{ "cells": [ { "cell_type": "markdown", "id": "455cc769-1b3b-4fef-b395-e74a988ceed3", "metadata": {}, "source": [ "## Notebook Alexis" ] }, { "cell_type": "code", "execution_count": 1, "id": "20eeb149-6618-4ef2-9cfd-ff062950f36c", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import s3fs" ] }, { "cell_type": "code", "execution_count": 2, "id": "30494c5e-9649-4fff-8708-617544188b20", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['bdc2324-data/1',\n", " 'bdc2324-data/10',\n", " 'bdc2324-data/101',\n", " 'bdc2324-data/11',\n", " 'bdc2324-data/12',\n", " 'bdc2324-data/13',\n", " 'bdc2324-data/14',\n", " 'bdc2324-data/2',\n", " 'bdc2324-data/3',\n", " 'bdc2324-data/4',\n", " 'bdc2324-data/5',\n", " 'bdc2324-data/6',\n", " 'bdc2324-data/7',\n", " 'bdc2324-data/8',\n", " 'bdc2324-data/9']" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create filesystem object\n", "S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n", "fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})\n", "\n", "BUCKET = \"bdc2324-data\"\n", "fs.ls(BUCKET)" ] }, { "cell_type": "markdown", "id": "2feffee9-9f23-4caa-8a01-9e4a93abbf5d", "metadata": {}, "source": [ "### I. Analyse fichier 8" ] }, { "cell_type": "markdown", "id": "f54ba449-2051-4acd-939d-d30abd5452fe", "metadata": {}, "source": [ "This section describes the databases associated with company 8. " ] }, { "cell_type": "code", "execution_count": null, "id": "f1cce705-46e1-42de-8e93-2ee15312d288", "metadata": {}, "outputs": [], "source": [ "directory_path = '8'" ] }, { "cell_type": "code", "execution_count": null, "id": "82d4db0e-0cd5-49af-a4d3-f17f54b1c03c", "metadata": {}, "outputs": [], "source": [ "# check the files in the directory\n", "\n", "objects = fs.ls(f'{BUCKET}/{directory_path}')\n", "\n", "for file in objects:\n", " print(file)" ] }, { "cell_type": "code", "execution_count": null, "id": "65cb38ad-52ae-4266-85d8-c47d81b00283", "metadata": {}, "outputs": [], "source": [ "def display_databases(file_name):\n", " \"\"\"\n", " This function returns the file from s3 storage\n", " \"\"\"\n", " file_path = BUCKET + \"/\" + directory_path + \"/\" + file_name\n", " print(\"File path : \", file_path)\n", " with fs.open(file_path, mode=\"rb\") as file_in:\n", " df = pd.read_csv(file_in, sep=\",\")\n", " \n", " print(\"Shape : \", df.shape)\n", " return df\n", " " ] }, { "cell_type": "markdown", "id": "ddd545ef-7e9f-4696-962a-115294991641", "metadata": {}, "source": [ "#### Lookt at campaigns files" ] }, { "cell_type": "code", "execution_count": null, "id": "0214d30d-5f83-498f-867f-e67b5793b731", "metadata": {}, "outputs": [], "source": [ "campaigns = display_databases(\"8campaigns.csv\")\n", "campaigns.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "e7982be4-2c42-4a91-be5a-329a999644cc", "metadata": {}, "outputs": [], "source": [ "campaign_stats = display_databases(\"8campaign_stats.csv\")\n", "campaign_stats.head()" ] }, { "cell_type": "markdown", "id": "e6512bc9-91f5-4fe4-a637-a4e84dc497a9", "metadata": {}, "source": [ "#### Look at links files" ] }, { "cell_type": "markdown", "id": "28e7c1fe-470f-4d84-87b8-a711a973500b", "metadata": {}, "source": [ "There is no links file for these company. Only the link_stats file" ] }, { "cell_type": "code", "execution_count": null, "id": "e973575b-4ed6-4b23-8024-f383ac82e87c", "metadata": {}, "outputs": [], "source": [ "links_stats = display_databases(\"8link_stats.csv\")\n", "links_stats.head()" ] }, { "cell_type": "markdown", "id": "8dfcca1f-1323-413f-aa8d-3ee5ce2610a8", "metadata": {}, "source": [ "#### Analyse Customersplus file" ] }, { "cell_type": "code", "execution_count": null, "id": "3b523575-c779-451c-a12e-a36fb4ad232c", "metadata": {}, "outputs": [], "source": [ "file_name = \"8customersplus.csv\"\n", "file_path = BUCKET + \"/\" + directory_path + \"/\" + file_name\n", "print(file_path)\n", "with fs.open(file_path, mode=\"rb\") as file_in:\n", " customersplus = pd.read_csv(file_in, sep=\",\")\n", "\n", "customersplus.head()" ] }, { "cell_type": "markdown", "id": "fe56785a-ed3c-4322-aafa-a630f97b836f", "metadata": {}, "source": [ "#### Analyse Structures files" ] }, { "cell_type": "code", "execution_count": null, "id": "87d801fc-d19a-4c45-9b21-9b6d7a8451fd", "metadata": {}, "outputs": [], "source": [ "file_name = \"8structures.csv\"\n", "file_path = BUCKET + \"/\" + directory_path + \"/\" + file_name\n", "print(file_path)\n", "try:\n", " with fs.open(file_path, mode=\"rb\") as file_in:\n", " structures = pd.read_csv(file_in, sep=\",\")\n", "except:\n", " print(\"No structures database\")" ] }, { "cell_type": "markdown", "id": "b8452558-2d32-459b-91e7-f6042345e465", "metadata": {}, "source": [ "For Stade Français, there is no structures, tags and structure_tag_mapping databases" ] }, { "cell_type": "markdown", "id": "285b1422-9ca9-4afd-b752-777a54aaa677", "metadata": {}, "source": [ "#### Analyze Target databases" ] }, { "cell_type": "code", "execution_count": null, "id": "b6e4c3ea-5ccf-4aec-bd2d-79a5a1194178", "metadata": {}, "outputs": [], "source": [ "file_name = \"8customer_target_mappings.csv\"\n", "file_path = BUCKET + \"/\" + directory_path + \"/\" + file_name\n", "print(file_path)\n", "try:\n", " with fs.open(file_path, mode=\"rb\") as file_in:\n", " customer_targets = pd.read_csv(file_in, sep=\",\")\n", " \n", "except:\n", " print(\"No such database in s3\")\n", "\n", "print(\"Shape : \", customer_targets.shape)\n", "customer_targets.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "6e81a35c-3c6f-403d-9ebd-e8399ecd4263", "metadata": {}, "outputs": [], "source": [ "file_name = \"8targets.csv\"\n", "file_path = BUCKET + \"/\" + directory_path + \"/\" + file_name\n", "print(file_path)\n", "try:\n", " with fs.open(file_path, mode=\"rb\") as file_in:\n", " targets = pd.read_csv(file_in, sep=\",\")\n", " \n", "except:\n", " print(\"No such database in s3\")\n", "\n", "print(\"Shape : \", targets.shape)\n", "targets.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "85696d74-3b2f-4368-9045-44db5322b60d", "metadata": {}, "outputs": [], "source": [ "file_name = \"8target_types.csv\"\n", "file_path = BUCKET + \"/\" + directory_path + \"/\" + file_name\n", "print(file_path)\n", "try:\n", " with fs.open(file_path, mode=\"rb\") as file_in:\n", " target_types = pd.read_csv(file_in, sep=\",\")\n", " \n", "except:\n", " print(\"No such database in s3\")\n", "\n", "print(\"Shape : \", target_types.shape)\n", "target_types.head()" ] }, { "cell_type": "markdown", "id": "cdc6416b-3deb-446c-8957-435745b93533", "metadata": {}, "source": [ "#### Analyze consumption files" ] }, { "cell_type": "markdown", "id": "f8622bd5-a5ab-403f-ab01-758aec879ee4", "metadata": {}, "source": [ "Meaning consumptions.csv, suppliers.csv, tickets.csv and purchases.csv\n", "\n", "However, there is no consumptions.csv file" ] }, { "cell_type": "code", "execution_count": null, "id": "7c57529b-2ffb-4039-9795-b27c6fbd54a4", "metadata": {}, "outputs": [], "source": [ "purchases = display_databases(\"8purchases.csv\")\n", "purchases.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "903321fb-99f8-475d-b4a6-c70ec2efe190", "metadata": {}, "outputs": [], "source": [ "tickets = display_databases(\"8tickets.csv\")\n", "tickets.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "243e6942-0233-4cd5-b32b-e005457131d2", "metadata": {}, "outputs": [], "source": [ "suppliers = display_databases(\"8suppliers.csv\")\n", "suppliers.head()" ] }, { "cell_type": "markdown", "id": "fd8c876a-f0c5-4123-a422-c267af5f29b1", "metadata": {}, "source": [ "#### Analyse product file" ] }, { "cell_type": "code", "execution_count": null, "id": "6b82efce-1dee-4d89-8585-28c4ad477eef", "metadata": {}, "outputs": [], "source": [ "products = display_databases(\"8products.csv\")\n", "products.head()" ] }, { "cell_type": "markdown", "id": "8ad143b2-2869-4bd2-982e-688498b98727", "metadata": {}, "source": [ "#### Analyze pricing files" ] }, { "cell_type": "markdown", "id": "9a54e9a5-801d-4000-9e76-e792edbf7e41", "metadata": {}, "source": [ "Meaning pricing_formulas.csv and type_of_pricing_formulas" ] }, { "cell_type": "code", "execution_count": null, "id": "daf37bff-a26d-4ff5-ad50-c90f917164bd", "metadata": {}, "outputs": [], "source": [ "pricing_formulas = display_databases(\"8pricing_formulas.csv\")\n", "pricing_formulas.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "cdb14488-b093-4b39-84fa-1c2b4576208f", "metadata": {}, "outputs": [], "source": [ "type_pricing_formulas = display_databases(\"8type_of_pricing_formulas.csv\")\n", "type_pricing_formulas.head()" ] }, { "cell_type": "markdown", "id": "a084297a-4fd7-4cda-b513-7704f4244a5c", "metadata": {}, "source": [ "#### Analyze type of products" ] }, { "cell_type": "markdown", "id": "76a67ea7-8720-441e-8973-23e5d105370e", "metadata": {}, "source": [ "Meaning categories.csv, type_of_categories.csv" ] }, { "cell_type": "code", "execution_count": null, "id": "6582694d-5339-4f33-a943-c73033121a90", "metadata": {}, "outputs": [], "source": [ "categories = display_databases(\"8categories.csv\")\n", "categories.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "589076df-1958-42de-9941-1aff9fa8536f", "metadata": {}, "outputs": [], "source": [ "type_categories = display_databases(\"8type_of_categories.csv\")\n", "type_categories.head()" ] }, { "cell_type": "markdown", "id": "3427b681-4c05-4e4e-9c2b-867ee789f98c", "metadata": {}, "source": [ "#### Analyze type of representations" ] }, { "cell_type": "markdown", "id": "9381e36b-090a-44c5-a29d-3ac4c9a4431e", "metadata": {}, "source": [ "Meaning representation_category_capacities.csv, representations.csv, representations_types.csv\n", "\n", "however there is no representation_types database" ] }, { "cell_type": "code", "execution_count": null, "id": "6f06d72a-5725-4eee-8e4c-e9ef5820f346", "metadata": {}, "outputs": [], "source": [ "representation_category_capacities = display_databases(\"8representation_category_capacities.csv\")\n", "representation_category_capacities.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "bd405913-033d-4f15-a5b9-103d577baaff", "metadata": {}, "outputs": [], "source": [ "representations = display_databases(\"8representations.csv\")\n", "representations.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "0f2c7ea3-6964-48fd-9411-17547b2c3a3f", "metadata": {}, "outputs": [], "source": [ "#representation_type = display_databases(\"8representation_types.csv\")" ] }, { "cell_type": "markdown", "id": "a9b02406-2a69-4431-8d49-3c6bd6a5e1c7", "metadata": {}, "source": [ "#### Analyze type of events" ] }, { "cell_type": "markdown", "id": "1d554266-282c-4f64-9a0f-ddcf591ec912", "metadata": {}, "source": [ "Meaning events.csv, event_types.csv, seasons.csv and facilities.csv" ] }, { "cell_type": "code", "execution_count": null, "id": "cba22ee2-338d-4ce1-a1e8-829a11a94bcf", "metadata": {}, "outputs": [], "source": [ "events = display_databases(\"8events.csv\")\n", "events.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "3db00b9d-2187-4cb6-980d-8ac6ab9eb460", "metadata": {}, "outputs": [], "source": [ "event_types = display_databases(\"8event_types.csv\")\n", "event_types.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "cba0ee58-6280-45fe-99b3-0be09db5922b", "metadata": {}, "outputs": [], "source": [ "seasons = display_databases(\"8seasons.csv\")\n", "seasons.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "6fa82fd7-d6d3-4857-af24-ea573b1129d0", "metadata": {}, "outputs": [], "source": [ "facilities = display_databases(\"8facilities.csv\")\n", "facilities.head()" ] }, { "cell_type": "markdown", "id": "c7467d41-0ded-465d-bb08-15be914a166b", "metadata": {}, "source": [ "#### Analyze annexe databases" ] }, { "cell_type": "markdown", "id": "17e9e334-0ae4-48d8-bed5-b50b4af49d5b", "metadata": {}, "source": [ "Meaning contributions.csv, contribution_sites.csv, currencies.csv, countries.csv and type_ofs.csc" ] }, { "cell_type": "markdown", "id": "d3ec1040-48b2-40bb-8947-920ddb4589f3", "metadata": {}, "source": [ "## II. Identify Commons Datasets" ] }, { "cell_type": "markdown", "id": "ec528a8a-df38-48e2-a1be-4a1459a80a1e", "metadata": {}, "source": [ "From the analyze of the 8th company, we notice that some databases does not exist. Therefore, in order to construct a uniform database for all companies, we should first identify the common databases between all companies" ] }, { "cell_type": "code", "execution_count": 18, "id": "c240b811-48a6-4501-9e70-bc51d69e3ac4", "metadata": {}, "outputs": [], "source": [ "## We first construct a dictionary reporting all the datasets for each companies\n", "\n", "companies = fs.ls(BUCKET)\n", "companies_database = {}\n", "\n", "for company in companies:\n", " companies_database[company.split('/')[-1]] = [file.split('/')[-1].replace(company.split('/')[-1], '') for file in fs.ls(company)] \n" ] }, { "cell_type": "code", "execution_count": 24, "id": "54057367-9df9-42f4-aa07-bf524bb76462", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of databases : 30\n" ] } ], "source": [ "# Then we create a list of all database\n", "\n", "all_database = companies_database[max(companies_database, key=lambda x: len(companies_database[x]))]\n", "print(\"Number of databases : \",len(all_database))" ] }, { "cell_type": "code", "execution_count": 39, "id": "63914e20-9efc-4088-877b-edab5f225d00", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "30\n", "23\n" ] } ], "source": [ "## We then create a set of database in common for all companies\n", "\n", "data_in_common = set(all_database)\n", "\n", "print(len(data_in_common))\n", "\n", "for key in companies_database:\n", " diff_database = data_in_common.symmetric_difference(companies_database[key])\n", " data_in_common = data_in_common - diff_database\n", "\n", "print(len(data_in_common))\n", " " ] }, { "cell_type": "markdown", "id": "676d8536-7d8c-4075-a357-b8d06e501ca8", "metadata": {}, "source": [ "## Create Universal database" ] }, { "cell_type": "code", "execution_count": null, "id": "0fbebfb7-a827-46b1-890b-86c9def7cdbb", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 5 }