_to_open']
binary_features = ['gender_female', 'gender_male', 'achat_internet', 'categorie_age_0_10', 'categorie_age_10_20', 'categorie_age_20_30','categorie_age_30_40',
'categorie_age_40_50', 'categorie_age_50_60', 'categorie_age_60_70', 'categorie_age_70_80', 'categorie_age_plus_80','categorie_age_inconnue',
'country_fr', 'is_profession_known', 'is_zipcode_known', 'opt_in']
if type_of_activity=='musee':
numeric_features.remove('time_to_open')
if type_of_model=='premium':
if type_of_activity=='musique':
binary_features.extend(['target_optin', 'target_newsletter'])
elif type_of_activity=='sport':
binary_features.extend(['target_jeune', 'target_entreprise', 'target_abonne'])
else:
binary_features.extend([ 'target_scolaire', 'target_entreprise', 'target_famille', 'target_newsletter'])
numeric_transformer = Pipeline(steps=[
("imputer", SimpleImputer(strategy="constant", fill_value=0)),
("scaler", StandardScaler())
])
binary_transformer = Pipeline(steps=[
("imputer", SimpleImputer(strategy="most_frequent")),
])
preproc = ColumnTransformer(
transformers=[
("num", numeric_transformer, numeric_features),
("bin", binary_transformer, binary_features)
]
)
return preproc
def draw_confusion_matrix(y_test, y_pred, model):
conf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Class 0', 'Class 1'], yticklabels=['Class 0', 'Class 1'], annot_kws={"size": 14})
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
save_file_s3("Confusion_matrix_", type_of_activity, type_of_model, model)
def draw_roc_curve(X_test, y_pred_prob, model):
# Calcul des taux de faux positifs (FPR) et de vrais positifs (TPR)
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob, pos_label=1)
# Calcul de l'aire sous la courbe ROC (AUC)
roc_auc = auc(fpr, tpr)
plt.figure(figsize = (14, 8))
plt.plot(fpr, tpr, label="ROC curve(area = %0.3f)" % roc_auc)
plt.plot([0, 1], [0, 1], color="red",label="Random Baseline", linestyle="--")
plt.grid(color='gray', linestyle='--', linewidth=0.5)
plt.xlabel("False Positive Rate", fontsize=14)
plt.ylabel("True Positive Rate", fontsize=14)
plt.title("ROC Curve", size=18)
plt.legend(loc="lower right", fontsize=14)
plt.show()
save_file_s3("Roc_curve_", type_of_activity, type_of_model, model)
def draw_calibration_curve(X_test, y_pred_prob, model):
frac_pos, mean_pred = calibration_curve(y_test, y_pred_prob, n_bins=10)
# Plot the calibration curve
plt.plot(mean_pred, frac_pos, 's-', label=model)
plt.plot([0, 1], [0, 1], 'k--', label='Perfectly calibrated')
plt.xlabel('Mean predicted value')
plt.ylabel('Fraction of positive predictions')
plt.title("Calibration Curve")
plt.legend()
plt.show()
save_file_s3("Calib_curve_", type_of_activity, type_of_model, model)
def draw_features_importance(pipeline, model, randomF = False):
if randomF:
coefficients = pipeline.named_steps[model].feature_importances_
else:
coefficients = pipeline.named_steps[model].coef_[0]
feature_names = pipeline.named_steps['preprocessor'].get_feature_names_out()
# Tracer l'importance des caractéristiques
plt.figure(figsize=(12, 8))
plt.barh(feature_names, coefficients, color='skyblue')
plt.xlabel("Features' Importance")
plt.ylabel('Caractéristiques')
plt.title("Features' Importance")
plt.grid(True)
plt.show()
save_file_s3("Features_", type_of_activity, type_of_model, model)
def draw_prob_distribution(y_pred_prob, model):
plt.figure(figsize=(10, 8))
plt.hist(y_pred_prob, bins=10, range=(0, 1), color='blue', alpha=0.7)
plt.xlim(0, 1)
plt.ylim(0, None)
plt.title('Histogramme des probabilités pour la classe 1')
plt.xlabel('Probability')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
save_file_s3("prob_dist_", type_of_activity, type_of_model, model)
def draw_prob_distribution_companies(y_pred_prob, model):
test = dataset_test.copy()
test['probability to buy'] = y_pred_prob
test['company'] = test['customer_id'].str.split('_', expand=True)[0]
sns.histplot(data=test, x='probability to buy', hue='company', element='step',
stat='count', common_norm=False, bins=10, palette='Set1', alpha=1)
plt.xlim(0, 1)
plt.ylim(0, None)
plt.title('Histogram of probabilities for class 1 by company')
plt.xlabel('Probability')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
save_file_s3("prob_dist_companies_", type_of_activity, type_of_model, model)
def pipeline_logreg_benchmark(X_train, y_train, X_test, y_test, model_result):
pipeline = Pipeline(steps=[
('preprocessor', preproc),
('LogisticRegression_Benchmark', LogisticRegression(solver='saga', class_weight = weight_dict,
max_iter=5000, n_jobs=-1))
])
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
y_pred_prob = pipeline.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob, pos_label = 1)
model = "LogisticRegression_Benchmark"
result = pd.DataFrame({"Model" : [model],
"Accuracy" : [accuracy_score(y_test, y_pred)],
"Recall" : [recall_score(y_test, y_pred)],
"F1_score" : [f1_score(y_test, y_pred, average="macro")],
"AUC" : [auc(fpr, tpr)]}
)
model_result = pd.concat([model_result, result])
compute_recall_companies(dataset_test, y_pred, type_of_activity, model)
draw_confusion_matrix(y_test, y_pred, model)
draw_roc_curve(X_test, y_pred_prob, model)
draw_features_importance(pipeline, 'LogisticRegression_Benchmark')
draw_prob_distribution(y_pred_prob, model)
draw_prob_distribution_companies(y_pred_prob, model)
draw_calibration_curve(X_test, y_pred_prob, model)
save_model_s3('LogisticRegression_Benchmark', type_of_activity, type_of_model, model, pipeline)
return model_result
def pipeline_logreg_cv(X_train, y_train, X_test, y_test, model_result):
y_train = y_train['y_has_purchased']
param_grid = {'LogisticRegression_cv__C': np.logspace(-10, 6, 17, base=2),
'LogisticRegression_cv__penalty': ['l1', 'l2'],
'LogisticRegression_cv__class_weight': ['balanced', weight_dict]}
pipeline = Pipeline(steps=[
('preprocessor', preproc),
('LogisticRegression_cv', LogisticRegression(solver='saga', max_iter=5000))
])
grid_search = GridSearchCV(pipeline, param_grid, cv=3, scoring=make_scorer(recall_score), error_score='raise',
n_jobs=-1)
grid_search.fit(X_train, y_train)
y_pred = grid_search.predict(X_test)
y_pred_prob = grid_search.predict_proba(X_test)[:, 1]
best_pipeline = grid_search.best_estimator_
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob, pos_label = 1)
model = "LogisticRegression_cv"
result = pd.DataFrame({"Model" : [model],
"Accuracy" : [accuracy_score(y_test, y_pred)],
"Recall" : [recall_score(y_test, y_pred)],
"F1_score" : [f1_score(y_test, y_pred, average="macro")],
"AUC" : [auc(fpr, tpr)]}
)
model_result = pd.concat([model_result, result])
compute_recall_companies(dataset_test, y_pred, type_of_activity, model)
draw_confusion_matrix(y_test, y_pred, model)
draw_roc_curve(X_test, y_pred_prob, model)
draw_features_importance(best_pipeline, 'LogisticRegression_cv')
draw_prob_distribution(y_pred_prob, model)
draw_prob_distribution_companies(y_pred_prob, model)
draw_calibration_curve(X_test, y_pred_prob, model)
save_model_s3('LogisticRegression_cv', type_of_activity, type_of_model, model, grid_search)
return model_result
def pipeline_randomF_benchmark(X_train, y_train, X_test, y_test, model_result):
pipeline = Pipeline(steps=[
('preprocessor', preproc),
('randomF', RandomForestClassifier(class_weight = weight_dict,
n_jobs=-1))
])
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
y_pred_prob = pipeline.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob, pos_label = 1)
model = "randomF"
result = pd.DataFrame({"Model" : [model],
"Accuracy" : [accuracy_score(y_test, y_pred)],
"Recall" : [recall_score(y_test, y_pred)],
"F1_score" : [f1_score(y_test, y_pred, average="macro")],
"AUC" : [auc(fpr, tpr)]}
)
model_result = pd.concat([model_result, result])
compute_recall_companies(dataset_test, y_pred, type_of_activity, model)
draw_confusion_matrix(y_test, y_pred, model)
draw_roc_curve(X_test, y_pred_prob, model)
draw_features_importance(pipeline, 'randomF', randomF=True)
draw_prob_distribution(y_pred_prob, model)
draw_prob_distribution_companies(y_pred_prob, model)
draw_calibration_curve(X_test, y_pred_prob, model)
save_model_s3('randomF_Benchmark', type_of_activity, type_of_model, model, pipeline)
return model_result
def pipeline_randomF_cv(X_train, y_train, X_test, y_test, model_result):
y_train = y_train['y_has_purchased']
param_grid = {
'randomF_cv__n_estimators': [100, 300],
'randomF_cv__max_features': ['sqrt', 'log2'],
'randomF_cv__min_samples_split': [2, 10],
'randomF_cv__min_samples_leaf': [1, 4],
'randomF_cv__class_weight': [weight_dict]
}
pipeline = Pipeline(steps=[
('preprocessor', preproc),
('randomF_cv', RandomForestClassifier(n_jobs=-1))
])
grid_search = GridSearchCV(pipeline, param_grid, cv=3, scoring=make_scorer(recall_score), error_score='raise',
n_jobs=-1)
grid_search.fit(X_train, y_train)
y_pred = grid_search.predict(X_test)
y_pred_prob = grid_search.predict_proba(X_test)[:, 1]
best_pipeline = grid_search.best_estimator_
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob, pos_label = 1)
model = "randomF_cv"
result = pd.DataFrame({"Model" : [model],
"Accuracy" : [accuracy_score(y_test, y_pred)],
"Recall" : [recall_score(y_test, y_pred)],
"F1_score" : [f1_score(y_test, y_pred, average="macro")],
"AUC" : [auc(fpr, tpr)]}
)
model_result = pd.concat([model_result, result])
compute_recall_companies(dataset_test, y_pred, type_of_activity, model)
draw_confusion_matrix(y_test, y_pred, model)
draw_roc_curve(X_test, y_pred_prob, model)
draw_features_importance(best_pipeline, 'randomF_cv', randomF=True)
draw_prob_distribution(y_pred_prob, model)
draw_prob_distribution_companies(y_pred_prob, model)
draw_calibration_curve(X_test, y_pred_prob, model)
save_model_s3('randomF_cv', type_of_activity, type_of_model, model, grid_search)
return model_result
def pipeline_naiveBayes_benchmark(X_train, y_train, X_test, y_test, model_result):
unique_classes, counts = np.unique(y_train, return_counts=True)
class_priors = counts / counts.sum()
pipeline = Pipeline(steps=[
('preprocessor', preproc),
('Naive_Bayes', GaussianNB(priors=class_priors))
])
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
y_pred_prob = pipeline.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob, pos_label = 1)
model = "Naive_Bayes"
result = pd.DataFrame({"Model" : [model],
"Accuracy" : [accuracy_score(y_test, y_pred)],
"Recall" : [recall_score(y_test, y_pred)],
"F1_score" : [f1_score(y_test, y_pred, average="macro")],
"AUC" : [auc(fpr, tpr)]}
)
model_result = pd.concat([model_result, result])
compute_recall_companies(dataset_test, y_pred, type_of_activity, model)
draw_confusion_matrix(y_test, y_pred, model)
draw_roc_curve(X_test, y_pred_prob, model)
draw_prob_distribution(y_pred_prob, model)
draw_calibration_curve(X_test, y_pred_prob, model)
save_model_s3('Naive_Bayes_Benchmark', type_of_activity, type_of_model, model, pipeline)
return model_result

View File

@ -1,325 +0,0 @@
# importations
import pandas as pd
from pandas import DataFrame
import numpy as np
import os
import s3fs
import matplotlib.pyplot as plt
from scipy.optimize import fsolve
import pickle
import warnings
import io
# functions
def load_train_test(type_of_activity):
"""
Loads the training and test datasets from S3 storage for the type of activity specified.
Args:
- type_of_activity (str)
Returns:
DataFrame: Training dataset.
DataFrame: Test dataset.
"""
# BUCKET = f"projet-bdc2324-team1/Generalization/{type_of_activity}"
BUCKET = f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_activity}"
File_path_train = BUCKET + "/Train_set.csv"
File_path_test = BUCKET + "/Test_set.csv"
with fs.open( File_path_train, mode="rb") as file_in:
dataset_train = pd.read_csv(file_in, sep=",")
# dataset_train['y_has_purchased'] = dataset_train['y_has_purchased'].fillna(0)
with fs.open(File_path_test, mode="rb") as file_in:
dataset_test = pd.read_csv(file_in, sep=",")
# dataset_test['y_has_purchased'] = dataset_test['y_has_purchased'].fillna(0)
return dataset_train, dataset_test
def features_target_split(dataset_train, dataset_test):
"""
Splits the dataset into features and target variables for training and testing.
Args:
- dataset_train (DataFrame): Training dataset.
- dataset_test (DataFrame): Test dataset.
Returns:
DataFrame: Features of the training dataset.
DataFrame: Features of the test dataset.
DataFrame: Target variable of the training dataset.
DataFrame: Target variable of the test dataset.
"""
features_l = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max',
'time_between_purchase', 'fidelity', 'is_email_true', 'opt_in', #'is_partner', 'nb_tickets_internet',
'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened']
X_train = dataset_train # [features_l]
y_train = dataset_train[['y_has_purchased']]
X_test = dataset_test # [features_l]
y_test = dataset_test[['y_has_purchased']]
return X_train, X_test, y_train, y_test
def load_model(type_of_activity, model):
"""
Loads from S3 storage the optimal parameters of the chosen ML model saved in a pickle file.
Args:
- type_of_activity (str)
- model (str)
Returns:
Model: machine learning model pre-trained with a scikit learn pipeline.
"""
# BUCKET = f"projet-bdc2324-team1/Output_model/{type_of_activity}/{model}/"
BUCKET = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/standard/{type_of_activity}/{model}/"
filename = model + '.pkl'
file_path = BUCKET + filename
with fs.open(file_path, mode="rb") as f:
model_bytes = f.read()
model = pickle.loads(model_bytes)
return model
def df_segment(df, y, model) :
"""
Segments customers into 4 groups based on the propensity scores given by a previously-loaded ML model.
Args:
- df (DataFrame): DataFrame to be segmented.
- y (Series): True target variable.
- model (Model): Pre-trained machine learning model for prediction.
Returns:
DataFrame: Segmented DataFrame with predicted values and true values for y.
"""
y_pred = model.predict(df)
y_pred_prob = model.predict_proba(df)[:, 1]
df_segment = df
df_segment["has_purchased"] = y
df_segment["has_purchased_estim"] = y_pred
df_segment["score"] = y_pred_prob
df_segment["quartile"] = np.where(df_segment['score']<0.25, '1',
np.where(df_segment['score']<0.5, '2',
np.where(df_segment['score']<0.75, '3', '4')))
return df_segment
def odd_ratio(score) :
"""
Args:
- score (Union[float, int])
Returns:
float: Odd ratio value.
"""
return score / (1 - score)
def adjust_score_1(score) :
"""
Adjust scores by replacing ones with the second highest value.
Allows to compute odd ratios then.
Args:
- score (List[Union[float, int]])
Returns:
np.ndarray: Adjusted score values.
"""
second_best_score = np.array([element for element in score if element !=1]).max()
new_score = np.array([element if element!=1 else second_best_score for element in score])
return new_score
def adjusted_score(odd_ratio, bias) :
"""
Adjust the score based on the odd ratio and bias.
Args:
- odd_ratio (Union[float, int])
- bias (Union[float, int])
Returns:
float: Adjusted score value.
"""
adjusted_score = odd_ratio/(bias+odd_ratio)
return adjusted_score
def find_bias(odd_ratios, y_objective, initial_guess=10) :
"""
Find the bias needed to adjust scores so that their sum is equal to the total number of purchases observed.
Args:
- odd_ratios (List[float]): List of odd ratios associated to the scores that have be adjusted.
- y_objective (Union[float, int]): Objective value => total number of purchases.
- initial_guess (Union[float, int], optional): Initial guess for the bias. Default is 10 (bias is approximately 6 for sports, 10 for music and 22 for museums)
Returns:
float: Estimated bias value.
"""
bias_estimated = fsolve(lambda bias : sum([adjusted_score(element, bias) for element in list(odd_ratios)]) - y_objective, x0=initial_guess)
return bias_estimated[0]
def plot_hist_scores(df, score, score_adjusted, type_of_activity) :
"""
Plot a histogram comparing scores and adjusted scores.
Args:
- df (DataFrame): DataFrame containing score data.
- score (str): Name of the column in df representing the original scores.
- score_adjusted (str): Name of the column in df representing the adjusted scores.
- type_of_activity (str) : type of activity of the companies considered.
Returns:
None
"""
plt.figure()
plt.hist(df[score], label = "score", alpha=0.6)
plt.hist(df[score_adjusted], label="adjusted score", alpha=0.6)
plt.legend()
plt.xlabel("probability of a future purchase")
plt.ylabel("count")
plt.title(f"Comparison between score and adjusted score for {type_of_activity} companies")
# plt.show()
def project_tickets_CA (df, nb_purchases, nb_tickets, total_amount, score_adjusted, duration_ref, duration_projection) :
"""
Project tickets sold and total amount based on the adjusted scores and the duration of periods of study / projection.
Args:
- df (DataFrame): DataFrame containing information about past sales.
- nb_purchases (str) : Name of the column in df representing the number of purchases.
- nb_tickets (str): Name of the column in df representing the number of tickets.
- total_amount (str): Name of the column in df representing the total amount.
- score_adjusted (str): Name of the column in df representing the adjusted score.
- duration_ref (int or float): Duration of the period of reference for the construction of the variables X.
- duration_projection (int or float): Duration of the period of projection of sales / revenue.
Returns:
DataFrame: DataFrame completed with sales and total amount projections.
"""
duration_ratio = duration_ref/duration_projection
df_output = df
# project number of tickets : at least 1 ticket purchased if the customer purchased
df_output.loc[:,"nb_tickets_projected"] = df_output.loc[:,nb_tickets].apply(lambda x : max(1, x /duration_ratio))
# project amount : if the customer buys a ticket, we expect the amount to be at least the average price of tickets
# for customers purchasing exactly one ticket
if df_output.loc[df_output[nb_tickets]==1].shape[0] > 0 :
avg_price = df_output.loc[df_output[nb_tickets]==1][total_amount].mean()
else :
avg_price = df_output[total_amount].mean()
# we compute the avg price of ticket for each customer
df_output["avg_ticket_price"] = df_output[total_amount]/df_output[nb_tickets]
# correct negatives total amounts
df_output.loc[:,"total_amount_corrected"] = np.where(df_output[total_amount] < 0,
avg_price * df_output[nb_tickets],
df_output[total_amount])
df_output.loc[:,"total_amount_projected"] = np.where(
# if no ticket bought in the past, we take the average price
df_output[nb_tickets]==0, avg_price,
# if avg prices of tickets are negative, we recompute the expected amount based on the avg price of a ticket
# observed on the whole population
np.where(X_test_segment["avg_ticket_price"] < 0, avg_price * df_output.loc[:,"nb_tickets_projected"],
# else, the amount projected is the average price of tickets bought by the customer * nb tickets projected
df_output["avg_ticket_price"] * df_output.loc[:,"nb_tickets_projected"])
)
df_output.loc[:,"nb_tickets_expected"] = df_output.loc[:,score_adjusted] * df_output.loc[:,"nb_tickets_projected"]
df_output.loc[:,"total_amount_expected"] = df_output.loc[:,score_adjusted] * df_output.loc[:,"total_amount_projected"]
df_output.loc[:,"pace_purchase"] = (duration_ref/df_output.loc[:,nb_purchases]).apply(lambda x : np.nan if x==np.inf else x)
return df_output
def summary_expected_CA(df, segment, nb_tickets_expected, total_amount_expected, total_amount, pace_purchase,
duration_ref=17, duration_projection=12) :
"""
Generate a summary of expected customer sales based on segments.
Args:
- df (DataFrame): DataFrame containing customer data.
- segment (str): Name of the column in df representing customer segments.
- nb_tickets_expected (str): Name of the column in df representing the expected number of tickets.
- total_amount_expected (str): Name of the column in df representing the expected total amount.
- total_amount (str): Name of the column in df representing the total amount.
- pace_purchase (str) : Name of the column in df representing the average time between 2 purchases in months.
- duration_ref (int or float): Duration of the period of reference for the construction of the variables X.
- duration_projection (int or float): Duration of the period of projection of sales / revenue.
Returns:
DataFrame: Summary DataFrame containing expected customer sales metrics.
"""
# compute nb tickets estimated and total amount expected
df_expected_CA = df.groupby(segment)[[nb_tickets_expected, total_amount_expected]].sum().reset_index()
# number of customers by segment
df_expected_CA.insert(1, "size", df.groupby(segment).size().values)
# size in percent of all customers
df_expected_CA.insert(2, "size_perct", 100 * df_expected_CA["size"]/df_expected_CA["size"].sum())
# compute share of CA recovered
duration_ratio=duration_ref/duration_projection
df_expected_CA["revenue_recovered_perct"] = 100 * duration_ratio * df_expected_CA[total_amount_expected] / \
df.groupby(segment)[total_amount].sum().values
df_expected_CA["share_future_revenue_perct"] = 100 * duration_ratio * df_expected_CA[total_amount_expected] / \
df[total_amount].sum()
df_drop_null_pace = df.dropna(subset=[pace_purchase])
df_expected_CA["pace_purchase"] = df_drop_null_pace.groupby(segment)[pace_purchase].mean().values
return df_expected_CA
def save_file_s3_ca(File_name, type_of_activity):
"""
Saves a file in S3 storage.
Args:
- File_name (str)
- type_of_activity (str)
"""
image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png', dpi=120)
image_buffer.seek(0)
PATH = f"projet-bdc2324-team1/2_Output/2_3_Sales_Forecast/{type_of_activity}/"
FILE_PATH_OUT_S3 = PATH + File_name + type_of_activity + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read())
plt.close()

View File

@ -1,335 +0,0 @@
# functions for segmentation and graphics associated
def load_model(type_of_activity, model):
"""
Loads from S3 storage the optimal parameters of the chosen ML model saved in a pickle file.
Args:
- type_of_activity (str)
- model (str)
Returns:
Model: machine learning model pre-trained with a scikit learn pipeline.
"""
BUCKET = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/standard/{type_of_activity}/{model}/"
filename = model + '.pkl'
file_path = BUCKET + filename
with fs.open(file_path, mode="rb") as f:
model_bytes = f.read()
model = pickle.loads(model_bytes)
return model
def load_test_file(type_of_activity):
"""
Load the test dataset from S3 storage for the type of activity specified.
Args:
- type_of_activity (str)
Returns:
DataFrame: Test dataset.
"""
file_path_test = f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_activity}/Test_set.csv"
with fs.open(file_path_test, mode="rb") as file_in:
dataset_test = pd.read_csv(file_in, sep=",")
return dataset_test
def save_file_s3_mp(File_name, type_of_activity):
"""
Save a matplotlib figure to S3 storage to the location assigned for the type of activity specified.
Args:
- File_name (str)
- type_of_activity (str)
Returns:
None
"""
image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png', dpi=110)
image_buffer.seek(0)
PATH = f"projet-bdc2324-team1/2_Output/2_2_Segmentation_and_Marketing_Personae/{type_of_activity}/"
FILE_PATH_OUT_S3 = PATH + File_name + type_of_activity + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read())
plt.close()
def save_txt_file_s3(file_name, type_of_activity, content):
"""
Save a text file to S3 storage to the location assigned for the type of activity specified.
Args:
- file_name (str)
- type_of_activity (str)
- content (str)
Returns:
None
"""
FILE_PATH = f"projet-bdc2324-team1/2_Output/2_2_Segmentation_and_Marketing_Personae/{type_of_activity}/"
FILE_PATH_OUT_S3 = FILE_PATH + file_name + type_of_activity + '.txt'
with fs.open(FILE_PATH_OUT_S3, 'w') as s3_file:
s3_file.write(content)
def df_business_fig(df, segment, list_var) :
"""
Compute business key performance indicators (KPIs) based on segment-wise aggregation of variables.
Args:
- df (DataFrame): The DataFrame containing data.
- segment (str): The column name representing segments.
- list_var (list of str): The list of variable names to be aggregated.
Returns:
DataFrame: The DataFrame containing business KPIs.
"""
df_business_kpi = df.groupby(segment)[list_var].sum().reset_index()
df_business_kpi.insert(1, "size", df.groupby(segment).size().values)
all_var = ["size"] + list_var
df_business_kpi[all_var] = 100 * df_business_kpi[all_var] / df_business_kpi[all_var].sum()
return df_business_kpi
def hist_segment_business_KPIs(df, segment, size, nb_tickets, nb_purchases, total_amount, nb_campaigns, type_of_activity) :
"""
Plot a histogram stacking the relative weight of each segment regarding some key business indicators.
Args:
- df (DataFrame): The DataFrame containing pre aggregated data about some key business indicators
- segment (str): The column name representing segments.
- size (str): The column name representing the size.
- nb_tickets (str): The column name representing the number of tickets.
- nb_purchases (str): The column name representing the number of purchases.
- total_amount (str): The column name representing the total amount.
- nb_campaigns (str): The column name representing the number of campaigns.
- type_of_activity (str)
Returns:
None
"""
plt.figure()
df_plot = df[[segment, size, nb_tickets, nb_purchases, total_amount, nb_campaigns]]
x = ["number of\ncustomers", "number of\ntickets", "number of\npurchases", "total\namount",
"number of\ncampaigns"]
bottom = np.zeros(5)
# types of blue color
colors = plt.cm.Blues(np.linspace(0.1, 0.9, 4))
for i in range(4) :
height = list(df_plot.loc[i,size:].values)
plt.bar(x=x, height=height, label = str(df_plot[segment][i]), bottom=bottom, color=colors[i])
bottom+=height
# Ajust margins
plt.subplots_adjust(left = 0.125, right = 0.8, bottom = 0.1, top = 0.9)
plt.legend(title = "segment", loc = "upper right", bbox_to_anchor=(1.2, 1))
plt.ylabel("Fraction represented by the segment (%)")
plt.title(f"Relative weight of each segment regarding business KPIs\nfor {type_of_activity} companies", size=12)
# plt.show()
# def df_segment_mp(df) :
# df_mp = df.groupby("segment")[["gender_female", "gender_male", "gender_other", "country_fr"]].mean().reset_index()
# df_mp.insert(3, "share_known_gender", df_mp["gender_female"]+df_mp["gender_male"])
# df_mp.insert(4, "share_of_women", df_mp["gender_female"]/(df_mp["share_known_gender"]))
# return df_mp
# def df_segment_pb (df) :
# df_pb = df.groupby("segment")[["prop_purchases_internet", "taux_ouverture_mail", "opt_in"]].mean().reset_index()
# return df_pb
def radar_mp_plot(df, categories, index) :
"""
Plot a radar chart describing marketing personae of the segment associated to index for the given categories, for the type of activity specified.
Args:
- df (DataFrame): The DataFrame containing data about categories describing the marketing personae associated to each segment
- categories (list of str):
- index (int): The index (between 0 and 3) identifying the segment. Here, index = number of the segment - 1
Returns:
None
"""
categories = categories
# true values are used to print the true value in parenthesis
tvalues = list(df.loc[index,categories])
max_values = df[categories].max()
# values are true values / max among the 4 segments, allows to
# put values in relation with the values for other segments
# if the point has a maximal abscisse it means that value is maximal for the segment considered
# , event if not equal to 1
values = list(df.loc[index,categories]/max_values)
# values normalized are used to adjust the value around the circle
# for instance if the maximum of values is equal to 0.8, we want the point to be
# at 8/10th of the circle radius, not at the edge
values_normalized = [ max(values) * elt for elt in values]
# Nb of categories
num_categories = len(categories)
angles = np.linspace(0, 2 * np.pi, num_categories, endpoint=False).tolist()
# Initialize graphic
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
# we have to draw first a transparent line (alpha=0) of values to adjust the radius of the circle
# which is based on max(value)
# if we don't plot this transparent line, the radius of the circle will be too small
ax.plot(angles + angles[:1], values + values[:1], color='skyblue', alpha=0, linewidth=1.5)
ax.plot(angles + angles[:1], values_normalized + values_normalized[:1], color='black', alpha = 0.5, linewidth=1.2)
# fill the sector
ax.fill(angles, values_normalized, color='orange', alpha=0.4)
# labels
ax.set_yticklabels([])
ax.set_xticks(angles)
ticks = [categories[i].replace("_"," ") + f"\n({round(100 * tvalues[i],2)}%)" for i in range(len(categories))]
ax.set_xticklabels(ticks, color="black")
ax.spines['polar'].set_visible(False)
plt.title(f'Characteristics of the segment {index+1}\n')
# plt.show()
def radar_mp_plot_all(df, type_of_activity) :
"""
Plot exactly the same radar charts as radar_mp_plot, but for all segments.
Args:
- df (DataFrame)
- type_of_activity (str)
Returns:
None
"""
# table summarizing variables relative to marketing personae
df_mp = df.groupby("segment")[["gender_female", "gender_male", "gender_other", "age"]].mean().reset_index()
#df_mp.insert(3, "share_known_gender", df_mp["gender_female"]+df_mp["gender_male"])
df_mp.insert(4, "share_of_women", df_mp["gender_female"]/(df_mp["gender_female"]+df_mp["gender_male"]))
# table relative to purchasing behaviour
df_pb = df.groupby("segment")[["prop_purchases_internet", "taux_ouverture_mail", "opt_in"]].mean().reset_index()
# concatenation of tables to prepare the plot
df_used = pd.concat([df_pb, df_mp[[ 'share_of_women', 'age']]], axis=1)
# rename columns for the plot
df_used = df_used.rename(columns={'taux_ouverture_mail': 'mails_opened', 'prop_purchases_internet': 'purchases_internet'})
# visualization
nb_segments = df_used.shape[0]
categories = list(df_used.drop("segment", axis=1).columns)
var_not_perc = ["age"]
# Initialize graphic
fig, ax = plt.subplots(2,2, figsize=(20, 21), subplot_kw=dict(polar=True))
for index in range(nb_segments) :
row = index // 2 # Division entière pour obtenir le numéro de ligne
col = index % 2
# true values are used to print the true value in parenthesis
tvalues = list(df_used.loc[index,categories])
max_values = df_used[categories].max()
# values are true values / max among the 4 segments, allows to
# put values in relation with the values for other segments
# if the point has a maximal abscisse it means that value is maximal for the segment considered
# , event if not equal to 1
values = list(df_used.loc[index,categories]/max_values)
# values normalized are used to adjust the value around the circle
# for instance if the maximum of values is equal to 0.8, we want the point to be
# at 8/10th of the circle radius, not at the edge
values_normalized = [ max(values) * elt for elt in values]
# Nb of categories
num_categories = len(categories)
angles = np.linspace(0, 2 * np.pi, num_categories, endpoint=False).tolist()
# we have to draw first a transparent line (alpha=0) of values to adjust the radius of the circle
# which is based on max(value)
# if we don't plot this transparent line, the radius of the circle will be too small
ax[row, col].plot(angles + angles[:1], values + values[:1], color='skyblue', alpha=0, linewidth=1.5)
ax[row, col].plot(angles + angles[:1], values_normalized + values_normalized[:1], color='black', alpha = 0.5,
linewidth=1.2)
# fill the sector
ax[row, col].fill(angles, values_normalized, color='orange', alpha=0.4, label = index)
# labels
ax[row, col].set_yticklabels([])
ax[row, col].set_xticks(angles)
# define the ticks
values_printed = [str(round(tvalues[i],2)) if categories[i] in var_not_perc else f"{round(100 * tvalues[i],2)}%" for i in range(len(categories))]
ticks = [categories[i].replace("_"," ") + f"\n({values_printed[i]})" for i in range(len(categories))]
ax[row, col].set_xticklabels(ticks, color="black", size = 20)
ax[row, col].spines['polar'].set_visible(False)
ax[row, col].set_title(f'Segment {index+1}\n', size = 24)
fig.suptitle(f"Characteristics of marketing personae of {type_of_activity} companies", size=32)
plt.tight_layout()
# plt.show()
def known_sociodemo_caracteristics(df, type_of_activity) :
"""
Compute the share of non-NaN values for some sociodemographic caracteristics features and save the result in a latex table.
Args:
- df (DataFrame)
- type_of_activity (str)
Returns:
None
"""
table_share_known = df.groupby("segment")[["is_profession_known", "is_zipcode_known", "categorie_age_inconnue", "gender_other"]].mean().mul(100).reset_index()
table_share_known.columns = ['Segment', 'Share of Known Profession (%)', 'Share of Known Zipcode (%)', 'Share of Unknown Age (%)', 'Share of Unknown Gender (%)']
table_share_known= table_share_known.pivot_table(index=None, columns='Segment')
# Arrondir les valeurs du DataFrame à une décimale
table_share_known_rounded = table_share_known.round(1)
# Convertir le DataFrame en format LaTeX avec les valeurs arrondies et le symbole '%'
latex_table = tabulate(table_share_known_rounded, headers='keys', tablefmt='latex_raw', floatfmt=".1f")
latex_table = latex_table.replace('%', '\\%')
save_txt_file_s3("table_known_socio_demo_caracteristics", type_of_activity, latex_table)

View File

@ -1,467 +0,0 @@
def load_files(nb_compagnie):
"""
load and preprocess dataframes
"""
customer = pd.DataFrame()
campaigns_brut = pd.DataFrame()
campaigns_kpi = pd.DataFrame()
products = pd.DataFrame()
tickets = pd.DataFrame()
targets = pd.DataFrame()
for directory_path in nb_compagnie:
df_customerplus_clean_0 = display_input_databases(directory_path, file_name = "customerplus_cleaned")
df_campaigns_brut = display_input_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])
df_products_purchased_reduced = display_input_databases(directory_path, file_name = "products_purchased_reduced", datetime_col = ['purchase_date'])
df_target_information = display_input_databases(directory_path, file_name = "target_information")
df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_brut, max_date=pd.Timestamp.now(tz='UTC'))
df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_reduced)
df_customerplus_clean = customerplus_kpi_function(customerplus_clean = df_customerplus_clean_0)
df_target_KPI = targets_KPI(df_target = df_target_information)
# Merge and
df_target_KPI = pd.merge(df_customerplus_clean_0[['customer_id']], df_target_KPI, how = 'left', on = 'customer_id')
targets_columns = list(df_target_KPI.columns)
targets_columns.remove('customer_id')
df_target_KPI[targets_columns] = df_target_KPI[targets_columns].fillna(0)
# Create company identifier
df_tickets_kpi["number_company"]=int(directory_path)
df_campaigns_brut["number_company"]=int(directory_path)
df_campaigns_kpi["number_company"]=int(directory_path)
df_customerplus_clean["number_company"]=int(directory_path)
df_target_information["number_company"]=int(directory_path)
df_target_KPI["number_company"]=int(directory_path)
# Clean index
df_tickets_kpi["customer_id"]= directory_path + '_' + df_tickets_kpi['customer_id'].astype('str')
df_campaigns_brut["customer_id"]= directory_path + '_' + df_campaigns_brut['customer_id'].astype('str')
df_campaigns_kpi["customer_id"]= directory_path + '_' + df_campaigns_kpi['customer_id'].astype('str')
df_customerplus_clean["customer_id"]= directory_path + '_' + df_customerplus_clean['customer_id'].astype('str')
df_products_purchased_reduced["customer_id"]= directory_path + '_' + df_products_purchased_reduced['customer_id'].astype('str')
# Remove companies' outliers
df_tickets_kpi = remove_outlier_total_amount(df_tickets_kpi)
# harmonize set of customers across databases
customer_id = df_tickets_kpi['customer_id'].to_list()
for dataset in [df_campaigns_brut, df_campaigns_kpi, df_customerplus_clean, df_target_information]:
dataset = dataset[dataset['customer_id'].isin(customer_id)]
df_target_KPI["customer_id"]= directory_path + '_' + df_target_KPI['customer_id'].astype('str')
# Concatenation
customer = pd.concat([customer, df_customerplus_clean], ignore_index=True)
campaigns_kpi = pd.concat([campaigns_kpi, df_campaigns_kpi], ignore_index=True)
campaigns_brut = pd.concat([campaigns_brut, df_campaigns_brut], ignore_index=True)
tickets = pd.concat([tickets, df_tickets_kpi], ignore_index=True)
products = pd.concat([products, df_products_purchased_reduced], ignore_index=True)
targets = pd.concat([targets, df_target_KPI], ignore_index=True)
return customer, campaigns_kpi, campaigns_brut, tickets, products, targets
def remove_outlier_total_amount(tickets : pd.DataFrame):
Q1 = tickets['total_amount'].quantile(0.25)
Q3 = tickets['total_amount'].quantile(0.75)
IQR = Q3 - Q1
upper = Q3 +1.5*IQR
outliers = tickets[tickets['total_amount'] > upper]['customer_id'].to_list()
tickets = tickets[~tickets['customer_id'].isin(outliers)]
return tickets
def save_file_s3(File_name, type_of_activity):
"""
save plots into s3 storage
"""
image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png', pad_inches=1, bbox_inches="tight", dpi = 150)
image_buffer.seek(0)
FILE_PATH = f"projet-bdc2324-team1/2_Output/2_0_Descriptive_Statistics/{type_of_activity}/"
FILE_PATH_OUT_S3 = FILE_PATH + File_name + type_of_activity + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read())
plt.close()
def outlier_detection(tickets : pd.DataFrame, company_list, show_diagram=False):
"""
detect anonymous customers
"""
outlier_list = list()
for company in company_list:
total_amount_share = tickets[tickets['number_company']==int(company)].groupby('customer_id')['total_amount'].sum().reset_index()
total_amount_share['CA'] = total_amount_share['total_amount'].sum()
total_amount_share['share_total_amount'] = total_amount_share['total_amount']/total_amount_share['CA']
total_amount_share_index = total_amount_share.set_index('customer_id')
df_circulaire = total_amount_share_index['total_amount'].sort_values(axis = 0, ascending = False)
#print('df circulaire : ', df_circulaire.head())
top = df_circulaire[:1]
#print('top : ', top)
outlier_list.append(top.index[0])
rest = df_circulaire[1:]
rest_sum = rest.sum()
new_series = pd.concat([top, pd.Series([rest_sum], index=['Autre'])])
if show_diagram:
plt.figure(figsize=(3, 3))
plt.pie(new_series, labels=new_series.index, autopct='%1.1f%%', startangle=140, pctdistance=0.5)
plt.axis('equal')
# plt.title(f'Répartition des montants totaux pour la compagnie {company}')
plt.show()
return outlier_list
def valid_customer_detection(products : pd.DataFrame, campaigns_brut : pd.DataFrame):
"""
identify customer that are in our time perimeter
"""
products_valid = products[products['purchase_date']>="2021-05-01"]
consumer_valid_product = products_valid['customer_id'].to_list()
campaigns_valid = campaigns_brut[campaigns_brut["sent_at"]>="2021-05-01"]
consumer_valid_campaigns = campaigns_valid['customer_id'].to_list()
consumer_valid = consumer_valid_product + consumer_valid_campaigns
return consumer_valid
def identify_purchase_during_target_periode(products : pd.DataFrame):
"""
identify customer who purchased ticket during the target period
"""
products_target_period = products[(products['purchase_date']>="2022-11-01")
& (products['purchase_date']<="2023-11-01")]
customer_target_period = products_target_period['customer_id'].to_list()
return customer_target_period
def remove_elements(lst, elements_to_remove):
return ''.join([x for x in lst if x not in elements_to_remove])
def compute_nb_clients(customer: pd.DataFrame, type_of_activity: str):
company_nb_clients = customer[customer["purchase_count"]>0].groupby("number_company")["customer_id"].count().reset_index()
plt.figure(figsize=(4,3))
plt.bar(company_nb_clients["number_company"], company_nb_clients["customer_id"]/1000)
plt.xlabel('Company Number')
plt.ylabel("Number of clients (thousands)")
# plt.title(f"Number of clients Across {type_of_activity} Companies")
plt.xticks(company_nb_clients["number_company"], ["{}".format(i) for i in company_nb_clients["number_company"]])
plt.show()
save_file_s3("nb_clients_", type_of_activity)
def maximum_price_paid(customer: pd.DataFrame, type_of_activity: str):
company_max_price = customer.groupby("number_company")["max_price"].max().reset_index()
plt.bar(company_max_price["number_company"], company_max_price["max_price"])
plt.xlabel('Company Number')
plt.ylabel("Maximal price of a ticket Prix")
# plt.title(f"Maximal price of a ticket Across {type_of_activity} Companies")
plt.xticks(company_max_price["number_company"], ["{}".format(i) for i in company_max_price["number_company"]])
plt.show()
save_file_s3("Maximal_price_", type_of_activity)
def target_proportion(customer: pd.DataFrame, type_of_activity: str):
df_y = customer.groupby(["number_company"]).agg({"has_purchased_target_period" : 'sum',
'customer_id' : 'nunique'}).reset_index()
df_y['prop_has_purchased_target_period'] = (df_y["has_purchased_target_period"]/df_y['customer_id'])*100
plt.bar(df_y["number_company"], df_y["prop_has_purchased_target_period"])
plt.xlabel('Company Number')
plt.ylabel('Share (%)')
# plt.title(f'Share of Customers who Bought during the Target Period Across {type_of_activity} Companies')
plt.xticks(df_y["number_company"], ["{}".format(i) for i in df_y["number_company"]])
plt.show()
save_file_s3("share_target_", type_of_activity)
def mailing_consent(customer: pd.DataFrame, type_of_activity: str):
mailing_consent = customer.groupby("number_company")["opt_in"].mean().reset_index()
mailing_consent["opt_in"] *= 100
plt.bar(mailing_consent["number_company"], mailing_consent["opt_in"])
plt.xlabel('Company Number')
plt.ylabel('Mailing Consent (%)')
# plt.title(f'Consent of mailing Across {type_of_activity} Companies')
plt.xticks(mailing_consent["number_company"], ["{}".format(i) for i in mailing_consent["number_company"]])
plt.show()
save_file_s3("mailing_consent_", type_of_activity)
def mailing_consent_by_target(customer: pd.DataFrame, type_of_activity: str):
df_graph = customer.groupby(["number_company", "has_purchased_target_period"])["opt_in"].mean().reset_index()
# Création du barplot groupé
fig, ax = plt.subplots(figsize=(5, 3))
categories = df_graph["number_company"].unique()
bar_width = 0.35
bar_positions = np.arange(len(categories))
# Grouper les données par label et créer les barres groupées
for label in df_graph["has_purchased_target_period"].unique():
label_data = df_graph[df_graph['has_purchased_target_period'] == label]
values = [label_data[label_data['number_company'] == category]['opt_in'].values[0]*100 for category in categories]
label_printed = "Purchase" if label else "No purchase"
ax.bar(bar_positions, values, bar_width, label=label_printed)
# Mise à jour des positions des barres pour le prochain groupe
bar_positions = [pos + bar_width for pos in bar_positions]
# Ajout des étiquettes, de la légende, etc.
ax.set_xlabel('Company Number')
ax.set_ylabel('Mailing Consent (%)')
# ax.set_title(f'Consent of mailing according to target Across {type_of_activity} Companies')
ax.set_xticks([pos + bar_width / 2 for pos in np.arange(len(categories))])
ax.set_xticklabels(categories)
ax.legend()
# Affichage du plot
plt.show()
save_file_s3("mailing_consent_target_", type_of_activity)
def gender_bar(customer: pd.DataFrame, type_of_activity: str):
company_genders = customer.groupby("number_company")[["gender_male", "gender_female", "gender_other"]].mean().reset_index()
company_genders["gender_male"] *= 100
company_genders["gender_female"] *= 100
company_genders["gender_other"] *= 100
# Création du barplot
plt.figure(figsize=(4,3))
plt.bar(company_genders["number_company"], company_genders["gender_male"], label = "Male")
plt.bar(company_genders["number_company"], company_genders["gender_female"],
bottom = company_genders["gender_male"], label = "Female")
plt.bar(company_genders["number_company"], company_genders["gender_other"],
bottom = company_genders["gender_male"] + company_genders["gender_female"], label = "Unknown")
plt.xlabel('Company Number')
plt.ylabel("Frequency (%)")
# plt.title(f"Gender Distribution of Customers Across {type_of_activity} Companies")
plt.legend()
plt.xticks(company_genders["number_company"], ["{}".format(i) for i in company_genders["number_company"]])
plt.show()
save_file_s3("gender_bar_", type_of_activity)
def country_bar(customer: pd.DataFrame, type_of_activity: str):
company_country_fr = customer.groupby("number_company")["country_fr"].mean().reset_index()
company_country_fr["country_fr"] *= 100
plt.figure(figsize=(4,3))
plt.bar(company_country_fr["number_company"], company_country_fr["country_fr"])
plt.xlabel('Company Number')
plt.ylabel("Share of French Customer (%)")
# plt.title(f"Share of French Customer Across {type_of_activity} Companies")
plt.xticks(company_country_fr["number_company"], ["{}".format(i) for i in company_country_fr["number_company"]])
plt.show()
save_file_s3("country_bar_", type_of_activity)
def lazy_customer_plot(campaigns_kpi: pd.DataFrame, type_of_activity: str):
company_lazy_customers = campaigns_kpi.groupby("number_company")[["nb_campaigns", "taux_ouverture_mail"]].mean().reset_index()
company_lazy_customers["taux_ouverture_mail"] *= 100
# Initialize the figure
fig, ax1 = plt.subplots(figsize=(6, 3))
width = 0.4
x = range(len(company_lazy_customers))
# Plot the bars for "nb_campaigns" on the first y-axis
ax1.bar([i - width/2 for i in x], company_lazy_customers['nb_campaigns'], width=width, align='center', label='Amount of Campaigns', color = 'steelblue')
# Set labels and title for the first y-axis
ax1.set_ylabel('Number of Mails Received', color='steelblue')
ax1.tick_params(axis='y', labelcolor='steelblue')
# Create another y-axis for "taux_ouverture_mail"
ax2 = ax1.twinx()
# Plot the bars for "taux_ouverture_mail" on the second y-axis
ax2.bar([i + width/2 for i in x], company_lazy_customers['taux_ouverture_mail'], width=width, align='center', label='Open Mail Rate', color = 'darkorange')
# Set labels and title for the second y-axis
ax2.set_ylabel('Open Mail Rate (%)', color='darkorange')
ax2.tick_params(axis='y', labelcolor='darkorange')
# Set x-axis ticks and labels
ax1.set_xticks(x)
ax1.set_xticklabels(company_lazy_customers['number_company'])
plt.show()
save_file_s3("lazy_customer_", type_of_activity)
def campaigns_effectiveness(customer: pd.DataFrame, type_of_activity: str):
campaigns_effectiveness = customer.groupby(["number_company", "has_purchased_target_period"])["opt_in"].mean().reset_index()
fig, ax = plt.subplots(figsize=(5, 3))
categories = campaigns_effectiveness["number_company"].unique()
bar_width = 0.35
bar_positions = np.arange(len(categories))
# Grouper les données par label et créer les barres groupées
for label in campaigns_effectiveness["has_purchased_target_period"].unique():
label_data = campaigns_effectiveness[campaigns_effectiveness['has_purchased_target_period'] == label]
values = [label_data[label_data['number_company'] == category]['opt_in'].values[0]*100 for category in categories]
label_printed = "Purchase" if label else "No purchase"
ax.bar(bar_positions, values, bar_width, label=label_printed)
# Mise à jour des positions des barres pour le prochain groupe
bar_positions = [pos + bar_width for pos in bar_positions]
# Ajout des étiquettes, de la légende, etc.
ax.set_xlabel('Company Number')
ax.set_ylabel('Share of Consent (%)')
# ax.set_title(f"Proportion of customers who have given their consent to receive emails, by customer class ({type_of_activity} companies)")
ax.set_xticks([pos + bar_width / 2 for pos in np.arange(len(categories))])
ax.set_xticklabels(categories)
ax.legend()
plt.show()
save_file_s3("campaigns_effectiveness_", type_of_activity)
def sale_dynamics(products : pd.DataFrame, campaigns_brut : pd.DataFrame, type_of_activity):
purchase_min = products.groupby(['customer_id'])['purchase_date'].min().reset_index()
purchase_min.rename(columns = {'purchase_date' : 'first_purchase_event'}, inplace = True)
purchase_min['first_purchase_event'] = pd.to_datetime(purchase_min['first_purchase_event'])
purchase_min['first_purchase_month'] = pd.to_datetime(purchase_min['first_purchase_event'].dt.strftime('%Y-%m'))
# Mois du premier mails
first_mail_received = campaigns_brut.groupby('customer_id')['sent_at'].min().reset_index()
first_mail_received.rename(columns = {'sent_at' : 'first_email_reception'}, inplace = True)
first_mail_received['first_email_reception'] = pd.to_datetime(first_mail_received['first_email_reception'])
first_mail_received['first_email_month'] = pd.to_datetime(first_mail_received['first_email_reception'].dt.strftime('%Y-%m'))
# Fusion
known_customer = pd.merge(purchase_min[['customer_id', 'first_purchase_month']],
first_mail_received[['customer_id', 'first_email_month']], on = 'customer_id', how = 'outer')
# Mois à partir duquel le client est considere comme connu
known_customer['known_date'] = pd.to_datetime(known_customer[['first_email_month', 'first_purchase_month']].min(axis = 1), utc = True, format = 'ISO8601')
# Nombre de commande par mois
purchases_count = pd.merge(products[['customer_id', 'purchase_id', 'purchase_date']].drop_duplicates(), known_customer[['customer_id', 'known_date']], on = ['customer_id'], how = 'inner')
purchases_count['is_customer_known'] = purchases_count['purchase_date'] > purchases_count['known_date'] + pd.DateOffset(months=1)
purchases_count['purchase_date_month'] = pd.to_datetime(purchases_count['purchase_date'].dt.strftime('%Y-%m'))
purchases_count = purchases_count[purchases_count['customer_id'] != 1]
# Nombre de commande par mois par type de client
nb_purchases_graph = purchases_count.groupby(['purchase_date_month', 'is_customer_known'])['purchase_id'].count().reset_index()
nb_purchases_graph.rename(columns = {'purchase_id' : 'nb_purchases'}, inplace = True)
nb_purchases_graph_2 = purchases_count.groupby(['purchase_date_month', 'is_customer_known'])['customer_id'].nunique().reset_index()
nb_purchases_graph_2.rename(columns = {'customer_id' : 'nb_new_customer'}, inplace = True)
# Graphique en nombre de commande
purchases_graph = nb_purchases_graph
purchases_graph_used = purchases_graph[purchases_graph["purchase_date_month"] >= datetime(2021,3,1)]
purchases_graph_used_0 = purchases_graph_used[purchases_graph_used["is_customer_known"]==False]
purchases_graph_used_1 = purchases_graph_used[purchases_graph_used["is_customer_known"]==True]
merged_data = pd.merge(purchases_graph_used_0, purchases_graph_used_1, on="purchase_date_month", suffixes=("_new", "_old"))
plt.figure(figsize=(5.5,4))
plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_new"], width=12, label="New Customers")
plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_old"],
bottom=merged_data["nb_purchases_new"], width=12, label="Existing Customers")
# commande pr afficher slt
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%b%y'))
plt.xlabel('Month')
plt.ylabel("Number of Sales")
# plt.title(f"Number of Sales Across {type_of_activity} Companies")
plt.legend()
plt.show()
save_file_s3("sale_dynamics_", type_of_activity)
def tickets_internet(tickets: pd.DataFrame, type_of_activity: str):
nb_tickets_internet = tickets.groupby("number_company")['prop_purchases_internet'].mean().reset_index()
nb_tickets_internet['prop_purchases_internet'] *=100
plt.bar(nb_tickets_internet["number_company"], nb_tickets_internet["prop_purchases_internet"])
plt.xlabel('Company Number')
plt.ylabel("Share of Purchases Bought Online (%)")
# plt.title(f"Share of Online Purchases Across {type_of_activity} Companies")
plt.xticks(nb_tickets_internet["number_company"], ["{}".format(i) for i in nb_tickets_internet["number_company"]])
plt.show()
save_file_s3("tickets_internet_", type_of_activity)
def already_bought_online(tickets: pd.DataFrame, type_of_activity: str):
nb_consumers_online = (tickets.groupby("number_company").agg({'achat_internet' : 'sum',
'customer_id' : 'nunique'}
).reset_index())
nb_consumers_online["Share_consumers_internet"] = (nb_consumers_online["achat_internet"]/ nb_consumers_online["customer_id"])*100
plt.bar(nb_consumers_online["number_company"], nb_consumers_online["Share_consumers_internet"])
plt.xlabel('Company Number')
plt.ylabel("Share of Customer who Bought Online at least once (%)")
# plt.title(f"Share of Customer who Bought Online at least once Across {type_of_activity} Companies")
plt.xticks(nb_consumers_online["number_company"], ["{}".format(i) for i in nb_consumers_online["number_company"]])
plt.show()
save_file_s3("First_buy_internet_", type_of_activity)
def box_plot_price_tickets(tickets: pd.DataFrame, type_of_activity: str):
price_tickets = tickets[(tickets['total_amount'] > 0)]
plt.figure(figsize=(4,3))
sns.boxplot(data=price_tickets, y="total_amount", x="number_company", showfliers=False, showmeans=True)
# plt.title(f"Box plot of price tickets Across {type_of_activity} Companies")
plt.xlabel('Company Number')
plt.ylabel("Total Amount Spent")
plt.show()
save_file_s3("box_plot_price_tickets_", type_of_activity)
def target_description(targets : pd.DataFrame, type_of_activity: str):
describe_target = targets.groupby('number_company').agg(
prop_target_jeune=('target_jeune', lambda x: (x.sum() / x.count())*100),
prop_target_scolaire=('target_scolaire', lambda x: (x.sum() / x.count())*100),
prop_target_entreprise=('target_entreprise', lambda x: (x.sum() / x.count())*100),
prop_target_famille=('target_famille', lambda x: (x.sum() / x.count())*100),
prop_target_optin=('target_optin', lambda x: (x.sum() / x.count())*100),
prop_target_optout=('target_optout', lambda x: (x.sum() / x.count())*100),
prop_target_newsletter=('target_newsletter', lambda x: (x.sum() / x.count())*100),
prop_target_abonne=('target_abonne', lambda x: (x.sum() / x.count())*100))
plot = describe_target.plot.bar()
# Adding a title
# plot.set_title(f"Distribution of Targets by Category for {type_of_activity} companies")
# Adding labels for x and y axes
plot.set_xlabel("Company Number")
plot.set_ylabel("Target Proportion")
plot.set_xticklabels(plot.get_xticklabels(), rotation=0, horizontalalignment='center')
# Adding a legend
plot.legend(["Youth", "School", "Enterprise", "Family", "Optin", "Optout", "Newsletter", "Subscriber"], title="Target Category")
save_file_s3("target_category_proportion_", type_of_activity)