{ "cells": [ { "cell_type": "markdown", "id": "ad414c84-be46-4d2c-be8b-9fc4d24cc672", "metadata": {}, "source": [ "# Business Data Challenge - Team 1" ] }, { "cell_type": "code", "execution_count": 1, "id": "15103481-8d74-404c-aa09-7601fe7730da", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import os\n", "import s3fs\n", "import re\n", "import warnings" ] }, { "cell_type": "markdown", "id": "ee97665c-39af-4c1c-a62b-c9c79feae18f", "metadata": {}, "source": [ "Configuration de l'accès aux données" ] }, { "cell_type": "code", "execution_count": 2, "id": "5d83bb1a-d341-446e-91f6-1c428607f6d4", "metadata": {}, "outputs": [], "source": [ "# Create filesystem object\n", "S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n", "fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})" ] }, { "cell_type": "code", "execution_count": null, "id": "a9b84234-d5df-4c43-a9cd-80cfe2f1e34d", "metadata": {}, "outputs": [], "source": [ "# Ignore warning\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "markdown", "id": "9cbd72c5-6f8e-4366-ab66-96c32c6e963a", "metadata": {}, "source": [ "# Exemple sur Company 1" ] }, { "cell_type": "markdown", "id": "db26e59a-927c-407e-b54b-1815473b0b34", "metadata": {}, "source": [ "## Chargement données" ] }, { "cell_type": "code", "execution_count": 3, "id": "699664b9-eee4-4f8d-a207-e524526560c5", "metadata": {}, "outputs": [], "source": [ "BUCKET = \"bdc2324-data/1\"\n", "liste_database = fs.ls(BUCKET)" ] }, { "cell_type": "code", "execution_count": 4, "id": "dd6a3518-b752-4a1e-b77b-9e03e853c3ed", "metadata": {}, "outputs": [], "source": [ "# loop to create dataframes from liste\n", "\n", "files_path = liste_database\n", "\n", "client_number = files_path[0].split(\"/\")[1]\n", "df_prefix = \"df\" + str(client_number) + \"_\"\n", "\n", "for i in range(len(files_path)) :\n", " current_path = files_path[i]\n", " with fs.open(current_path, mode=\"rb\") as file_in:\n", " df = pd.read_csv(file_in)\n", " # the pattern of the name is df1xxx\n", " nom_dataframe = df_prefix + re.search(r'\\/(\\d+)\\/(\\d+)([a-zA-Z_]+)\\.csv$', current_path).group(3)\n", " globals()[nom_dataframe] = df" ] }, { "cell_type": "markdown", "id": "4004c8bf-11d9-413d-bb42-2cb8ddde7716", "metadata": {}, "source": [ "## Cleaning functions" ] }, { "cell_type": "code", "execution_count": 5, "id": "d237be96-8c86-4a91-b7a1-487e87a16c3d", "metadata": {}, "outputs": [], "source": [ "def cleaning_date(df, column_name):\n", " \"\"\"\n", " Nettoie la colonne spécifiée du DataFrame en convertissant les valeurs en datetime avec le format ISO8601.\n", "\n", " Parameters:\n", " - df: DataFrame\n", " Le DataFrame contenant la colonne à nettoyer.\n", " - column_name: str\n", " Le nom de la colonne à nettoyer.\n", "\n", " Returns:\n", " - DataFrame\n", " Le DataFrame modifié avec la colonne nettoyée.\n", " \"\"\"\n", " df[column_name] = pd.to_datetime(df[column_name], utc = True, format = 'ISO8601')\n", " return df" ] }, { "cell_type": "markdown", "id": "398804d8-2225-4fd3-bceb-75ab1588e359", "metadata": {}, "source": [ "## Preprocessing" ] }, { "cell_type": "markdown", "id": "568cb180-0dd9-4b27-aecb-05e4c3775ba6", "metadata": {}, "source": [ "## customer_plus" ] }, { "cell_type": "code", "execution_count": 6, "id": "7e7b90ce-da54-4f00-bc34-64c543b0858f", "metadata": {}, "outputs": [], "source": [ "def preprocessing_customerplus(customerplus = None):\n", "\n", " customerplus_copy = customerplus.copy()\n", " \n", " # Passage en format date\n", " cleaning_date(customerplus_copy, 'first_buying_date')\n", " cleaning_date(customerplus_copy, 'last_visiting_date')\n", " \n", " # Selection des variables\n", " customerplus_copy.drop(['lastname', 'firstname', 'email', 'civility', 'note', 'created_at', 'updated_at', 'deleted_at', 'extra', 'reference', 'extra_field', 'identifier', 'need_reload', 'preferred_category', 'preferred_supplier', 'preferred_formula', 'zipcode', 'last_visiting_date'], axis = 1, inplace=True)\n", " customerplus_copy.rename(columns = {'id' : 'customer_id'}, inplace = True)\n", "\n", " return customerplus_copy\n" ] }, { "cell_type": "code", "execution_count": 7, "id": "03329e32-00a5-42c8-9470-75f7b6216ccd", "metadata": {}, "outputs": [], "source": [ "df1_customerplus_clean = preprocessing_customerplus(df1_customersplus)" ] }, { "cell_type": "markdown", "id": "bade04b1-0cdf-4d10-bcca-7dc7e4831656", "metadata": {}, "source": [ "## Ticket area" ] }, { "cell_type": "code", "execution_count": 8, "id": "b95464b1-26bc-4aac-84b4-45da83b92251", "metadata": {}, "outputs": [], "source": [ "# Fonction de nettoyage et selection\n", "def preprocessing_tickets_area(tickets = None, purchases = None, suppliers = None, type_ofs = None):\n", " # Base des tickets\n", " tickets = tickets[['id', 'purchase_id', 'product_id', 'is_from_subscription', 'type_of', 'supplier_id']]\n", " tickets.rename(columns = {'id' : 'ticket_id'}, inplace = True)\n", "\n", " # Base des fournisseurs\n", " suppliers = suppliers[['id', 'name']]\n", " suppliers.rename(columns = {'name' : 'supplier_name'}, inplace = True)\n", " suppliers['supplier_name'] = suppliers['supplier_name'].fillna('')\n", "\n", " # Base des types de billets\n", " type_ofs = type_ofs[['id', 'name', 'children']]\n", " type_ofs.rename(columns = {'name' : 'type_of_ticket_name'}, inplace = True)\n", "\n", " # Base des achats\n", " # Nettoyage de la date d'achat\n", " cleaning_date(purchases, 'purchase_date')\n", " # Selection des variables\n", " purchases = purchases[['id', 'purchase_date', 'customer_id']]\n", "\n", " # Fusions \n", " # Fusion avec fournisseurs\n", " ticket_information = pd.merge(tickets, suppliers, left_on = 'supplier_id', right_on = 'id', how = 'inner')\n", " ticket_information.drop(['supplier_id', 'id'], axis = 1, inplace=True)\n", " \n", " # Fusion avec type de tickets\n", " ticket_information = pd.merge(ticket_information, type_ofs, left_on = 'type_of', right_on = 'id', how = 'inner')\n", " ticket_information.drop(['type_of', 'id'], axis = 1, inplace=True)\n", " \n", " # Fusion avec achats\n", " ticket_information = pd.merge(ticket_information, purchases, left_on = 'purchase_id', right_on = 'id', how = 'inner')\n", " ticket_information.drop(['purchase_id', 'id'], axis = 1, inplace=True)\n", "\n", " return ticket_information" ] }, { "cell_type": "code", "execution_count": 9, "id": "3e1d2ba7-ff4f-48eb-93a8-2bb648c70396", "metadata": {}, "outputs": [], "source": [ "df1_ticket_information = preprocessing_tickets_area(tickets = df1_tickets, purchases = df1_purchases, suppliers = df1_suppliers, type_ofs = df1_type_ofs)" ] }, { "cell_type": "code", "execution_count": 10, "id": "4b18edfc-6450-4c6a-9e7b-ee5a5808c8c9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ticket_idproduct_idis_from_subscriptionsupplier_nametype_of_ticket_namechildrenpurchase_datecustomer_id
013070859225251Falsevente en ligneAtelierpricing_formula2018-12-28 14:47:50+00:0048187
113070860224914Falsevente en ligneAtelierpricing_formula2018-12-28 14:47:50+00:0048187
213070861224914Falsevente en ligneAtelierpricing_formula2018-12-28 14:47:50+00:0048187
313070862224914Falsevente en ligneAtelierpricing_formula2018-12-28 14:47:50+00:0048187
413070863224914Falsevente en ligneAtelierpricing_formula2018-12-28 14:47:50+00:0048187
\n", "
" ], "text/plain": [ " ticket_id product_id is_from_subscription supplier_name \\\n", "0 13070859 225251 False vente en ligne \n", "1 13070860 224914 False vente en ligne \n", "2 13070861 224914 False vente en ligne \n", "3 13070862 224914 False vente en ligne \n", "4 13070863 224914 False vente en ligne \n", "\n", " type_of_ticket_name children purchase_date customer_id \n", "0 Atelier pricing_formula 2018-12-28 14:47:50+00:00 48187 \n", "1 Atelier pricing_formula 2018-12-28 14:47:50+00:00 48187 \n", "2 Atelier pricing_formula 2018-12-28 14:47:50+00:00 48187 \n", "3 Atelier pricing_formula 2018-12-28 14:47:50+00:00 48187 \n", "4 Atelier pricing_formula 2018-12-28 14:47:50+00:00 48187 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_ticket_information.head()" ] }, { "cell_type": "markdown", "id": "096e47f4-1d65-4575-989d-83227eedad2b", "metadata": {}, "source": [ "## Target area" ] }, { "cell_type": "code", "execution_count": 11, "id": "baed146a-9d3a-4397-a812-3d50c9a2f038", "metadata": {}, "outputs": [], "source": [ "def preprocessing_target_area(targets = None, target_types = None, customer_target_mappings = None):\n", " # Target.csv cleaning\n", " targets = targets[[\"id\", \"target_type_id\", \"name\"]]\n", " targets.rename(columns = {'id' : 'target_id' , 'name' : 'target_name'}, inplace = True)\n", " \n", " # target_type cleaning\n", " target_types = target_types[[\"id\",\"is_import\",\"name\"]].add_prefix(\"target_type_\")\n", " \n", " #customer_target_mappings cleaning\n", " customer_target_mappings = customer_target_mappings[[\"id\", \"customer_id\", \"target_id\"]]\n", " \n", " # Merge target et target_type\n", " targets_full = pd.merge(targets, target_types, left_on='target_type_id', right_on='target_type_id', how='inner')\n", " targets_full.drop(['target_type_id'], axis = 1, inplace=True)\n", " \n", " # Merge\n", " targets_full = pd.merge(customer_target_mappings, targets_full, left_on='target_id', right_on='target_id', how='inner')\n", " targets_full.drop(['target_id'], axis = 1, inplace=True)\n", "\n", " return targets_full" ] }, { "cell_type": "code", "execution_count": 12, "id": "5fbfd88b-b94c-489c-9201-670e96e453e7", "metadata": {}, "outputs": [], "source": [ "df1_target_information = preprocessing_target_area(targets = df1_targets, target_types = df1_target_types, customer_target_mappings = df1_customer_target_mappings)" ] }, { "cell_type": "markdown", "id": "cdbb48b4-5e16-4ef4-8791-ed213d68d52f", "metadata": {}, "source": [ "## Campaings area" ] }, { "cell_type": "code", "execution_count": 13, "id": "d883cc7b-ac43-4485-b86f-eaf595fbad85", "metadata": {}, "outputs": [], "source": [ "def preprocessing_campaigns_area(campaign_stats = None, campaigns = None):\n", " # campaign_stats cleaning \n", " campaign_stats = campaign_stats[[\"id\", \"campaign_id\", \"customer_id\", \"opened_at\", \"sent_at\", \"delivered_at\"]]\n", " cleaning_date(campaign_stats, 'opened_at')\n", " cleaning_date(campaign_stats, 'sent_at')\n", " cleaning_date(campaign_stats, 'delivered_at')\n", " \n", " # campaigns cleaning\n", " campaigns = campaigns[[\"id\", \"name\", \"service_id\", \"sent_at\"]].add_prefix(\"campaign_\")\n", " cleaning_date(campaigns, 'campaign_sent_at')\n", " \n", " # Merge \n", " campaigns_full = pd.merge(campaign_stats, campaigns, on = \"campaign_id\", how = \"left\")\n", " campaigns_full.drop(['campaign_id'], axis = 1, inplace=True)\n", "\n", " return campaigns_full" ] }, { "cell_type": "code", "execution_count": 14, "id": "c8552dd6-52c5-4431-b43d-3cd6c578fd9f", "metadata": {}, "outputs": [], "source": [ "df1_campaigns_information = preprocessing_campaigns_area(campaign_stats = df1_campaign_stats, campaigns = df1_campaigns)" ] }, { "cell_type": "code", "execution_count": 15, "id": "c24457e7-3cad-451a-a65b-7373b656bd6e", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idcustomer_idopened_atsent_atdelivered_atcampaign_namecampaign_service_idcampaign_sent_at
019793112597NaT2021-03-28 16:01:09+00:002021-03-28 16:24:18+00:00Le Mucem chez vous, gardons le lien #224042021-03-27 23:00:00+00:00
114211113666NaT2021-03-28 16:01:09+00:002021-03-28 16:21:02+00:00Le Mucem chez vous, gardons le lien #224042021-03-27 23:00:00+00:00
213150280561NaT2021-03-28 16:00:59+00:002021-03-28 16:08:45+00:00Le Mucem chez vous, gardons le lien #224042021-03-27 23:00:00+00:00
370731010072021-03-28 18:11:06+00:002021-03-28 16:00:59+00:002021-03-28 16:09:47+00:00Le Mucem chez vous, gardons le lien #224042021-03-27 23:00:00+00:00
45175103972NaT2021-03-28 16:01:06+00:002021-03-28 16:05:03+00:00Le Mucem chez vous, gardons le lien #224042021-03-27 23:00:00+00:00
\n", "
" ], "text/plain": [ " id customer_id opened_at sent_at \\\n", "0 19793 112597 NaT 2021-03-28 16:01:09+00:00 \n", "1 14211 113666 NaT 2021-03-28 16:01:09+00:00 \n", "2 13150 280561 NaT 2021-03-28 16:00:59+00:00 \n", "3 7073 101007 2021-03-28 18:11:06+00:00 2021-03-28 16:00:59+00:00 \n", "4 5175 103972 NaT 2021-03-28 16:01:06+00:00 \n", "\n", " delivered_at campaign_name \\\n", "0 2021-03-28 16:24:18+00:00 Le Mucem chez vous, gardons le lien #22 \n", "1 2021-03-28 16:21:02+00:00 Le Mucem chez vous, gardons le lien #22 \n", "2 2021-03-28 16:08:45+00:00 Le Mucem chez vous, gardons le lien #22 \n", "3 2021-03-28 16:09:47+00:00 Le Mucem chez vous, gardons le lien #22 \n", "4 2021-03-28 16:05:03+00:00 Le Mucem chez vous, gardons le lien #22 \n", "\n", " campaign_service_id campaign_sent_at \n", "0 404 2021-03-27 23:00:00+00:00 \n", "1 404 2021-03-27 23:00:00+00:00 \n", "2 404 2021-03-27 23:00:00+00:00 \n", "3 404 2021-03-27 23:00:00+00:00 \n", "4 404 2021-03-27 23:00:00+00:00 " ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_campaigns_information.head()" ] }, { "cell_type": "markdown", "id": "56520a97-ede8-4920-a211-3b5b136af33d", "metadata": {}, "source": [ "## Product area" ] }, { "cell_type": "markdown", "id": "9782e9d3-ba20-46bf-8562-bd0969972ddc", "metadata": {}, "source": [ "Some useful functions" ] }, { "cell_type": "code", "execution_count": 16, "id": "30488a40-1b38-4b9a-9d3b-26a0597c5e6d", "metadata": {}, "outputs": [], "source": [ "BUCKET = \"bdc2324-data\"\n", "directory_path = '1'" ] }, { "cell_type": "code", "execution_count": 17, "id": "607eb4b4-eed9-4b50-b823-f75c116dd37c", "metadata": {}, "outputs": [], "source": [ "def display_databases(file_name):\n", " \"\"\"\n", " This function returns the file from s3 storage\n", " \"\"\"\n", " file_path = BUCKET + \"/\" + directory_path + \"/\" + file_name\n", " print(\"File path : \", file_path)\n", " with fs.open(file_path, mode=\"rb\") as file_in:\n", " df = pd.read_csv(file_in, sep=\",\")\n", " \n", " print(\"Shape : \", df.shape)\n", " return df\n", "\n", "\n", "def remove_horodates(df):\n", " \"\"\"\n", " this function remove horodate columns like created_at and updated_at\n", " \"\"\"\n", " df = df.drop(columns = [\"created_at\", \"updated_at\"])\n", " return df\n", "\n", "\n", "def order_columns_id(df):\n", " \"\"\"\n", " this function puts all id columns at the beginning in order to read the dataset easier\n", " \"\"\"\n", " substring = 'id'\n", " id_columns = [col for col in df.columns if substring in col]\n", " remaining_col = [col for col in df.columns if substring not in col]\n", " new_order = id_columns + remaining_col\n", " return df[new_order]\n", "\n", "\n", "def process_df_2(df):\n", " \"\"\"\n", " This function organizes dataframe\n", " \"\"\"\n", " df = remove_horodates(df)\n", " print(\"Number of columns : \", len(df.columns))\n", " df = order_columns_id(df)\n", " print(\"Columns : \", df.columns)\n", " return df\n", "\n", "def load_dataset(name):\n", " \"\"\"\n", " This function loads csv file\n", " \"\"\"\n", " df = display_databases(name)\n", " df = process_df_2(df)\n", " # drop na :\n", " #df = df.dropna(axis=1, thresh=len(df))\n", " # if identifier in table : delete it\n", " if 'identifier' in df.columns:\n", " df = df.drop(columns = 'identifier')\n", " return df" ] }, { "cell_type": "markdown", "id": "d23f28c0-bc95-438b-8d14-5b7bb6e267bd", "metadata": {}, "source": [ "Create theme tables" ] }, { "cell_type": "code", "execution_count": 18, "id": "350b09b9-451f-4d47-81fe-f34b892db027", "metadata": {}, "outputs": [], "source": [ "def create_products_table():\n", " # first merge products and categories\n", " print(\"first merge products and categories\")\n", " products = load_dataset(\"1products.csv\")\n", " categories = load_dataset(\"1categories.csv\")\n", " # Drop useless columns\n", " products = products.drop(columns = ['apply_price', 'extra_field', 'amount_consumption'])\n", " categories = categories.drop(columns = ['extra_field', 'quota'])\n", "\n", " #Merge\n", " products_theme = products.merge(categories, how = 'left', left_on = 'category_id',\n", " right_on = 'id', suffixes=('_products', '_categories'))\n", " products_theme = products_theme.rename(columns = {\"name\" : \"name_categories\"})\n", " \n", " # Second merge products_theme and type of categories\n", " print(\"Second merge products_theme and type of categories\")\n", " type_of_categories = load_dataset(\"1type_of_categories.csv\")\n", " type_of_categories = type_of_categories.drop(columns = 'id')\n", " products_theme = products_theme.merge(type_of_categories, how = 'left', left_on = 'category_id',\n", " right_on = 'category_id' )\n", "\n", " # Index cleaning\n", " products_theme = products_theme.drop(columns = ['id_categories'])\n", " products_theme = order_columns_id(products_theme)\n", " return products_theme\n", "\n", "\n", "def create_events_table():\n", " # first merge events and seasons : \n", " print(\"first merge events and seasons : \")\n", " events = load_dataset(\"1events.csv\")\n", " seasons = load_dataset(\"1seasons.csv\")\n", "\n", " # Drop useless columns\n", " events = events.drop(columns = ['manual_added', 'is_display'])\n", " seasons = seasons.drop(columns = ['start_date_time'])\n", " \n", " events_theme = events.merge(seasons, how = 'left', left_on = 'season_id', right_on = 'id', suffixes=('_events', '_seasons'))\n", "\n", " # Secondly merge events_theme and event_types\n", " print(\"Secondly merge events_theme and event_types : \")\n", " event_types = load_dataset(\"1event_types.csv\")\n", " event_types = event_types.drop(columns = ['fidelity_delay'])\n", " \n", " events_theme = events_theme.merge(event_types, how = 'left', left_on = 'event_type_id', right_on = 'id', suffixes=('_events', '_event_type'))\n", " events_theme = events_theme.rename(columns = {\"name\" : \"name_event_types\"})\n", " events_theme = events_theme.drop(columns = 'id')\n", "\n", " # thirdly merge events_theme and facilities\n", " print(\"thirdly merge events_theme and facilities : \")\n", " facilities = load_dataset(\"1facilities.csv\")\n", " facilities = facilities.drop(columns = ['fixed_capacity'])\n", " \n", " events_theme = events_theme.merge(facilities, how = 'left', left_on = 'facility_id', right_on = 'id', suffixes=('_events', '_facility'))\n", " events_theme = events_theme.rename(columns = {\"name\" : \"name_facilities\", \"id_events\" : \"event_id\"})\n", " events_theme = events_theme.drop(columns = 'id')\n", "\n", " # Index cleaning\n", " events_theme = events_theme.drop(columns = ['id_seasons'])\n", " events_theme = order_columns_id(events_theme)\n", " return events_theme\n", "\n", "\n", "def create_representations_table():\n", " representations = load_dataset(\"1representations.csv\")\n", " representations = representations.drop(columns = ['serial', 'open', 'satisfaction', 'is_display', 'expected_filling',\n", " 'max_filling', 'extra_field', 'start_date_time', 'end_date_time', 'name',\n", " 'representation_type_id'])\n", " \n", " representations_capacity = load_dataset(\"1representation_category_capacities.csv\")\n", " representations_capacity = representations_capacity.drop(columns = ['expected_filling', 'max_filling'])\n", "\n", " representations_theme = representations.merge(representations_capacity, how='left',\n", " left_on='id', right_on='representation_id',\n", " suffixes=('_representation', '_representation_cap'))\n", " # index cleaning\n", " representations_theme = representations_theme.drop(columns = [\"id_representation\"])\n", " representations_theme = order_columns_id(representations_theme)\n", " return representations_theme" ] }, { "cell_type": "code", "execution_count": 19, "id": "0fccc8ef-e575-4857-a401-94a7274394df", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "first merge products and categories\n", "File path : bdc2324-data/1/1products.csv\n", "Shape : (94803, 14)\n", "Number of columns : 12\n", "Columns : Index(['id', 'representation_id', 'pricing_formula_id', 'category_id',\n", " 'products_group_id', 'product_pack_id', 'identifier', 'amount',\n", " 'is_full_price', 'apply_price', 'extra_field', 'amount_consumption'],\n", " dtype='object')\n", "File path : bdc2324-data/1/1categories.csv\n", "Shape : (27, 7)\n", "Number of columns : 5\n", "Columns : Index(['id', 'identifier', 'name', 'extra_field', 'quota'], dtype='object')\n", "Second merge products_theme and type of categories\n", "File path : bdc2324-data/1/1type_of_categories.csv\n", "Shape : (5, 6)\n", "Number of columns : 4\n", "Columns : Index(['id', 'type_of_id', 'category_id', 'identifier'], dtype='object')\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
id_productsrepresentation_idpricing_formula_idcategory_idproducts_group_idproduct_pack_idtype_of_idamountis_full_pricename_categories
01068291411441106551NaN9.0Falseindiv activité tr
14782731311471112.09.5Falseindiv entrées tp
220873275137120825112.011.5Falseindiv entrées tp
315714282519951567731NaN8.0Falseindiv entrées tr
4134199311175112.08.5Falseindiv entrées tp
\n", "
" ], "text/plain": [ " id_products representation_id pricing_formula_id category_id \\\n", "0 10682 914 114 41 \n", "1 478 273 131 1 \n", "2 20873 275 137 1 \n", "3 157142 82519 9 5 \n", "4 1341 9 93 1 \n", "\n", " products_group_id product_pack_id type_of_id amount is_full_price \\\n", "0 10655 1 NaN 9.0 False \n", "1 471 1 12.0 9.5 False \n", "2 20825 1 12.0 11.5 False \n", "3 156773 1 NaN 8.0 False \n", "4 1175 1 12.0 8.5 False \n", "\n", " name_categories \n", "0 indiv activité tr \n", "1 indiv entrées tp \n", "2 indiv entrées tp \n", "3 indiv entrées tr \n", "4 indiv entrées tp " ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "products_theme = create_products_table()\n", "products_theme.head()" ] }, { "cell_type": "code", "execution_count": 20, "id": "779d8aaf-6668-4f66-8852-847304407ea3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "first merge events and seasons : \n", "File path : bdc2324-data/1/1events.csv\n", "Shape : (1232, 12)\n", "Number of columns : 10\n", "Columns : Index(['id', 'season_id', 'facility_id', 'event_type_id', 'event_type_key_id',\n", " 'facility_key_id', 'identifier', 'name', 'manual_added', 'is_display'],\n", " dtype='object')\n", "File path : bdc2324-data/1/1seasons.csv\n", "Shape : (13, 6)\n", "Number of columns : 4\n", "Columns : Index(['id', 'identifier', 'name', 'start_date_time'], dtype='object')\n", "Secondly merge events_theme and event_types : \n", "File path : bdc2324-data/1/1event_types.csv\n", "Shape : (9, 6)\n", "Number of columns : 4\n", "Columns : Index(['id', 'fidelity_delay', 'identifier', 'name'], dtype='object')\n", "thirdly merge events_theme and facilities : \n", "File path : bdc2324-data/1/1facilities.csv\n", "Shape : (2, 7)\n", "Number of columns : 5\n", "Columns : Index(['id', 'street_id', 'identifier', 'name', 'fixed_capacity'], dtype='object')\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
event_idseason_idfacility_idevent_type_idevent_type_key_idfacility_key_idstreet_idname_eventsname_seasonsname_event_typesname_facilities
01921614411frontières2018spectacle vivantmucem
130329276715511visite guidée une autre histoire du monde (1h00)2023offre muséale groupemucem
21611612211visite contée les chercheurs d'or indiv2018offre muséale individuelmucem
3595758214411we dreamt of utopia and we woke up screaming.2021spectacle vivantmucem
4833758214411jeff koons épisodes 42021spectacle vivantmucem
\n", "
" ], "text/plain": [ " event_id season_id facility_id event_type_id event_type_key_id \\\n", "0 192 16 1 4 4 \n", "1 30329 2767 1 5 5 \n", "2 161 16 1 2 2 \n", "3 5957 582 1 4 4 \n", "4 8337 582 1 4 4 \n", "\n", " facility_key_id street_id \\\n", "0 1 1 \n", "1 1 1 \n", "2 1 1 \n", "3 1 1 \n", "4 1 1 \n", "\n", " name_events name_seasons \\\n", "0 frontières 2018 \n", "1 visite guidée une autre histoire du monde (1h00) 2023 \n", "2 visite contée les chercheurs d'or indiv 2018 \n", "3 we dreamt of utopia and we woke up screaming. 2021 \n", "4 jeff koons épisodes 4 2021 \n", "\n", " name_event_types name_facilities \n", "0 spectacle vivant mucem \n", "1 offre muséale groupe mucem \n", "2 offre muséale individuel mucem \n", "3 spectacle vivant mucem \n", "4 spectacle vivant mucem " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "events_theme= create_events_table()\n", "events_theme.head()" ] }, { "cell_type": "code", "execution_count": 21, "id": "7714fa32-303b-4ea7-b174-3fd0fcab5af0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "File path : bdc2324-data/1/1representations.csv\n", "Shape : (36095, 16)\n", "Number of columns : 14\n", "Columns : Index(['id', 'event_id', 'representation_type_id', 'identifier', 'serial',\n", " 'start_date_time', 'open', 'satisfaction', 'end_date_time', 'name',\n", " 'is_display', 'expected_filling', 'max_filling', 'extra_field'],\n", " dtype='object')\n", "File path : bdc2324-data/1/1representation_category_capacities.csv\n", "Shape : (65241, 7)\n", "Number of columns : 5\n", "Columns : Index(['id', 'representation_id', 'category_id', 'expected_filling',\n", " 'max_filling'],\n", " dtype='object')\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
event_idid_representation_caprepresentation_idcategory_id
012384123058848202
13725142692
2373842695
337251526910
4373832691
\n", "
" ], "text/plain": [ " event_id id_representation_cap representation_id category_id\n", "0 12384 123058 84820 2\n", "1 37 2514 269 2\n", "2 37 384 269 5\n", "3 37 2515 269 10\n", "4 37 383 269 1" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "representation_theme = create_representations_table()\n", "representation_theme.head()" ] }, { "cell_type": "markdown", "id": "8fa191d5-c867-4d4d-bbab-f29d7d91ce6a", "metadata": {}, "source": [ "Create uniform product database " ] }, { "cell_type": "code", "execution_count": 22, "id": "15a62ed6-35e4-4abc-aeef-a7daeec0a4ba", "metadata": {}, "outputs": [], "source": [ "def uniform_product_df():\n", " \"\"\"\n", " This function returns the uniform product dataset\n", " \"\"\"\n", " print(\"Products theme columns : \", products_theme.columns)\n", " print(\"\\n Representation theme columns : \", representation_theme.columns)\n", " print(\"\\n Events theme columns : \", events_theme.columns)\n", "\n", " products_global = products_theme.merge(representation_theme, how='left',\n", " on= [\"representation_id\", \"category_id\"])\n", " \n", " products_global = products_global.merge(events_theme, how='left', on='event_id',\n", " suffixes = (\"_representation\", \"_event\"))\n", " \n", " products_global = order_columns_id(products_global)\n", "\n", " # remove useless columns \n", " products_global = products_global.drop(columns = ['type_of_id']) # 'name_events', 'name_seasons', 'name_categories'\n", " return products_global" ] }, { "cell_type": "code", "execution_count": 23, "id": "89dc9685-1de9-4ce3-a6c0-8d7f1931a951", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Products theme columns : Index(['id_products', 'representation_id', 'pricing_formula_id', 'category_id',\n", " 'products_group_id', 'product_pack_id', 'type_of_id', 'amount',\n", " 'is_full_price', 'name_categories'],\n", " dtype='object')\n", "\n", " Representation theme columns : Index(['event_id', 'id_representation_cap', 'representation_id',\n", " 'category_id'],\n", " dtype='object')\n", "\n", " Events theme columns : Index(['event_id', 'season_id', 'facility_id', 'event_type_id',\n", " 'event_type_key_id', 'facility_key_id', 'street_id', 'name_events',\n", " 'name_seasons', 'name_event_types', 'name_facilities'],\n", " dtype='object')\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
id_productsrepresentation_idpricing_formula_idcategory_idproducts_group_idproduct_pack_idevent_idid_representation_capseason_idfacility_id...event_type_key_idfacility_key_idstreet_idamountis_full_pricename_categoriesname_eventsname_seasonsname_event_typesname_facilities
01068291411441106551132878941...5119.0Falseindiv activité trvisite-jeu \"le classico des minots\" (1h30)2017offre muséale individuelmucem
1478273131147113739021...2119.5Falseindiv entrées tpbillet mucem picasso2016offre muséale individuelmucem
22087327513712082513739521...21111.5Falseindiv entrées tpbillet mucem picasso2016offre muséale individuelmucem
3157142825199515677311236512019917541...4118.0Falseindiv entrées trNaNNaNoffre muséale individuelmucem
4134199311175182141...6118.5Falseindiv entrées tpnon défini2017non définimucem
\n", "

5 rows × 21 columns

\n", "
" ], "text/plain": [ " id_products representation_id pricing_formula_id category_id \\\n", "0 10682 914 114 41 \n", "1 478 273 131 1 \n", "2 20873 275 137 1 \n", "3 157142 82519 9 5 \n", "4 1341 9 93 1 \n", "\n", " products_group_id product_pack_id event_id id_representation_cap \\\n", "0 10655 1 132 8789 \n", "1 471 1 37 390 \n", "2 20825 1 37 395 \n", "3 156773 1 12365 120199 \n", "4 1175 1 8 21 \n", "\n", " season_id facility_id ... event_type_key_id facility_key_id street_id \\\n", "0 4 1 ... 5 1 1 \n", "1 2 1 ... 2 1 1 \n", "2 2 1 ... 2 1 1 \n", "3 1754 1 ... 4 1 1 \n", "4 4 1 ... 6 1 1 \n", "\n", " amount is_full_price name_categories \\\n", "0 9.0 False indiv activité tr \n", "1 9.5 False indiv entrées tp \n", "2 11.5 False indiv entrées tp \n", "3 8.0 False indiv entrées tr \n", "4 8.5 False indiv entrées tp \n", "\n", " name_events name_seasons \\\n", "0 visite-jeu \"le classico des minots\" (1h30) 2017 \n", "1 billet mucem picasso 2016 \n", "2 billet mucem picasso 2016 \n", "3 NaN NaN \n", "4 non défini 2017 \n", "\n", " name_event_types name_facilities \n", "0 offre muséale individuel mucem \n", "1 offre muséale individuel mucem \n", "2 offre muséale individuel mucem \n", "3 offre muséale individuel mucem \n", "4 non défini mucem \n", "\n", "[5 rows x 21 columns]" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "products_global = uniform_product_df()\n", "products_global.head()" ] }, { "cell_type": "code", "execution_count": 24, "id": "98f78cd5-b694-4cc6-b033-20170aa13e8d", "metadata": {}, "outputs": [], "source": [ "# Fusion liée au product\n", "df1_products_purchased = pd.merge(df1_ticket_information, products_global, left_on = 'product_id', right_on = 'id_products', how = 'inner')\n", "\n", "# Selection des variables d'intérêts\n", "df1_products_purchased_reduced = df1_products_purchased[['ticket_id', 'customer_id', 'event_type_id', 'supplier_name', 'purchase_date', 'type_of_ticket_name', 'amount', 'children', 'is_full_price', 'name_event_types', 'name_facilities', 'name_categories', 'name_events', 'name_seasons']]" ] }, { "cell_type": "markdown", "id": "d7c3668a-c016-4bd0-837e-04af328ff14f", "metadata": {}, "source": [ "# Construction des variables explicatives" ] }, { "cell_type": "markdown", "id": "314f1b7f-ae48-4c6f-8469-9ce879043243", "metadata": {}, "source": [ "## KPI campaigns" ] }, { "cell_type": "code", "execution_count": 25, "id": "e2c88552-b863-47a2-be23-8d2898fb28bc", "metadata": {}, "outputs": [], "source": [ "def campaigns_kpi_function(campaigns_information = None):\n", " # Nombre de campagnes de mails\n", " nb_campaigns = campaigns_information[['customer_id', 'campaign_name']].groupby('customer_id').count().reset_index()\n", " nb_campaigns.rename(columns = {'campaign_name' : 'nb_campaigns'}, inplace = True)\n", " # Temps d'ouverture en min moyen \n", " campaigns_information['time_to_open'] = campaigns_information['opened_at'] - campaigns_information['delivered_at']\n", " time_to_open = campaigns_information[['customer_id', 'time_to_open']].groupby('customer_id').mean().reset_index()\n", "\n", " # Nombre de mail ouvert \n", " opened_campaign = campaigns_information[['customer_id', 'campaign_name', 'opened_at']]\n", " opened_campaign.dropna(subset=['opened_at'], inplace=True)\n", " opened_campaign = opened_campaign[['customer_id', 'campaign_name']].groupby('customer_id').count().reset_index()\n", " opened_campaign.rename(columns = {'campaign_name' : 'nb_campaigns_opened' }, inplace = True)\n", "\n", " # Fusion des indicateurs\n", " campaigns_reduced = pd.merge(nb_campaigns, opened_campaign, on = 'customer_id', how = 'left')\n", " campaigns_reduced = pd.merge(campaigns_reduced, time_to_open, on = 'customer_id', how = 'left')\n", "\n", " # Remplir les NaN : nb_campaigns_opened\n", " campaigns_reduced['nb_campaigns_opened'].fillna(0, inplace=True)\n", "\n", " # Remplir les NaT : time_to_open (??)\n", "\n", " return campaigns_reduced\n", " " ] }, { "cell_type": "code", "execution_count": 26, "id": "24537647-bc29-4777-9848-ac4120a4aa60", "metadata": {}, "outputs": [], "source": [ "df1_campaigns_kpi = campaigns_kpi_function(campaigns_information = df1_campaigns_information) " ] }, { "cell_type": "code", "execution_count": 27, "id": "6be2a9a6-056b-4e19-8c26-a18ba3df36b3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idnb_campaignsnb_campaigns_openedtime_to_open
0240.0NaT
13222124.01 days 00:28:30.169354838
2477.01 days 04:31:01.428571428
3540.0NaT
46200.0NaT
\n", "
" ], "text/plain": [ " customer_id nb_campaigns nb_campaigns_opened time_to_open\n", "0 2 4 0.0 NaT\n", "1 3 222 124.0 1 days 00:28:30.169354838\n", "2 4 7 7.0 1 days 04:31:01.428571428\n", "3 5 4 0.0 NaT\n", "4 6 20 0.0 NaT" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_campaigns_kpi.head()" ] }, { "cell_type": "markdown", "id": "d4dcfbe0-c6ce-497e-b75e-dc9e938801b2", "metadata": {}, "source": [ "## KPI tickets" ] }, { "cell_type": "code", "execution_count": 28, "id": "b913a69e-3146-4919-b5f6-a6108532bffa", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['spectacle vivant', 'offre muséale individuel', 'formule adhésion',\n", " 'offre muséale groupe'], dtype=object)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_products_purchased_reduced['name_event_types'].unique()" ] }, { "cell_type": "code", "execution_count": 29, "id": "2bda0b97-b28b-4070-a57d-aeab0e2f7dfe", "metadata": {}, "outputs": [], "source": [ "# Nombre de client assistant à plus de 2 type d'événement\n", "nb_event_types = df1_products_purchased_reduced[['customer_id', 'name_event_types']].groupby('customer_id').nunique()" ] }, { "cell_type": "code", "execution_count": 30, "id": "043303fe-e90f-4689-a2a9-5d690555a045", "metadata": {}, "outputs": [], "source": [ "def tickets_kpi_function(tickets_information = None):\n", "\n", " tickets_information_copy = tickets_information.copy()\n", "\n", " # Dummy : Canal de vente en ligne\n", " liste_mots = ['en ligne', 'internet', 'web', 'net', 'vad', 'online'] # vad = vente à distance\n", " tickets_information_copy['vente_internet'] = tickets_information_copy['supplier_name'].str.contains('|'.join(liste_mots), case=False).astype(int)\n", "\n", " # Proportion de vente en ligne\n", " prop_vente_internet = tickets_information_copy[tickets_information_copy['vente_internet'] == 1].groupby(['customer_id', 'event_type_id'])['ticket_id'].count().reset_index()\n", " prop_vente_internet.rename(columns = {'ticket_id' : 'nb_tickets_internet'}, inplace = True)\n", " \n", " tickets_kpi = (tickets_information_copy[['event_type_id', 'customer_id', 'ticket_id','supplier_name', 'purchase_date', 'amount', 'vente_internet']]\n", " .groupby(['customer_id', 'event_type_id']) \n", " .agg({'ticket_id': 'count', \n", " 'amount' : 'sum',\n", " 'supplier_name': 'nunique',\n", " 'vente_internet' : 'max',\n", " 'purchase_date' : ['min', 'max']})\n", " .reset_index()\n", " )\n", " \n", " tickets_kpi.columns = tickets_kpi.columns.map('_'.join)\n", " \n", " tickets_kpi.rename(columns = {'ticket_id_count' : 'nb_tickets', \n", " 'amount_sum' : 'total_amount',\n", " 'supplier_name_nunique' : 'nb_suppliers', \n", " 'customer_id_' : 'customer_id',\n", " 'event_type_id_' : 'event_type_id'}, inplace = True)\n", " \n", " tickets_kpi['time_between_purchase'] = tickets_kpi['purchase_date_max'] - tickets_kpi['purchase_date_min']\n", "\n", " tickets_kpi = tickets_kpi.merge(prop_vente_internet, on = ['customer_id', 'event_type_id'], how = 'left')\n", " tickets_kpi['nb_tickets_internet'] = tickets_kpi['nb_tickets_internet'].fillna(0)\n", " \n", " return tickets_kpi\n", " " ] }, { "cell_type": "code", "execution_count": 31, "id": "5882234a-1ed5-4269-87a6-0d75613476e3", "metadata": {}, "outputs": [], "source": [ "df1_tickets_kpi = tickets_kpi_function(tickets_information = df1_products_purchased_reduced)" ] }, { "cell_type": "markdown", "id": "597b241e-a83d-4b7c-8ad7-eec50295dff2", "metadata": {}, "source": [ "#### Exportation" ] }, { "cell_type": "code", "execution_count": 32, "id": "a4a2311d-8a72-4030-afd5-218004d5d2a5", "metadata": {}, "outputs": [], "source": [ "# Exportation vers 'projet-bdc2324-team1'\n", "BUCKET_OUT = \"projet-bdc2324-team1\"\n", "FILE_KEY_OUT_S3 = \"0_Temp/Company 1 - Purchasing behaviour.csv\"\n", "FILE_PATH_OUT_S3 = BUCKET_OUT + \"/\" + FILE_KEY_OUT_S3\n", "\n", "with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:\n", " df1_tickets_kpi.to_csv(file_out, index = False)" ] }, { "cell_type": "code", "execution_count": 33, "id": "a7a452a6-cd5e-4c8b-b250-8a7d26e48fad", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idevent_type_idnb_ticketstotal_amountnb_suppliersvente_internet_maxpurchase_date_minpurchase_date_maxtime_between_purchasenb_tickets_internet
1144532423248965.5612013-09-23 14:45:01+00:002023-11-03 14:11:01+00:003692 days 23:26:002988.0
0123842262686540.5712014-12-03 14:55:37+00:002023-11-04 15:12:16+00:003258 days 00:16:3951.0
3162173561435871.5512017-01-01 02:20:08+00:002019-12-31 02:20:06+00:001093 days 23:59:585.0
2152017501459190.0612013-06-10 10:37:58+00:002023-11-08 15:59:45+00:003803 days 05:21:479.0
503267336142080.0312017-01-11 15:00:54+00:002019-11-27 09:47:06+00:001049 days 18:46:1213497.0
\n", "
" ], "text/plain": [ " customer_id event_type_id nb_tickets total_amount nb_suppliers \\\n", "1 1 4 453242 3248965.5 6 \n", "0 1 2 384226 2686540.5 7 \n", "3 1 6 217356 1435871.5 5 \n", "2 1 5 201750 1459190.0 6 \n", "5032 6733 6 14208 0.0 3 \n", "\n", " vente_internet_max purchase_date_min purchase_date_max \\\n", "1 1 2013-09-23 14:45:01+00:00 2023-11-03 14:11:01+00:00 \n", "0 1 2014-12-03 14:55:37+00:00 2023-11-04 15:12:16+00:00 \n", "3 1 2017-01-01 02:20:08+00:00 2019-12-31 02:20:06+00:00 \n", "2 1 2013-06-10 10:37:58+00:00 2023-11-08 15:59:45+00:00 \n", "5032 1 2017-01-11 15:00:54+00:00 2019-11-27 09:47:06+00:00 \n", "\n", " time_between_purchase nb_tickets_internet \n", "1 3692 days 23:26:00 2988.0 \n", "0 3258 days 00:16:39 51.0 \n", "3 1093 days 23:59:58 5.0 \n", "2 3803 days 05:21:47 9.0 \n", "5032 1049 days 18:46:12 13497.0 " ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_tickets_kpi.sort_values(by='nb_tickets', ascending=False).head(5)" ] }, { "cell_type": "markdown", "id": "f1d7f7ba-361b-467d-b375-b09c149185f7", "metadata": {}, "source": [ "## Alexis' work" ] }, { "cell_type": "code", "execution_count": 34, "id": "4ab1c0d2-0097-4669-b984-b6822c976740", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
event_type_idavg_amount
026.150659
147.762474
254.452618
366.439463
\n", "
" ], "text/plain": [ " event_type_id avg_amount\n", "0 2 6.150659\n", "1 4 7.762474\n", "2 5 4.452618\n", "3 6 6.439463" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "avg_amount = (df1_products_purchased_reduced.groupby([\"event_type_id\"])\n", " .agg({\"amount\" : \"mean\"}).reset_index()\n", " .rename(columns = {'amount' : 'avg_amount'}))\n", "\n", "avg_amount" ] }, { "cell_type": "code", "execution_count": 35, "id": "a9c62b39-389e-4dac-89a6-ac8a59fea58a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idevent_type_idnb_ticketsavg_amount
0123842266.150659
1144532427.762474
2152017504.452618
3162173566.439463
4221436.150659
\n", "
" ], "text/plain": [ " customer_id event_type_id nb_tickets avg_amount\n", "0 1 2 384226 6.150659\n", "1 1 4 453242 7.762474\n", "2 1 5 201750 4.452618\n", "3 1 6 217356 6.439463\n", "4 2 2 143 6.150659" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nb_tickets = (df1_products_purchased_reduced.groupby([\"customer_id\", \"event_type_id\"])\n", " .agg({\"ticket_id\" : \"count\"}).reset_index()\n", " .rename(columns = {'ticket_id' : 'nb_tickets'})\n", " .merge(avg_amount, how='left', on='event_type_id'))\n", "nb_tickets.head()" ] }, { "cell_type": "code", "execution_count": 36, "id": "8710611c-7eb8-45ca-bdcc-009f4081f9e2", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idbirthdatestreet_idis_partnergenderis_email_trueopt_instructure_idprofessionlanguage...average_ticket_baskettotal_pricepurchase_countfirst_buying_datecountryagetenant_idnb_campaignsnb_campaigns_openedtime_to_open
012751NaN2False1TrueTrueNaNNaNNaN...NaNNaN0NaTfrNaN1311NaNNaNNaT
112825NaN2False2TrueTrueNaNNaNNaN...NaNNaN0NaTfrNaN1311NaNNaNNaT
211261NaN2False1TrueTrueNaNNaNNaN...NaNNaN0NaTfrNaN1311NaNNaNNaT
313071NaN2False2TrueTrueNaNNaNNaN...NaNNaN0NaTfrNaN1311NaNNaNNaT
4653061NaN10False2TrueFalseNaNNaNNaN...NaNNaN0NaTNaNNaN131180.02.00 days 19:53:02.500000
\n", "

5 rows × 28 columns

\n", "
" ], "text/plain": [ " customer_id birthdate street_id is_partner gender is_email_true \\\n", "0 12751 NaN 2 False 1 True \n", "1 12825 NaN 2 False 2 True \n", "2 11261 NaN 2 False 1 True \n", "3 13071 NaN 2 False 2 True \n", "4 653061 NaN 10 False 2 True \n", "\n", " opt_in structure_id profession language ... average_ticket_basket \\\n", "0 True NaN NaN NaN ... NaN \n", "1 True NaN NaN NaN ... NaN \n", "2 True NaN NaN NaN ... NaN \n", "3 True NaN NaN NaN ... NaN \n", "4 False NaN NaN NaN ... NaN \n", "\n", " total_price purchase_count first_buying_date country age tenant_id \\\n", "0 NaN 0 NaT fr NaN 1311 \n", "1 NaN 0 NaT fr NaN 1311 \n", "2 NaN 0 NaT fr NaN 1311 \n", "3 NaN 0 NaT fr NaN 1311 \n", "4 NaN 0 NaT NaN NaN 1311 \n", "\n", " nb_campaigns nb_campaigns_opened time_to_open \n", "0 NaN NaN NaT \n", "1 NaN NaN NaT \n", "2 NaN NaN NaT \n", "3 NaN NaN NaT \n", "4 80.0 2.0 0 days 19:53:02.500000 \n", "\n", "[5 rows x 28 columns]" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Fusion avec KPI campaigns liés au customer\n", "df1_customer = pd.merge(df1_customerplus_clean, df1_campaigns_kpi, on = 'customer_id', how = 'left')\n", "df1_customer.head()" ] }, { "cell_type": "code", "execution_count": 37, "id": "a89fad43-ee68-4081-9384-3e9f08ec6a59", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "shape : (156289, 31)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idbirthdatestreet_idis_partnergenderis_email_trueopt_instructure_idprofessionlanguage...first_buying_datecountryagetenant_idnb_campaignsnb_campaigns_openedtime_to_openevent_type_idnb_ticketsavg_amount
012751NaN2False1TrueTrueNaNNaNNaN...NaTfrNaN1311NaNNaNNaTNaNNaNNaN
112825NaN2False2TrueTrueNaNNaNNaN...NaTfrNaN1311NaNNaNNaTNaNNaNNaN
211261NaN2False1TrueTrueNaNNaNNaN...NaTfrNaN1311NaNNaNNaTNaNNaNNaN
313071NaN2False2TrueTrueNaNNaNNaN...NaTfrNaN1311NaNNaNNaTNaNNaNNaN
4653061NaN10False2TrueFalseNaNNaNNaN...NaTNaNNaN131180.02.00 days 19:53:02.500000NaNNaNNaN
\n", "

5 rows × 31 columns

\n", "
" ], "text/plain": [ " customer_id birthdate street_id is_partner gender is_email_true \\\n", "0 12751 NaN 2 False 1 True \n", "1 12825 NaN 2 False 2 True \n", "2 11261 NaN 2 False 1 True \n", "3 13071 NaN 2 False 2 True \n", "4 653061 NaN 10 False 2 True \n", "\n", " opt_in structure_id profession language ... first_buying_date country \\\n", "0 True NaN NaN NaN ... NaT fr \n", "1 True NaN NaN NaN ... NaT fr \n", "2 True NaN NaN NaN ... NaT fr \n", "3 True NaN NaN NaN ... NaT fr \n", "4 False NaN NaN NaN ... NaT NaN \n", "\n", " age tenant_id nb_campaigns nb_campaigns_opened time_to_open \\\n", "0 NaN 1311 NaN NaN NaT \n", "1 NaN 1311 NaN NaN NaT \n", "2 NaN 1311 NaN NaN NaT \n", "3 NaN 1311 NaN NaN NaT \n", "4 NaN 1311 80.0 2.0 0 days 19:53:02.500000 \n", "\n", " event_type_id nb_tickets avg_amount \n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "\n", "[5 rows x 31 columns]" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_customer_product = pd.merge(df1_customer, nb_tickets, on = 'customer_id', how = 'left')\n", "print(\"shape : \", df1_customer_product.shape)\n", "df1_customer_product.head()" ] }, { "cell_type": "code", "execution_count": 38, "id": "a19fec00-4ece-400c-937c-ce5cd8daccfd", "metadata": {}, "outputs": [], "source": [ "# df1_customer_product.to_csv(\"customer_product.csv\", index = False)" ] }, { "cell_type": "markdown", "id": "7c3211a5-a851-43bc-a1f0-b39d51857fb7", "metadata": {}, "source": [ "# Fusion des bases locales" ] }, { "cell_type": "code", "execution_count": 39, "id": "46de1912-4a66-46e5-8b9e-7768b2d2723b", "metadata": {}, "outputs": [], "source": [ "# Fusion avec KPI liés au customer\n", "df1_customer = pd.merge(df1_customerplus_clean, df1_campaigns_kpi, on = 'customer_id', how = 'left')" ] }, { "cell_type": "code", "execution_count": 40, "id": "1e42a790-b215-4107-a969-85005da06ebd", "metadata": {}, "outputs": [], "source": [ "# Fusion avec KPI liés au comportement d'achat\n", "df1_customer_product = pd.merge(df1_tickets_kpi, df1_customer, on = 'customer_id', how = 'outer')" ] }, { "cell_type": "code", "execution_count": 41, "id": "d950f24d-a5d1-4f1e-aeaa-ca826470365f", "metadata": {}, "outputs": [], "source": [ "# df1_customer_product" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 5 }