{ "cells": [ { "cell_type": "markdown", "id": "3415114e-9577-4487-89eb-4931620ad9f0", "metadata": {}, "source": [ "# Predict Sales" ] }, { "cell_type": "code", "execution_count": 2, "id": "f271eb45-1470-4764-8c2e-31374efa1fe5", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import os\n", "import s3fs\n", "import re\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.metrics import accuracy_score, confusion_matrix, classification_report\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.compose import ColumnTransformer\n", "from sklearn.preprocessing import OneHotEncoder\n", "from sklearn.impute import SimpleImputer\n", "from sklearn.model_selection import GridSearchCV\n", "from sklearn.preprocessing import StandardScaler, MaxAbsScaler, MinMaxScaler\n", "from sklearn.metrics import make_scorer, f1_score, balanced_accuracy_score\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score\n", "import pickle\n", "#import scikitplot as skplt" ] }, { "cell_type": "markdown", "id": "ae591854-3003-4c75-a0c7-5abf04246e81", "metadata": {}, "source": [ "### Load Data" ] }, { "cell_type": "code", "execution_count": null, "id": "59dd4694-a812-4923-b995-a2ee86c74f85", "metadata": {}, "outputs": [], "source": [ "# Create filesystem object\n", "S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n", "fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})" ] }, { "cell_type": "code", "execution_count": 3, "id": "017f7e9a-3ba0-40fa-bdc8-51b98cc1fdb3", "metadata": {}, "outputs": [], "source": [ "def load_train_test():\n", " BUCKET = \"projet-bdc2324-team1/Generalization/sport/\"\n", " File_path_train = BUCKET + \"/\" + \"dataset_train.csv\"\n", " File_path_test = BUCKET + \"/\" + \"dataset_train.csv\"\n", " \n", " with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n", " dataset_train = pd.read_csv(file_in, sep=\",\")\n", " dataset_train['y_has_purchased'] = dataset_train['y_has_purchased'].fillna(0)\n", "\n", " with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n", " dataset_test = pd.read_csv(file_in, sep=\",\")\n", " dataset_test['y_has_purchased'] = dataset_test['y_has_purchased'].fillna(0)\n", " \n", " return dataset_train, dataset_test" ] }, { "cell_type": "code", "execution_count": null, "id": "825d14a3-6967-4733-bfd4-64bf61c2bd43", "metadata": {}, "outputs": [], "source": [ "def features_target_split(dataset_train, dataset_test):\n", " X_train = dataset_train[]\n", " y_train = dataset_train['y_has_purchased']\n", "\n", " X_test = dataset_test[]\n", " y_test = dataset_test['y_has_purchased']\n", " return X_train, X_test, y_train, y_test" ] }, { "cell_type": "markdown", "id": "a1d6de94-4e11-481a-a0ce-412bf29f692c", "metadata": {}, "source": [ "### Prepare preprocessing and Hyperparameters" ] }, { "cell_type": "code", "execution_count": null, "id": "b32a79ea-907f-4dfc-9832-6c74bef3200c", "metadata": {}, "outputs": [], "source": [ "numeric_features = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers',\n", " 'nb_tickets_internet', 'fidelity', 'nb_campaigns', 'nb_campaigns_opened']\n", "\n", "numeric_transformer = Pipeline(steps=[\n", " # (\"imputer\", SimpleImputer(strategy=\"mean\")), # NaN remplacés par la moyenne, mais peu importe car on a supprimé les valeurs manquantes\n", " (\"scaler\", StandardScaler())])\n", "\n", "preproc = ColumnTransformer(transformers=[(\"num\", numeric_transformer, numeric_features)])" ] }, { "cell_type": "code", "execution_count": null, "id": "9809a688-bfbc-4685-a77f-17a8b2b79ab3", "metadata": {}, "outputs": [], "source": [ "# Set loss\n", "\n", "balanced_scorer = make_scorer(balanced_accuracy_score)\n", "f1_scorer = make_scorer(f1_score)\n" ] }, { "cell_type": "code", "execution_count": null, "id": "206d9a95-7c37-4506-949b-e77d225e42c5", "metadata": {}, "outputs": [], "source": [ "# Hyperparameter\n", "\n", "parameters4 = {'logreg__C': np.logspace(-10, 6, 17, base=2),\n", " 'logreg__class_weight': ['balanced']} " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.6" } }, "nbformat": 4, "nbformat_minor": 5 }