{ "cells": [ { "cell_type": "markdown", "id": "3415114e-9577-4487-89eb-4931620ad9f0", "metadata": {}, "source": [ "# Predict Sales" ] }, { "cell_type": "code", "execution_count": 201, "id": "f271eb45-1470-4764-8c2e-31374efa1fe5", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import os\n", "import s3fs\n", "import re\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, recall_score\n", "from sklearn.utils import class_weight\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.compose import ColumnTransformer\n", "from sklearn.preprocessing import OneHotEncoder\n", "from sklearn.impute import SimpleImputer\n", "from sklearn.model_selection import GridSearchCV\n", "from sklearn.preprocessing import StandardScaler, MaxAbsScaler, MinMaxScaler\n", "from sklearn.metrics import make_scorer, f1_score, balanced_accuracy_score\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score\n", "from sklearn.exceptions import ConvergenceWarning, DataConversionWarning\n", "\n", "import pickle\n", "import warnings\n", "#import scikitplot as skplt" ] }, { "cell_type": "code", "execution_count": 202, "id": "3fecb606-22e5-4dee-8efa-f8dff0832299", "metadata": {}, "outputs": [], "source": [ "warnings.filterwarnings('ignore')\n", "warnings.filterwarnings(\"ignore\", category=ConvergenceWarning)\n", "warnings.filterwarnings(\"ignore\", category=DataConversionWarning)" ] }, { "cell_type": "markdown", "id": "ae591854-3003-4c75-a0c7-5abf04246e81", "metadata": {}, "source": [ "### Load Data" ] }, { "cell_type": "code", "execution_count": 203, "id": "59dd4694-a812-4923-b995-a2ee86c74f85", "metadata": {}, "outputs": [], "source": [ "# Create filesystem object\n", "S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n", "fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})" ] }, { "cell_type": "code", "execution_count": 204, "id": "017f7e9a-3ba0-40fa-bdc8-51b98cc1fdb3", "metadata": {}, "outputs": [], "source": [ "def load_train_test():\n", " BUCKET = \"projet-bdc2324-team1/Generalization/sport\"\n", " File_path_train = BUCKET + \"/Train_set/\" + \"dataset_train5.csv\"\n", " File_path_test = BUCKET + \"/Test_set/\" + \"dataset_test5.csv\"\n", " \n", " with fs.open( File_path_train, mode=\"rb\") as file_in:\n", " dataset_train = pd.read_csv(file_in, sep=\",\")\n", " dataset_train['y_has_purchased'] = dataset_train['y_has_purchased'].fillna(0)\n", "\n", " with fs.open(File_path_test, mode=\"rb\") as file_in:\n", " dataset_test = pd.read_csv(file_in, sep=\",\")\n", " dataset_test['y_has_purchased'] = dataset_test['y_has_purchased'].fillna(0)\n", " \n", " return dataset_train, dataset_test" ] }, { "cell_type": "code", "execution_count": 205, "id": "825d14a3-6967-4733-bfd4-64bf61c2bd43", "metadata": {}, "outputs": [], "source": [ "def features_target_split(dataset_train, dataset_test):\n", " features_l = ['nb_tickets', 'nb_purchases', 'total_amount',\n", " 'nb_suppliers', 'nb_tickets_internet',\n", " 'opt_in',\n", " 'nb_campaigns', 'nb_campaigns_opened']\n", " X_train = dataset_train[features_l]\n", " y_train = dataset_train[['y_has_purchased']]\n", "\n", " X_test = dataset_test[features_l]\n", " y_test = dataset_test[['y_has_purchased']]\n", " return X_train, X_test, y_train, y_test" ] }, { "cell_type": "code", "execution_count": 206, "id": "c479b230-b4bd-4cfb-b76b-d9faf6d95772", "metadata": {}, "outputs": [], "source": [ "dataset_train, dataset_test = load_train_test()" ] }, { "cell_type": "code", "execution_count": 207, "id": "69eaec12-b30f-4d30-a461-ea520d5cbf77", "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = features_target_split(dataset_train, dataset_test)" ] }, { "cell_type": "code", "execution_count": 208, "id": "d039f31d-0093-46c6-9743-ddec1381f758", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape train : (330117, 8)\n", "Shape test : (141480, 8)\n" ] } ], "source": [ "print(\"Shape train : \", X_train.shape)\n", "print(\"Shape test : \", X_test.shape)" ] }, { "cell_type": "markdown", "id": "a1d6de94-4e11-481a-a0ce-412bf29f692c", "metadata": {}, "source": [ "### Prepare preprocessing and Hyperparameters" ] }, { "cell_type": "code", "execution_count": 209, "id": "b808da43-c444-4e94-995a-7ec6ccd01e2d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{0.0: 0.5381774965030861, 1.0: 7.048360235716116}" ] }, "execution_count": 209, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Compute Weights\n", "weights = class_weight.compute_class_weight(class_weight = 'balanced', classes = np.unique(y_train['y_has_purchased']),\n", " y = y_train['y_has_purchased'])\n", "\n", "weight_dict = {np.unique(y_train['y_has_purchased'])[i]: weights[i] for i in range(len(np.unique(y_train['y_has_purchased'])))}\n", "weight_dict" ] }, { "cell_type": "code", "execution_count": 210, "id": "b32a79ea-907f-4dfc-9832-6c74bef3200c", "metadata": {}, "outputs": [], "source": [ "numeric_features = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers',\n", " 'nb_tickets_internet', 'nb_campaigns', 'nb_campaigns_opened']\n", "\n", "numeric_transformer = Pipeline(steps=[\n", " #(\"imputer\", SimpleImputer(strategy=\"mean\")), \n", " (\"scaler\", StandardScaler()) \n", "])\n", "\n", "categorical_features = ['opt_in'] \n", "\n", "# Transformer for the categorical features\n", "categorical_transformer = Pipeline(steps=[\n", " #(\"imputer\", SimpleImputer(strategy=\"most_frequent\")), # Impute missing values with the most frequent\n", " (\"onehot\", OneHotEncoder(handle_unknown='ignore', sparse_output=False))\n", "])\n", "\n", "preproc = ColumnTransformer(\n", " transformers=[\n", " (\"num\", numeric_transformer, numeric_features),\n", " (\"cat\", categorical_transformer, categorical_features)\n", " ]\n", ")" ] }, { "cell_type": "code", "execution_count": 211, "id": "9809a688-bfbc-4685-a77f-17a8b2b79ab3", "metadata": {}, "outputs": [], "source": [ "# Set loss\n", "\n", "balanced_scorer = make_scorer(balanced_accuracy_score)\n", "recall_scorer = make_scorer(recall_score)\n" ] }, { "cell_type": "code", "execution_count": 212, "id": "206d9a95-7c37-4506-949b-e77d225e42c5", "metadata": {}, "outputs": [], "source": [ "# Hyperparameter\n", "\n", "param_grid = {'logreg__C': np.logspace(-10, 6, 17, base=2),\n", " 'logreg__penalty': ['l1', 'l2'],\n", " 'logreg__class_weight': ['balanced', weight_dict]} " ] }, { "cell_type": "code", "execution_count": 213, "id": "7ff2f7bd-efc1-4f7c-a3c9-caa916aa2f2b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(transformers=[('num',\n", " Pipeline(steps=[('scaler',\n", " StandardScaler())]),\n", " ['nb_tickets', 'nb_purchases',\n", " 'total_amount',\n", " 'nb_suppliers',\n", " 'nb_tickets_internet',\n", " 'nb_campaigns',\n", " 'nb_campaigns_opened']),\n", " ('cat',\n", " Pipeline(steps=[('onehot',\n", " OneHotEncoder(handle_unknown='ignore',\n", " sparse_output=False))]),\n", " ['opt_in'])])),\n", " ('logreg',\n", " LogisticRegression(class_weight={0.0: 0.5381774965030861,\n", " 1.0: 7.048360235716116},\n", " max_iter=5000, solver='saga'))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(transformers=[('num',\n", " Pipeline(steps=[('scaler',\n", " StandardScaler())]),\n", " ['nb_tickets', 'nb_purchases',\n", " 'total_amount',\n", " 'nb_suppliers',\n", " 'nb_tickets_internet',\n", " 'nb_campaigns',\n", " 'nb_campaigns_opened']),\n", " ('cat',\n", " Pipeline(steps=[('onehot',\n", " OneHotEncoder(handle_unknown='ignore',\n", " sparse_output=False))]),\n", " ['opt_in'])])),\n", " ('logreg',\n", " LogisticRegression(class_weight={0.0: 0.5381774965030861,\n", " 1.0: 7.048360235716116},\n", " max_iter=5000, solver='saga'))])
ColumnTransformer(transformers=[('num',\n", " Pipeline(steps=[('scaler', StandardScaler())]),\n", " ['nb_tickets', 'nb_purchases', 'total_amount',\n", " 'nb_suppliers', 'nb_tickets_internet',\n", " 'nb_campaigns', 'nb_campaigns_opened']),\n", " ('cat',\n", " Pipeline(steps=[('onehot',\n", " OneHotEncoder(handle_unknown='ignore',\n", " sparse_output=False))]),\n", " ['opt_in'])])
['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'nb_tickets_internet', 'nb_campaigns', 'nb_campaigns_opened']
StandardScaler()
['opt_in']
OneHotEncoder(handle_unknown='ignore', sparse_output=False)
LogisticRegression(class_weight={0.0: 0.5381774965030861,\n", " 1.0: 7.048360235716116},\n", " max_iter=5000, solver='saga')