{ "cells": [ { "cell_type": "markdown", "id": "ad414c84-be46-4d2c-be8b-9fc4d24cc672", "metadata": {}, "source": [ "# Business Data Challenge - Team 1" ] }, { "cell_type": "code", "execution_count": 1, "id": "15103481-8d74-404c-aa09-7601fe7730da", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import os\n", "import s3fs\n", "import re\n", "import warnings" ] }, { "cell_type": "markdown", "id": "ee97665c-39af-4c1c-a62b-c9c79feae18f", "metadata": {}, "source": [ "Configuration de l'accès aux données" ] }, { "cell_type": "code", "execution_count": 2, "id": "5d83bb1a-d341-446e-91f6-1c428607f6d4", "metadata": {}, "outputs": [], "source": [ "# Create filesystem object\n", "S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n", "fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})" ] }, { "cell_type": "code", "execution_count": 3, "id": "a9b84234-d5df-4c43-a9cd-80cfe2f1e34d", "metadata": {}, "outputs": [], "source": [ "# Ignore warning\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "markdown", "id": "9cbd72c5-6f8e-4366-ab66-96c32c6e963a", "metadata": {}, "source": [ "# Exemple sur Company 1" ] }, { "cell_type": "markdown", "id": "db26e59a-927c-407e-b54b-1815473b0b34", "metadata": {}, "source": [ "## Chargement données" ] }, { "cell_type": "code", "execution_count": 4, "id": "699664b9-eee4-4f8d-a207-e524526560c5", "metadata": {}, "outputs": [], "source": [ "BUCKET = \"bdc2324-data/1\"\n", "liste_database = fs.ls(BUCKET)" ] }, { "cell_type": "code", "execution_count": 5, "id": "dd6a3518-b752-4a1e-b77b-9e03e853c3ed", "metadata": {}, "outputs": [], "source": [ "# loop to create dataframes from liste\n", "\n", "files_path = liste_database\n", "\n", "client_number = files_path[0].split(\"/\")[1]\n", "df_prefix = \"df\" + str(client_number) + \"_\"\n", "\n", "for i in range(len(files_path)) :\n", " current_path = files_path[i]\n", " with fs.open(current_path, mode=\"rb\") as file_in:\n", " df = pd.read_csv(file_in)\n", " # the pattern of the name is df1xxx\n", " nom_dataframe = df_prefix + re.search(r'\\/(\\d+)\\/(\\d+)([a-zA-Z_]+)\\.csv$', current_path).group(3)\n", " globals()[nom_dataframe] = df" ] }, { "cell_type": "markdown", "id": "4004c8bf-11d9-413d-bb42-2cb8ddde7716", "metadata": {}, "source": [ "## Cleaning functions" ] }, { "cell_type": "code", "execution_count": 6, "id": "d237be96-8c86-4a91-b7a1-487e87a16c3d", "metadata": {}, "outputs": [], "source": [ "def cleaning_date(df, column_name):\n", " \"\"\"\n", " Nettoie la colonne spécifiée du DataFrame en convertissant les valeurs en datetime avec le format ISO8601.\n", "\n", " Parameters:\n", " - df: DataFrame\n", " Le DataFrame contenant la colonne à nettoyer.\n", " - column_name: str\n", " Le nom de la colonne à nettoyer.\n", "\n", " Returns:\n", " - DataFrame\n", " Le DataFrame modifié avec la colonne nettoyée.\n", " \"\"\"\n", " df[column_name] = pd.to_datetime(df[column_name], utc = True, format = 'ISO8601')\n", " return df" ] }, { "cell_type": "markdown", "id": "398804d8-2225-4fd3-bceb-75ab1588e359", "metadata": {}, "source": [ "## Preprocessing" ] }, { "cell_type": "markdown", "id": "568cb180-0dd9-4b27-aecb-05e4c3775ba6", "metadata": {}, "source": [ "## customer_plus" ] }, { "cell_type": "code", "execution_count": 7, "id": "7e7b90ce-da54-4f00-bc34-64c543b0858f", "metadata": {}, "outputs": [], "source": [ "def preprocessing_customerplus(customerplus = None):\n", "\n", " customerplus_copy = customerplus.copy()\n", " \n", " # Passage en format date\n", " cleaning_date(customerplus_copy, 'first_buying_date')\n", " cleaning_date(customerplus_copy, 'last_visiting_date')\n", " \n", " # Selection des variables\n", " customerplus_copy.drop(['lastname', 'firstname', 'email', 'civility', 'note', 'created_at', 'updated_at', 'deleted_at', 'extra', 'reference', 'extra_field', 'identifier', 'need_reload', 'preferred_category', 'preferred_supplier', 'preferred_formula', 'zipcode', 'last_visiting_date'], axis = 1, inplace=True)\n", " customerplus_copy.rename(columns = {'id' : 'customer_id'}, inplace = True)\n", "\n", " return customerplus_copy\n" ] }, { "cell_type": "code", "execution_count": 8, "id": "03329e32-00a5-42c8-9470-75f7b6216ccd", "metadata": {}, "outputs": [], "source": [ "df1_customerplus_clean = preprocessing_customerplus(df1_customersplus)" ] }, { "cell_type": "markdown", "id": "bade04b1-0cdf-4d10-bcca-7dc7e4831656", "metadata": {}, "source": [ "## Ticket area" ] }, { "cell_type": "code", "execution_count": 9, "id": "b95464b1-26bc-4aac-84b4-45da83b92251", "metadata": {}, "outputs": [], "source": [ "# Fonction de nettoyage et selection\n", "def preprocessing_tickets_area(tickets = None, purchases = None, suppliers = None, type_ofs = None):\n", " # Base des tickets\n", " tickets = tickets[['id', 'purchase_id', 'product_id', 'is_from_subscription', 'type_of', 'supplier_id']]\n", " tickets.rename(columns = {'id' : 'ticket_id'}, inplace = True)\n", "\n", " # Base des fournisseurs\n", " suppliers = suppliers[['id', 'name']]\n", " suppliers.rename(columns = {'name' : 'supplier_name'}, inplace = True)\n", " suppliers['supplier_name'] = suppliers['supplier_name'].fillna('')\n", "\n", " # Base des types de billets\n", " type_ofs = type_ofs[['id', 'name', 'children']]\n", " type_ofs.rename(columns = {'name' : 'type_of_ticket_name'}, inplace = True)\n", "\n", " # Base des achats\n", " # Nettoyage de la date d'achat\n", " cleaning_date(purchases, 'purchase_date')\n", " # Selection des variables\n", " purchases = purchases[['id', 'purchase_date', 'customer_id']]\n", "\n", " # Fusions \n", " # Fusion avec fournisseurs\n", " ticket_information = pd.merge(tickets, suppliers, left_on = 'supplier_id', right_on = 'id', how = 'inner')\n", " ticket_information.drop(['supplier_id', 'id'], axis = 1, inplace=True)\n", " \n", " # Fusion avec type de tickets\n", " ticket_information = pd.merge(ticket_information, type_ofs, left_on = 'type_of', right_on = 'id', how = 'inner')\n", " ticket_information.drop(['type_of', 'id'], axis = 1, inplace=True)\n", " \n", " # Fusion avec achats\n", " ticket_information = pd.merge(ticket_information, purchases, left_on = 'purchase_id', right_on = 'id', how = 'inner')\n", " ticket_information.drop(['id'], axis = 1, inplace=True)\n", "\n", " return ticket_information" ] }, { "cell_type": "code", "execution_count": 10, "id": "3e1d2ba7-ff4f-48eb-93a8-2bb648c70396", "metadata": {}, "outputs": [], "source": [ "df1_ticket_information = preprocessing_tickets_area(tickets = df1_tickets, purchases = df1_purchases, suppliers = df1_suppliers, type_ofs = df1_type_ofs)" ] }, { "cell_type": "code", "execution_count": 11, "id": "4b18edfc-6450-4c6a-9e7b-ee5a5808c8c9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ticket_idpurchase_idproduct_idis_from_subscriptionsupplier_nametype_of_ticket_namechildrenpurchase_datecustomer_id
0130708595107462225251Falsevente en ligneAtelierpricing_formula2018-12-28 14:47:50+00:0048187
1130708605107462224914Falsevente en ligneAtelierpricing_formula2018-12-28 14:47:50+00:0048187
2130708615107462224914Falsevente en ligneAtelierpricing_formula2018-12-28 14:47:50+00:0048187
3130708625107462224914Falsevente en ligneAtelierpricing_formula2018-12-28 14:47:50+00:0048187
4130708635107462224914Falsevente en ligneAtelierpricing_formula2018-12-28 14:47:50+00:0048187
\n", "
" ], "text/plain": [ " ticket_id purchase_id product_id is_from_subscription supplier_name \\\n", "0 13070859 5107462 225251 False vente en ligne \n", "1 13070860 5107462 224914 False vente en ligne \n", "2 13070861 5107462 224914 False vente en ligne \n", "3 13070862 5107462 224914 False vente en ligne \n", "4 13070863 5107462 224914 False vente en ligne \n", "\n", " type_of_ticket_name children purchase_date customer_id \n", "0 Atelier pricing_formula 2018-12-28 14:47:50+00:00 48187 \n", "1 Atelier pricing_formula 2018-12-28 14:47:50+00:00 48187 \n", "2 Atelier pricing_formula 2018-12-28 14:47:50+00:00 48187 \n", "3 Atelier pricing_formula 2018-12-28 14:47:50+00:00 48187 \n", "4 Atelier pricing_formula 2018-12-28 14:47:50+00:00 48187 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_ticket_information.head()" ] }, { "cell_type": "markdown", "id": "096e47f4-1d65-4575-989d-83227eedad2b", "metadata": {}, "source": [ "## Target area" ] }, { "cell_type": "code", "execution_count": 12, "id": "baed146a-9d3a-4397-a812-3d50c9a2f038", "metadata": {}, "outputs": [], "source": [ "def preprocessing_target_area(targets = None, target_types = None, customer_target_mappings = None):\n", " # Target.csv cleaning\n", " targets = targets[[\"id\", \"target_type_id\", \"name\"]]\n", " targets.rename(columns = {'id' : 'target_id' , 'name' : 'target_name'}, inplace = True)\n", " \n", " # target_type cleaning\n", " target_types = target_types[[\"id\",\"is_import\",\"name\"]].add_prefix(\"target_type_\")\n", " \n", " #customer_target_mappings cleaning\n", " customer_target_mappings = customer_target_mappings[[\"id\", \"customer_id\", \"target_id\"]]\n", " \n", " # Merge target et target_type\n", " targets_full = pd.merge(targets, target_types, left_on='target_type_id', right_on='target_type_id', how='inner')\n", " targets_full.drop(['target_type_id'], axis = 1, inplace=True)\n", " \n", " # Merge\n", " targets_full = pd.merge(customer_target_mappings, targets_full, left_on='target_id', right_on='target_id', how='inner')\n", " targets_full.drop(['target_id'], axis = 1, inplace=True)\n", "\n", " return targets_full" ] }, { "cell_type": "code", "execution_count": 13, "id": "5fbfd88b-b94c-489c-9201-670e96e453e7", "metadata": {}, "outputs": [], "source": [ "df1_target_information = preprocessing_target_area(targets = df1_targets, target_types = df1_target_types, customer_target_mappings = df1_customer_target_mappings)" ] }, { "cell_type": "markdown", "id": "cdbb48b4-5e16-4ef4-8791-ed213d68d52f", "metadata": {}, "source": [ "## Campaings area" ] }, { "cell_type": "code", "execution_count": 14, "id": "d883cc7b-ac43-4485-b86f-eaf595fbad85", "metadata": {}, "outputs": [], "source": [ "def preprocessing_campaigns_area(campaign_stats = None, campaigns = None):\n", " # campaign_stats cleaning \n", " campaign_stats = campaign_stats[[\"id\", \"campaign_id\", \"customer_id\", \"opened_at\", \"sent_at\", \"delivered_at\"]]\n", " cleaning_date(campaign_stats, 'opened_at')\n", " cleaning_date(campaign_stats, 'sent_at')\n", " cleaning_date(campaign_stats, 'delivered_at')\n", " \n", " # campaigns cleaning\n", " campaigns = campaigns[[\"id\", \"name\", \"service_id\", \"sent_at\"]].add_prefix(\"campaign_\")\n", " cleaning_date(campaigns, 'campaign_sent_at')\n", " \n", " # Merge \n", " campaigns_full = pd.merge(campaign_stats, campaigns, on = \"campaign_id\", how = \"left\")\n", " campaigns_full.drop(['campaign_id'], axis = 1, inplace=True)\n", "\n", " return campaigns_full" ] }, { "cell_type": "code", "execution_count": 15, "id": "c8552dd6-52c5-4431-b43d-3cd6c578fd9f", "metadata": {}, "outputs": [], "source": [ "df1_campaigns_information = preprocessing_campaigns_area(campaign_stats = df1_campaign_stats, campaigns = df1_campaigns)" ] }, { "cell_type": "code", "execution_count": 16, "id": "c24457e7-3cad-451a-a65b-7373b656bd6e", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idcustomer_idopened_atsent_atdelivered_atcampaign_namecampaign_service_idcampaign_sent_at
019793112597NaT2021-03-28 16:01:09+00:002021-03-28 16:24:18+00:00Le Mucem chez vous, gardons le lien #224042021-03-27 23:00:00+00:00
114211113666NaT2021-03-28 16:01:09+00:002021-03-28 16:21:02+00:00Le Mucem chez vous, gardons le lien #224042021-03-27 23:00:00+00:00
213150280561NaT2021-03-28 16:00:59+00:002021-03-28 16:08:45+00:00Le Mucem chez vous, gardons le lien #224042021-03-27 23:00:00+00:00
370731010072021-03-28 18:11:06+00:002021-03-28 16:00:59+00:002021-03-28 16:09:47+00:00Le Mucem chez vous, gardons le lien #224042021-03-27 23:00:00+00:00
45175103972NaT2021-03-28 16:01:06+00:002021-03-28 16:05:03+00:00Le Mucem chez vous, gardons le lien #224042021-03-27 23:00:00+00:00
\n", "
" ], "text/plain": [ " id customer_id opened_at sent_at \\\n", "0 19793 112597 NaT 2021-03-28 16:01:09+00:00 \n", "1 14211 113666 NaT 2021-03-28 16:01:09+00:00 \n", "2 13150 280561 NaT 2021-03-28 16:00:59+00:00 \n", "3 7073 101007 2021-03-28 18:11:06+00:00 2021-03-28 16:00:59+00:00 \n", "4 5175 103972 NaT 2021-03-28 16:01:06+00:00 \n", "\n", " delivered_at campaign_name \\\n", "0 2021-03-28 16:24:18+00:00 Le Mucem chez vous, gardons le lien #22 \n", "1 2021-03-28 16:21:02+00:00 Le Mucem chez vous, gardons le lien #22 \n", "2 2021-03-28 16:08:45+00:00 Le Mucem chez vous, gardons le lien #22 \n", "3 2021-03-28 16:09:47+00:00 Le Mucem chez vous, gardons le lien #22 \n", "4 2021-03-28 16:05:03+00:00 Le Mucem chez vous, gardons le lien #22 \n", "\n", " campaign_service_id campaign_sent_at \n", "0 404 2021-03-27 23:00:00+00:00 \n", "1 404 2021-03-27 23:00:00+00:00 \n", "2 404 2021-03-27 23:00:00+00:00 \n", "3 404 2021-03-27 23:00:00+00:00 \n", "4 404 2021-03-27 23:00:00+00:00 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_campaigns_information.head()" ] }, { "cell_type": "markdown", "id": "56520a97-ede8-4920-a211-3b5b136af33d", "metadata": {}, "source": [ "## Product area" ] }, { "cell_type": "markdown", "id": "9782e9d3-ba20-46bf-8562-bd0969972ddc", "metadata": {}, "source": [ "Some useful functions" ] }, { "cell_type": "code", "execution_count": 17, "id": "30488a40-1b38-4b9a-9d3b-26a0597c5e6d", "metadata": {}, "outputs": [], "source": [ "BUCKET = \"bdc2324-data\"\n", "directory_path = '1'" ] }, { "cell_type": "code", "execution_count": 18, "id": "607eb4b4-eed9-4b50-b823-f75c116dd37c", "metadata": {}, "outputs": [], "source": [ "def display_databases(file_name):\n", " \"\"\"\n", " This function returns the file from s3 storage\n", " \"\"\"\n", " file_path = BUCKET + \"/\" + directory_path + \"/\" + file_name\n", " print(\"File path : \", file_path)\n", " with fs.open(file_path, mode=\"rb\") as file_in:\n", " df = pd.read_csv(file_in, sep=\",\")\n", " \n", " print(\"Shape : \", df.shape)\n", " return df\n", "\n", "\n", "def remove_horodates(df):\n", " \"\"\"\n", " this function remove horodate columns like created_at and updated_at\n", " \"\"\"\n", " df = df.drop(columns = [\"created_at\", \"updated_at\"])\n", " return df\n", "\n", "\n", "def order_columns_id(df):\n", " \"\"\"\n", " this function puts all id columns at the beginning in order to read the dataset easier\n", " \"\"\"\n", " substring = 'id'\n", " id_columns = [col for col in df.columns if substring in col]\n", " remaining_col = [col for col in df.columns if substring not in col]\n", " new_order = id_columns + remaining_col\n", " return df[new_order]\n", "\n", "\n", "def process_df_2(df):\n", " \"\"\"\n", " This function organizes dataframe\n", " \"\"\"\n", " df = remove_horodates(df)\n", " print(\"Number of columns : \", len(df.columns))\n", " df = order_columns_id(df)\n", " print(\"Columns : \", df.columns)\n", " return df\n", "\n", "def load_dataset(name):\n", " \"\"\"\n", " This function loads csv file\n", " \"\"\"\n", " df = display_databases(name)\n", " df = process_df_2(df)\n", " # drop na :\n", " #df = df.dropna(axis=1, thresh=len(df))\n", " # if identifier in table : delete it\n", " if 'identifier' in df.columns:\n", " df = df.drop(columns = 'identifier')\n", " return df" ] }, { "cell_type": "markdown", "id": "d23f28c0-bc95-438b-8d14-5b7bb6e267bd", "metadata": {}, "source": [ "Create theme tables" ] }, { "cell_type": "code", "execution_count": 19, "id": "350b09b9-451f-4d47-81fe-f34b892db027", "metadata": {}, "outputs": [], "source": [ "def create_products_table():\n", " # first merge products and categories\n", " print(\"first merge products and categories\")\n", " products = load_dataset(\"1products.csv\")\n", " categories = load_dataset(\"1categories.csv\")\n", " # Drop useless columns\n", " products = products.drop(columns = ['apply_price', 'extra_field', 'amount_consumption'])\n", " categories = categories.drop(columns = ['extra_field', 'quota'])\n", "\n", " #Merge\n", " products_theme = products.merge(categories, how = 'left', left_on = 'category_id',\n", " right_on = 'id', suffixes=('_products', '_categories'))\n", " products_theme = products_theme.rename(columns = {\"name\" : \"name_categories\"})\n", " \n", " # Second merge products_theme and type of categories\n", " print(\"Second merge products_theme and type of categories\")\n", " type_of_categories = load_dataset(\"1type_of_categories.csv\")\n", " type_of_categories = type_of_categories.drop(columns = 'id')\n", " products_theme = products_theme.merge(type_of_categories, how = 'left', left_on = 'category_id',\n", " right_on = 'category_id' )\n", "\n", " # Index cleaning\n", " products_theme = products_theme.drop(columns = ['id_categories'])\n", " products_theme = order_columns_id(products_theme)\n", " return products_theme\n", "\n", "\n", "def create_events_table():\n", " # first merge events and seasons : \n", " print(\"first merge events and seasons : \")\n", " events = load_dataset(\"1events.csv\")\n", " seasons = load_dataset(\"1seasons.csv\")\n", "\n", " # Drop useless columns\n", " events = events.drop(columns = ['manual_added', 'is_display'])\n", " seasons = seasons.drop(columns = ['start_date_time'])\n", " \n", " events_theme = events.merge(seasons, how = 'left', left_on = 'season_id', right_on = 'id', suffixes=('_events', '_seasons'))\n", "\n", " # Secondly merge events_theme and event_types\n", " print(\"Secondly merge events_theme and event_types : \")\n", " event_types = load_dataset(\"1event_types.csv\")\n", " event_types = event_types.drop(columns = ['fidelity_delay'])\n", " \n", " events_theme = events_theme.merge(event_types, how = 'left', left_on = 'event_type_id', right_on = 'id', suffixes=('_events', '_event_type'))\n", " events_theme = events_theme.rename(columns = {\"name\" : \"name_event_types\"})\n", " events_theme = events_theme.drop(columns = 'id')\n", "\n", " # thirdly merge events_theme and facilities\n", " print(\"thirdly merge events_theme and facilities : \")\n", " facilities = load_dataset(\"1facilities.csv\")\n", " facilities = facilities.drop(columns = ['fixed_capacity'])\n", " \n", " events_theme = events_theme.merge(facilities, how = 'left', left_on = 'facility_id', right_on = 'id', suffixes=('_events', '_facility'))\n", " events_theme = events_theme.rename(columns = {\"name\" : \"name_facilities\", \"id_events\" : \"event_id\"})\n", " events_theme = events_theme.drop(columns = 'id')\n", "\n", " # Index cleaning\n", " events_theme = events_theme.drop(columns = ['id_seasons'])\n", " events_theme = order_columns_id(events_theme)\n", " return events_theme\n", "\n", "\n", "def create_representations_table():\n", " representations = load_dataset(\"1representations.csv\")\n", " representations = representations.drop(columns = ['serial', 'open', 'satisfaction', 'is_display', 'expected_filling',\n", " 'max_filling', 'extra_field', 'start_date_time', 'end_date_time', 'name',\n", " 'representation_type_id'])\n", " \n", " representations_capacity = load_dataset(\"1representation_category_capacities.csv\")\n", " representations_capacity = representations_capacity.drop(columns = ['expected_filling', 'max_filling'])\n", "\n", " representations_theme = representations.merge(representations_capacity, how='left',\n", " left_on='id', right_on='representation_id',\n", " suffixes=('_representation', '_representation_cap'))\n", " # index cleaning\n", " representations_theme = representations_theme.drop(columns = [\"id_representation\"])\n", " representations_theme = order_columns_id(representations_theme)\n", " return representations_theme" ] }, { "cell_type": "code", "execution_count": 20, "id": "0fccc8ef-e575-4857-a401-94a7274394df", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "first merge products and categories\n", "File path : bdc2324-data/1/1products.csv\n", "Shape : (94803, 14)\n", "Number of columns : 12\n", "Columns : Index(['id', 'representation_id', 'pricing_formula_id', 'category_id',\n", " 'products_group_id', 'product_pack_id', 'identifier', 'amount',\n", " 'is_full_price', 'apply_price', 'extra_field', 'amount_consumption'],\n", " dtype='object')\n", "File path : bdc2324-data/1/1categories.csv\n", "Shape : (27, 7)\n", "Number of columns : 5\n", "Columns : Index(['id', 'identifier', 'name', 'extra_field', 'quota'], dtype='object')\n", "Second merge products_theme and type of categories\n", "File path : bdc2324-data/1/1type_of_categories.csv\n", "Shape : (5, 6)\n", "Number of columns : 4\n", "Columns : Index(['id', 'type_of_id', 'category_id', 'identifier'], dtype='object')\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
id_productsrepresentation_idpricing_formula_idcategory_idproducts_group_idproduct_pack_idtype_of_idamountis_full_pricename_categories
01068291411441106551NaN9.0Falseindiv activité tr
14782731311471112.09.5Falseindiv entrées tp
220873275137120825112.011.5Falseindiv entrées tp
315714282519951567731NaN8.0Falseindiv entrées tr
4134199311175112.08.5Falseindiv entrées tp
\n", "
" ], "text/plain": [ " id_products representation_id pricing_formula_id category_id \\\n", "0 10682 914 114 41 \n", "1 478 273 131 1 \n", "2 20873 275 137 1 \n", "3 157142 82519 9 5 \n", "4 1341 9 93 1 \n", "\n", " products_group_id product_pack_id type_of_id amount is_full_price \\\n", "0 10655 1 NaN 9.0 False \n", "1 471 1 12.0 9.5 False \n", "2 20825 1 12.0 11.5 False \n", "3 156773 1 NaN 8.0 False \n", "4 1175 1 12.0 8.5 False \n", "\n", " name_categories \n", "0 indiv activité tr \n", "1 indiv entrées tp \n", "2 indiv entrées tp \n", "3 indiv entrées tr \n", "4 indiv entrées tp " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "products_theme = create_products_table()\n", "products_theme.head()" ] }, { "cell_type": "code", "execution_count": 21, "id": "779d8aaf-6668-4f66-8852-847304407ea3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "first merge events and seasons : \n", "File path : bdc2324-data/1/1events.csv\n", "Shape : (1232, 12)\n", "Number of columns : 10\n", "Columns : Index(['id', 'season_id', 'facility_id', 'event_type_id', 'event_type_key_id',\n", " 'facility_key_id', 'identifier', 'name', 'manual_added', 'is_display'],\n", " dtype='object')\n", "File path : bdc2324-data/1/1seasons.csv\n", "Shape : (13, 6)\n", "Number of columns : 4\n", "Columns : Index(['id', 'identifier', 'name', 'start_date_time'], dtype='object')\n", "Secondly merge events_theme and event_types : \n", "File path : bdc2324-data/1/1event_types.csv\n", "Shape : (9, 6)\n", "Number of columns : 4\n", "Columns : Index(['id', 'fidelity_delay', 'identifier', 'name'], dtype='object')\n", "thirdly merge events_theme and facilities : \n", "File path : bdc2324-data/1/1facilities.csv\n", "Shape : (2, 7)\n", "Number of columns : 5\n", "Columns : Index(['id', 'street_id', 'identifier', 'name', 'fixed_capacity'], dtype='object')\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
event_idseason_idfacility_idevent_type_idevent_type_key_idfacility_key_idstreet_idname_eventsname_seasonsname_event_typesname_facilities
01921614411frontières2018spectacle vivantmucem
130329276715511visite guidée une autre histoire du monde (1h00)2023offre muséale groupemucem
21611612211visite contée les chercheurs d'or indiv2018offre muséale individuelmucem
3595758214411we dreamt of utopia and we woke up screaming.2021spectacle vivantmucem
4833758214411jeff koons épisodes 42021spectacle vivantmucem
\n", "
" ], "text/plain": [ " event_id season_id facility_id event_type_id event_type_key_id \\\n", "0 192 16 1 4 4 \n", "1 30329 2767 1 5 5 \n", "2 161 16 1 2 2 \n", "3 5957 582 1 4 4 \n", "4 8337 582 1 4 4 \n", "\n", " facility_key_id street_id \\\n", "0 1 1 \n", "1 1 1 \n", "2 1 1 \n", "3 1 1 \n", "4 1 1 \n", "\n", " name_events name_seasons \\\n", "0 frontières 2018 \n", "1 visite guidée une autre histoire du monde (1h00) 2023 \n", "2 visite contée les chercheurs d'or indiv 2018 \n", "3 we dreamt of utopia and we woke up screaming. 2021 \n", "4 jeff koons épisodes 4 2021 \n", "\n", " name_event_types name_facilities \n", "0 spectacle vivant mucem \n", "1 offre muséale groupe mucem \n", "2 offre muséale individuel mucem \n", "3 spectacle vivant mucem \n", "4 spectacle vivant mucem " ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "events_theme= create_events_table()\n", "events_theme.head()" ] }, { "cell_type": "code", "execution_count": 22, "id": "7714fa32-303b-4ea7-b174-3fd0fcab5af0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "File path : bdc2324-data/1/1representations.csv\n", "Shape : (36095, 16)\n", "Number of columns : 14\n", "Columns : Index(['id', 'event_id', 'representation_type_id', 'identifier', 'serial',\n", " 'start_date_time', 'open', 'satisfaction', 'end_date_time', 'name',\n", " 'is_display', 'expected_filling', 'max_filling', 'extra_field'],\n", " dtype='object')\n", "File path : bdc2324-data/1/1representation_category_capacities.csv\n", "Shape : (65241, 7)\n", "Number of columns : 5\n", "Columns : Index(['id', 'representation_id', 'category_id', 'expected_filling',\n", " 'max_filling'],\n", " dtype='object')\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
event_idid_representation_caprepresentation_idcategory_id
012384123058848202
13725142692
2373842695
337251526910
4373832691
\n", "
" ], "text/plain": [ " event_id id_representation_cap representation_id category_id\n", "0 12384 123058 84820 2\n", "1 37 2514 269 2\n", "2 37 384 269 5\n", "3 37 2515 269 10\n", "4 37 383 269 1" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "representation_theme = create_representations_table()\n", "representation_theme.head()" ] }, { "cell_type": "markdown", "id": "8fa191d5-c867-4d4d-bbab-f29d7d91ce6a", "metadata": {}, "source": [ "Create uniform product database " ] }, { "cell_type": "code", "execution_count": 23, "id": "15a62ed6-35e4-4abc-aeef-a7daeec0a4ba", "metadata": {}, "outputs": [], "source": [ "def uniform_product_df():\n", " \"\"\"\n", " This function returns the uniform product dataset\n", " \"\"\"\n", " print(\"Products theme columns : \", products_theme.columns)\n", " print(\"\\n Representation theme columns : \", representation_theme.columns)\n", " print(\"\\n Events theme columns : \", events_theme.columns)\n", "\n", " products_global = products_theme.merge(representation_theme, how='left',\n", " on= [\"representation_id\", \"category_id\"])\n", " \n", " products_global = products_global.merge(events_theme, how='left', on='event_id',\n", " suffixes = (\"_representation\", \"_event\"))\n", " \n", " products_global = order_columns_id(products_global)\n", "\n", " # remove useless columns \n", " products_global = products_global.drop(columns = ['type_of_id']) # 'name_events', 'name_seasons', 'name_categories'\n", " return products_global" ] }, { "cell_type": "code", "execution_count": 24, "id": "89dc9685-1de9-4ce3-a6c0-8d7f1931a951", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Products theme columns : Index(['id_products', 'representation_id', 'pricing_formula_id', 'category_id',\n", " 'products_group_id', 'product_pack_id', 'type_of_id', 'amount',\n", " 'is_full_price', 'name_categories'],\n", " dtype='object')\n", "\n", " Representation theme columns : Index(['event_id', 'id_representation_cap', 'representation_id',\n", " 'category_id'],\n", " dtype='object')\n", "\n", " Events theme columns : Index(['event_id', 'season_id', 'facility_id', 'event_type_id',\n", " 'event_type_key_id', 'facility_key_id', 'street_id', 'name_events',\n", " 'name_seasons', 'name_event_types', 'name_facilities'],\n", " dtype='object')\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
id_productsrepresentation_idpricing_formula_idcategory_idproducts_group_idproduct_pack_idevent_idid_representation_capseason_idfacility_id...event_type_key_idfacility_key_idstreet_idamountis_full_pricename_categoriesname_eventsname_seasonsname_event_typesname_facilities
01068291411441106551132878941...5119.0Falseindiv activité trvisite-jeu \"le classico des minots\" (1h30)2017offre muséale individuelmucem
1478273131147113739021...2119.5Falseindiv entrées tpbillet mucem picasso2016offre muséale individuelmucem
22087327513712082513739521...21111.5Falseindiv entrées tpbillet mucem picasso2016offre muséale individuelmucem
3157142825199515677311236512019917541...4118.0Falseindiv entrées trNaNNaNoffre muséale individuelmucem
4134199311175182141...6118.5Falseindiv entrées tpnon défini2017non définimucem
\n", "

5 rows × 21 columns

\n", "
" ], "text/plain": [ " id_products representation_id pricing_formula_id category_id \\\n", "0 10682 914 114 41 \n", "1 478 273 131 1 \n", "2 20873 275 137 1 \n", "3 157142 82519 9 5 \n", "4 1341 9 93 1 \n", "\n", " products_group_id product_pack_id event_id id_representation_cap \\\n", "0 10655 1 132 8789 \n", "1 471 1 37 390 \n", "2 20825 1 37 395 \n", "3 156773 1 12365 120199 \n", "4 1175 1 8 21 \n", "\n", " season_id facility_id ... event_type_key_id facility_key_id street_id \\\n", "0 4 1 ... 5 1 1 \n", "1 2 1 ... 2 1 1 \n", "2 2 1 ... 2 1 1 \n", "3 1754 1 ... 4 1 1 \n", "4 4 1 ... 6 1 1 \n", "\n", " amount is_full_price name_categories \\\n", "0 9.0 False indiv activité tr \n", "1 9.5 False indiv entrées tp \n", "2 11.5 False indiv entrées tp \n", "3 8.0 False indiv entrées tr \n", "4 8.5 False indiv entrées tp \n", "\n", " name_events name_seasons \\\n", "0 visite-jeu \"le classico des minots\" (1h30) 2017 \n", "1 billet mucem picasso 2016 \n", "2 billet mucem picasso 2016 \n", "3 NaN NaN \n", "4 non défini 2017 \n", "\n", " name_event_types name_facilities \n", "0 offre muséale individuel mucem \n", "1 offre muséale individuel mucem \n", "2 offre muséale individuel mucem \n", "3 offre muséale individuel mucem \n", "4 non défini mucem \n", "\n", "[5 rows x 21 columns]" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "products_global = uniform_product_df()\n", "products_global.head()" ] }, { "cell_type": "code", "execution_count": 26, "id": "98f78cd5-b694-4cc6-b033-20170aa13e8d", "metadata": {}, "outputs": [], "source": [ "# Fusion liée au product\n", "df1_products_purchased = pd.merge(df1_ticket_information, products_global, left_on = 'product_id', right_on = 'id_products', how = 'inner')\n", "\n", "# Selection des variables d'intérêts\n", "df1_products_purchased_reduced = df1_products_purchased[['ticket_id', 'customer_id', 'purchase_id' ,'event_type_id', 'supplier_name', 'purchase_date', 'type_of_ticket_name', 'amount', 'children', 'is_full_price', 'name_event_types', 'name_facilities', 'name_categories', 'name_events', 'name_seasons']]" ] }, { "cell_type": "markdown", "id": "d7c3668a-c016-4bd0-837e-04af328ff14f", "metadata": {}, "source": [ "# Construction des variables explicatives" ] }, { "cell_type": "markdown", "id": "314f1b7f-ae48-4c6f-8469-9ce879043243", "metadata": {}, "source": [ "## KPI campaigns" ] }, { "cell_type": "code", "execution_count": 27, "id": "e2c88552-b863-47a2-be23-8d2898fb28bc", "metadata": {}, "outputs": [], "source": [ "def campaigns_kpi_function(campaigns_information = None):\n", " # Nombre de campagnes de mails\n", " nb_campaigns = campaigns_information[['customer_id', 'campaign_name']].groupby('customer_id').count().reset_index()\n", " nb_campaigns.rename(columns = {'campaign_name' : 'nb_campaigns'}, inplace = True)\n", " # Temps d'ouverture en min moyen \n", " campaigns_information['time_to_open'] = campaigns_information['opened_at'] - campaigns_information['delivered_at']\n", " time_to_open = campaigns_information[['customer_id', 'time_to_open']].groupby('customer_id').mean().reset_index()\n", "\n", " # Nombre de mail ouvert \n", " opened_campaign = campaigns_information[['customer_id', 'campaign_name', 'opened_at']]\n", " opened_campaign.dropna(subset=['opened_at'], inplace=True)\n", " opened_campaign = opened_campaign[['customer_id', 'campaign_name']].groupby('customer_id').count().reset_index()\n", " opened_campaign.rename(columns = {'campaign_name' : 'nb_campaigns_opened' }, inplace = True)\n", "\n", " # Fusion des indicateurs\n", " campaigns_reduced = pd.merge(nb_campaigns, opened_campaign, on = 'customer_id', how = 'left')\n", " campaigns_reduced = pd.merge(campaigns_reduced, time_to_open, on = 'customer_id', how = 'left')\n", "\n", " # Remplir les NaN : nb_campaigns_opened\n", " campaigns_reduced['nb_campaigns_opened'].fillna(0)\n", "\n", " # Remplir les NaT : time_to_open (??)\n", "\n", " return campaigns_reduced\n", " " ] }, { "cell_type": "code", "execution_count": 28, "id": "24537647-bc29-4777-9848-ac4120a4aa60", "metadata": {}, "outputs": [], "source": [ "df1_campaigns_kpi = campaigns_kpi_function(campaigns_information = df1_campaigns_information) " ] }, { "cell_type": "code", "execution_count": 29, "id": "6be2a9a6-056b-4e19-8c26-a18ba3df36b3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idnb_campaignsnb_campaigns_openedtime_to_open
0240.0NaT
13222124.01 days 00:28:30.169354838
2477.01 days 04:31:01.428571428
3540.0NaT
46200.0NaT
\n", "
" ], "text/plain": [ " customer_id nb_campaigns nb_campaigns_opened time_to_open\n", "0 2 4 0.0 NaT\n", "1 3 222 124.0 1 days 00:28:30.169354838\n", "2 4 7 7.0 1 days 04:31:01.428571428\n", "3 5 4 0.0 NaT\n", "4 6 20 0.0 NaT" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_campaigns_kpi.head()" ] }, { "cell_type": "markdown", "id": "d4dcfbe0-c6ce-497e-b75e-dc9e938801b2", "metadata": {}, "source": [ "## KPI tickets" ] }, { "cell_type": "code", "execution_count": 30, "id": "b913a69e-3146-4919-b5f6-a6108532bffa", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['spectacle vivant', 'offre muséale individuel', 'formule adhésion',\n", " 'offre muséale groupe'], dtype=object)" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_products_purchased_reduced['name_event_types'].unique()" ] }, { "cell_type": "code", "execution_count": 31, "id": "2bda0b97-b28b-4070-a57d-aeab0e2f7dfe", "metadata": {}, "outputs": [], "source": [ "# Nombre de client assistant à plus de 2 type d'événement\n", "nb_event_types = df1_products_purchased_reduced[['customer_id', 'name_event_types']].groupby('customer_id').nunique()" ] }, { "cell_type": "code", "execution_count": 34, "id": "043303fe-e90f-4689-a2a9-5d690555a045", "metadata": {}, "outputs": [], "source": [ "def tickets_kpi_function(tickets_information = None):\n", "\n", " tickets_information_copy = tickets_information.copy()\n", "\n", " # Dummy : Canal de vente en ligne\n", " liste_mots = ['en ligne', 'internet', 'web', 'net', 'vad', 'online'] # vad = vente à distance\n", " tickets_information_copy['vente_internet'] = tickets_information_copy['supplier_name'].str.contains('|'.join(liste_mots), case=False).astype(int)\n", "\n", " # Proportion de vente en ligne\n", " prop_vente_internet = tickets_information_copy[tickets_information_copy['vente_internet'] == 1].groupby(['customer_id', 'event_type_id'])['ticket_id'].count().reset_index()\n", " prop_vente_internet.rename(columns = {'ticket_id' : 'nb_tickets_internet'}, inplace = True)\n", " \n", " tickets_kpi = (tickets_information_copy[['event_type_id', 'customer_id', 'purchase_id' ,'ticket_id','supplier_name', 'purchase_date', 'amount', 'vente_internet']]\n", " .groupby(['customer_id', 'event_type_id']) \n", " .agg({'ticket_id': 'count', \n", " 'purchase_id' : 'nunique',\n", " 'amount' : 'sum',\n", " 'supplier_name': 'nunique',\n", " 'vente_internet' : 'max',\n", " 'purchase_date' : ['min', 'max']})\n", " .reset_index()\n", " )\n", " \n", " tickets_kpi.columns = tickets_kpi.columns.map('_'.join)\n", " \n", " tickets_kpi.rename(columns = {'ticket_id_count' : 'nb_tickets', \n", " 'purchase_id_nunique' : 'nb_purchases',\n", " 'amount_sum' : 'total_amount',\n", " 'supplier_name_nunique' : 'nb_suppliers', \n", " 'customer_id_' : 'customer_id',\n", " 'event_type_id_' : 'event_type_id'}, inplace = True)\n", " \n", " tickets_kpi['time_between_purchase'] = tickets_kpi['purchase_date_max'] - tickets_kpi['purchase_date_min']\n", " tickets_kpi['time_between_purchase'] = tickets_kpi['time_between_purchase'] / np.timedelta64(1, 'D') # En nombre de jours\n", "\n", " # Convertir date et en chiffre\n", " max_date = tickets_kpi['purchase_date_max'].max()\n", " tickets_kpi['purchase_date_max'] = (max_date - tickets_kpi['purchase_date_max']) / np.timedelta64(1, 'D')\n", " tickets_kpi['purchase_date_min'] = (max_date - tickets_kpi['purchase_date_min']) / np.timedelta64(1, 'D')\n", "\n", " \n", " tickets_kpi = tickets_kpi.merge(prop_vente_internet, on = ['customer_id', 'event_type_id'], how = 'left')\n", " tickets_kpi['nb_tickets_internet'] = tickets_kpi['nb_tickets_internet'].fillna(0)\n", "\n", " \n", " \n", " return tickets_kpi\n", " " ] }, { "cell_type": "code", "execution_count": 35, "id": "5882234a-1ed5-4269-87a6-0d75613476e3", "metadata": {}, "outputs": [], "source": [ "df1_tickets_kpi = tickets_kpi_function(tickets_information = df1_products_purchased_reduced)" ] }, { "cell_type": "code", "execution_count": 36, "id": "5f2046cf-ffde-4521-91e7-b727b8bc17f5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idevent_type_idnb_ticketsnb_purchasestotal_amountnb_suppliersvente_internet_maxpurchase_date_minpurchase_date_maxtime_between_purchasenb_tickets_internet
0123842261947902686540.5713262.1908684.1793063258.01156251.0
1144532422289453248965.5613698.1982295.2218403692.9763892988.0
2152017501071101459190.0613803.3697920.1463313803.2234619.0
3162173561117861435871.5512502.7155091408.7155321093.9999775.0
4221431430.0102041.2745491340.308160700.9663890.0
\n", "
" ], "text/plain": [ " customer_id event_type_id nb_tickets nb_purchases total_amount \\\n", "0 1 2 384226 194790 2686540.5 \n", "1 1 4 453242 228945 3248965.5 \n", "2 1 5 201750 107110 1459190.0 \n", "3 1 6 217356 111786 1435871.5 \n", "4 2 2 143 143 0.0 \n", "\n", " nb_suppliers vente_internet_max purchase_date_min purchase_date_max \\\n", "0 7 1 3262.190868 4.179306 \n", "1 6 1 3698.198229 5.221840 \n", "2 6 1 3803.369792 0.146331 \n", "3 5 1 2502.715509 1408.715532 \n", "4 1 0 2041.274549 1340.308160 \n", "\n", " time_between_purchase nb_tickets_internet \n", "0 3258.011562 51.0 \n", "1 3692.976389 2988.0 \n", "2 3803.223461 9.0 \n", "3 1093.999977 5.0 \n", "4 700.966389 0.0 " ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_tickets_kpi.head()" ] }, { "cell_type": "code", "execution_count": 37, "id": "a4a2311d-8a72-4030-afd5-218004d5d2a5", "metadata": {}, "outputs": [], "source": [ "# Exportation vers 'projet-bdc2324-team1'\n", "BUCKET_OUT = \"projet-bdc2324-team1\"\n", "FILE_KEY_OUT_S3 = \"0_Temp/Company 1 - Purchasing behaviour.csv\"\n", "FILE_PATH_OUT_S3 = BUCKET_OUT + \"/\" + FILE_KEY_OUT_S3\n", "\n", "with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:\n", " df1_tickets_kpi.to_csv(file_out, index = False)" ] }, { "cell_type": "markdown", "id": "f1d7f7ba-361b-467d-b375-b09c149185f7", "metadata": {}, "source": [ "## Alexis' work" ] }, { "cell_type": "code", "execution_count": 39, "id": "273857e0-7112-4294-8ba6-3c39c5cbc13a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idevent_type_idnb_ticketsnb_purchasestotal_amountnb_suppliersvente_internet_maxpurchase_date_minpurchase_date_maxtime_between_purchasenb_tickets_internet
0123842261947902686540.5713262.1908684.1793063258.01156251.0
1144532422289453248965.5613698.1982295.2218403692.9763892988.0
2152017501071101459190.0613803.3697920.1463313803.2234619.0
3162173561117861435871.5512502.7155091408.7155321093.9999775.0
4221431430.0102041.2745491340.308160700.9663890.0
\n", "
" ], "text/plain": [ " customer_id event_type_id nb_tickets nb_purchases total_amount \\\n", "0 1 2 384226 194790 2686540.5 \n", "1 1 4 453242 228945 3248965.5 \n", "2 1 5 201750 107110 1459190.0 \n", "3 1 6 217356 111786 1435871.5 \n", "4 2 2 143 143 0.0 \n", "\n", " nb_suppliers vente_internet_max purchase_date_min purchase_date_max \\\n", "0 7 1 3262.190868 4.179306 \n", "1 6 1 3698.198229 5.221840 \n", "2 6 1 3803.369792 0.146331 \n", "3 5 1 2502.715509 1408.715532 \n", "4 1 0 2041.274549 1340.308160 \n", "\n", " time_between_purchase nb_tickets_internet \n", "0 3258.011562 51.0 \n", "1 3692.976389 2988.0 \n", "2 3803.223461 9.0 \n", "3 1093.999977 5.0 \n", "4 700.966389 0.0 " ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_tickets_kpi.head()" ] }, { "cell_type": "code", "execution_count": 40, "id": "449731f3-340f-4648-8210-4622c7dbc174", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
event_type_idname_event_typesavg_amount
02offre muséale individuel6.150659
14spectacle vivant7.762474
25offre muséale groupe4.452618
36formule adhésion6.439463
\n", "
" ], "text/plain": [ " event_type_id name_event_types avg_amount\n", "0 2 offre muséale individuel 6.150659\n", "1 4 spectacle vivant 7.762474\n", "2 5 offre muséale groupe 4.452618\n", "3 6 formule adhésion 6.439463" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "avg_amount = (df1_products_purchased_reduced.groupby([\"event_type_id\", 'name_event_types'])\n", " .agg({\"amount\" : \"mean\"}).reset_index()\n", " .rename(columns = {'amount' : 'avg_amount'}))\n", "\n", "avg_amount" ] }, { "cell_type": "code", "execution_count": 41, "id": "b54bd9e8-3cad-453b-8e58-bf6d047912eb", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idevent_type_idnb_ticketsnb_purchasestotal_amountnb_suppliersvente_internet_maxpurchase_date_minpurchase_date_maxtime_between_purchasenb_tickets_internetname_event_typesavg_amount
0123842261947902686540.5713262.1908684.1793063258.01156251.0offre muséale individuel6.150659
1144532422289453248965.5613698.1982295.2218403692.9763892988.0spectacle vivant7.762474
2152017501071101459190.0613803.3697920.1463313803.2234619.0offre muséale groupe4.452618
3162173561117861435871.5512502.7155091408.7155321093.9999775.0formule adhésion6.439463
4221431430.0102041.2745491340.308160700.9663890.0offre muséale individuel6.150659
\n", "
" ], "text/plain": [ " customer_id event_type_id nb_tickets nb_purchases total_amount \\\n", "0 1 2 384226 194790 2686540.5 \n", "1 1 4 453242 228945 3248965.5 \n", "2 1 5 201750 107110 1459190.0 \n", "3 1 6 217356 111786 1435871.5 \n", "4 2 2 143 143 0.0 \n", "\n", " nb_suppliers vente_internet_max purchase_date_min purchase_date_max \\\n", "0 7 1 3262.190868 4.179306 \n", "1 6 1 3698.198229 5.221840 \n", "2 6 1 3803.369792 0.146331 \n", "3 5 1 2502.715509 1408.715532 \n", "4 1 0 2041.274549 1340.308160 \n", "\n", " time_between_purchase nb_tickets_internet name_event_types \\\n", "0 3258.011562 51.0 offre muséale individuel \n", "1 3692.976389 2988.0 spectacle vivant \n", "2 3803.223461 9.0 offre muséale groupe \n", "3 1093.999977 5.0 formule adhésion \n", "4 700.966389 0.0 offre muséale individuel \n", "\n", " avg_amount \n", "0 6.150659 \n", "1 7.762474 \n", "2 4.452618 \n", "3 6.439463 \n", "4 6.150659 " ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_tickets_kpi = df1_tickets_kpi.merge(avg_amount, how='left', on= 'event_type_id')\n", "df1_tickets_kpi.head()" ] }, { "cell_type": "code", "execution_count": 42, "id": "2d6afe74-2517-478b-a99c-da9c7bd2edd4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idbirthdatestreet_idis_partnergenderis_email_trueopt_instructure_idprofessionlanguage...fidelityaverage_purchase_delayaverage_price_basketaverage_ticket_baskettotal_pricepurchase_countfirst_buying_datecountryagetenant_id
012751NaN2False1TrueTrueNaNNaNNaN...0NaNNaNNaNNaN0NaTfrNaN1311
112825NaN2False2TrueTrueNaNNaNNaN...0NaNNaNNaNNaN0NaTfrNaN1311
211261NaN2False1TrueTrueNaNNaNNaN...0NaNNaNNaNNaN0NaTfrNaN1311
313071NaN2False2TrueTrueNaNNaNNaN...0NaNNaNNaNNaN0NaTfrNaN1311
4653061NaN10False2TrueFalseNaNNaNNaN...0NaNNaNNaNNaN0NaTNaNNaN1311
..................................................................
151861295252NaN10False2TrueFalseNaNNaNNaN...0NaNNaNNaNNaN0NaTNaNNaN1311
151862295271NaN10False2TrueFalseNaNNaNNaN...0NaNNaNNaNNaN0NaTNaNNaN1311
151863295275NaN10False2TrueFalseNaNNaNNaN...0NaNNaNNaNNaN0NaTNaNNaN1311
151864295366NaN2False2TrueFalseNaNNaNNaN...13.033.03.033.012021-05-26 17:20:37+00:00frNaN1311
151865295368NaN2False2TrueFalseNaNNaNNaN...16.022.02.022.012021-05-26 17:35:38+00:00frNaN1311
\n", "

151866 rows × 25 columns

\n", "
" ], "text/plain": [ " customer_id birthdate street_id is_partner gender is_email_true \\\n", "0 12751 NaN 2 False 1 True \n", "1 12825 NaN 2 False 2 True \n", "2 11261 NaN 2 False 1 True \n", "3 13071 NaN 2 False 2 True \n", "4 653061 NaN 10 False 2 True \n", "... ... ... ... ... ... ... \n", "151861 295252 NaN 10 False 2 True \n", "151862 295271 NaN 10 False 2 True \n", "151863 295275 NaN 10 False 2 True \n", "151864 295366 NaN 2 False 2 True \n", "151865 295368 NaN 2 False 2 True \n", "\n", " opt_in structure_id profession language ... fidelity \\\n", "0 True NaN NaN NaN ... 0 \n", "1 True NaN NaN NaN ... 0 \n", "2 True NaN NaN NaN ... 0 \n", "3 True NaN NaN NaN ... 0 \n", "4 False NaN NaN NaN ... 0 \n", "... ... ... ... ... ... ... \n", "151861 False NaN NaN NaN ... 0 \n", "151862 False NaN NaN NaN ... 0 \n", "151863 False NaN NaN NaN ... 0 \n", "151864 False NaN NaN NaN ... 1 \n", "151865 False NaN NaN NaN ... 1 \n", "\n", " average_purchase_delay average_price_basket average_ticket_basket \\\n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "... ... ... ... \n", "151861 NaN NaN NaN \n", "151862 NaN NaN NaN \n", "151863 NaN NaN NaN \n", "151864 3.0 33.0 3.0 \n", "151865 6.0 22.0 2.0 \n", "\n", " total_price purchase_count first_buying_date country age \\\n", "0 NaN 0 NaT fr NaN \n", "1 NaN 0 NaT fr NaN \n", "2 NaN 0 NaT fr NaN \n", "3 NaN 0 NaT fr NaN \n", "4 NaN 0 NaT NaN NaN \n", "... ... ... ... ... ... \n", "151861 NaN 0 NaT NaN NaN \n", "151862 NaN 0 NaT NaN NaN \n", "151863 NaN 0 NaT NaN NaN \n", "151864 33.0 1 2021-05-26 17:20:37+00:00 fr NaN \n", "151865 22.0 1 2021-05-26 17:35:38+00:00 fr NaN \n", "\n", " tenant_id \n", "0 1311 \n", "1 1311 \n", "2 1311 \n", "3 1311 \n", "4 1311 \n", "... ... \n", "151861 1311 \n", "151862 1311 \n", "151863 1311 \n", "151864 1311 \n", "151865 1311 \n", "\n", "[151866 rows x 25 columns]" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_customerplus_clean" ] }, { "cell_type": "code", "execution_count": 43, "id": "83230baa-9a8a-4614-b629-e99c2505c696", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idbirthdatestreet_idis_partnergenderis_email_trueopt_instructure_idprofessionlanguage...nb_purchasestotal_amountnb_suppliersvente_internet_maxpurchase_date_minpurchase_date_maxtime_between_purchasenb_tickets_internetname_event_typesavg_amount
598971NaN2False2TrueFalseNaNNaNNaN...194790.02686540.57.01.03262.1908684.1793063258.01156251.0offre muséale individuel6.150659
599001NaN2False2TrueFalseNaNNaNNaN...111786.01435871.55.01.02502.7155091408.7155321093.9999775.0formule adhésion6.439463
598981NaN2False2TrueFalseNaNNaNNaN...228945.03248965.56.01.03698.1982295.2218403692.9763892988.0spectacle vivant7.762474
598991NaN2False2TrueFalseNaNNaNNaN...107110.01459190.06.01.03803.3697920.1463313803.2234619.0offre muséale groupe4.452618
1346952NaN2False1TrueTrueNaNNaNNaN...164.00.01.00.01705.2611921456.333715248.9274770.0formule adhésion6.439463
\n", "

5 rows × 37 columns

\n", "
" ], "text/plain": [ " customer_id birthdate street_id is_partner gender is_email_true \\\n", "59897 1 NaN 2 False 2 True \n", "59900 1 NaN 2 False 2 True \n", "59898 1 NaN 2 False 2 True \n", "59899 1 NaN 2 False 2 True \n", "134695 2 NaN 2 False 1 True \n", "\n", " opt_in structure_id profession language ... nb_purchases \\\n", "59897 False NaN NaN NaN ... 194790.0 \n", "59900 False NaN NaN NaN ... 111786.0 \n", "59898 False NaN NaN NaN ... 228945.0 \n", "59899 False NaN NaN NaN ... 107110.0 \n", "134695 True NaN NaN NaN ... 164.0 \n", "\n", " total_amount nb_suppliers vente_internet_max purchase_date_min \\\n", "59897 2686540.5 7.0 1.0 3262.190868 \n", "59900 1435871.5 5.0 1.0 2502.715509 \n", "59898 3248965.5 6.0 1.0 3698.198229 \n", "59899 1459190.0 6.0 1.0 3803.369792 \n", "134695 0.0 1.0 0.0 1705.261192 \n", "\n", " purchase_date_max time_between_purchase nb_tickets_internet \\\n", "59897 4.179306 3258.011562 51.0 \n", "59900 1408.715532 1093.999977 5.0 \n", "59898 5.221840 3692.976389 2988.0 \n", "59899 0.146331 3803.223461 9.0 \n", "134695 1456.333715 248.927477 0.0 \n", "\n", " name_event_types avg_amount \n", "59897 offre muséale individuel 6.150659 \n", "59900 formule adhésion 6.439463 \n", "59898 spectacle vivant 7.762474 \n", "59899 offre muséale groupe 4.452618 \n", "134695 formule adhésion 6.439463 \n", "\n", "[5 rows x 37 columns]" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## Add customer information\n", "df1_customer = (df1_customerplus_clean.merge(df1_tickets_kpi, how = \"left\", on='customer_id')\n", " .sort_values(by='customer_id', ascending=True))\n", "df1_customer.head()" ] }, { "cell_type": "code", "execution_count": 44, "id": "433921de-03ad-4024-9462-ecd267db1756", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idbirthdatestreet_idis_partnergenderis_email_trueopt_instructure_idprofessionlanguage...vente_internet_maxpurchase_date_minpurchase_date_maxtime_between_purchasenb_tickets_internetname_event_typesavg_amountnb_campaignsnb_campaigns_openedtime_to_open
01NaN2False2TrueFalseNaNNaNNaN...1.03262.1908684.1793063258.01156251.0offre muséale individuel6.150659NaNNaNNaT
11NaN2False2TrueFalseNaNNaNNaN...1.02502.7155091408.7155321093.9999775.0formule adhésion6.439463NaNNaNNaT
21NaN2False2TrueFalseNaNNaNNaN...1.03698.1982295.2218403692.9763892988.0spectacle vivant7.762474NaNNaNNaT
31NaN2False2TrueFalseNaNNaNNaN...1.03803.3697920.1463313803.2234619.0offre muséale groupe4.452618NaNNaNNaT
42NaN2False1TrueTrueNaNNaNNaN...0.01705.2611921456.333715248.9274770.0formule adhésion6.4394634.00.0NaT
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " customer_id birthdate street_id is_partner gender is_email_true \\\n", "0 1 NaN 2 False 2 True \n", "1 1 NaN 2 False 2 True \n", "2 1 NaN 2 False 2 True \n", "3 1 NaN 2 False 2 True \n", "4 2 NaN 2 False 1 True \n", "\n", " opt_in structure_id profession language ... vente_internet_max \\\n", "0 False NaN NaN NaN ... 1.0 \n", "1 False NaN NaN NaN ... 1.0 \n", "2 False NaN NaN NaN ... 1.0 \n", "3 False NaN NaN NaN ... 1.0 \n", "4 True NaN NaN NaN ... 0.0 \n", "\n", " purchase_date_min purchase_date_max time_between_purchase \\\n", "0 3262.190868 4.179306 3258.011562 \n", "1 2502.715509 1408.715532 1093.999977 \n", "2 3698.198229 5.221840 3692.976389 \n", "3 3803.369792 0.146331 3803.223461 \n", "4 1705.261192 1456.333715 248.927477 \n", "\n", " nb_tickets_internet name_event_types avg_amount nb_campaigns \\\n", "0 51.0 offre muséale individuel 6.150659 NaN \n", "1 5.0 formule adhésion 6.439463 NaN \n", "2 2988.0 spectacle vivant 7.762474 NaN \n", "3 9.0 offre muséale groupe 4.452618 NaN \n", "4 0.0 formule adhésion 6.439463 4.0 \n", "\n", " nb_campaigns_opened time_to_open \n", "0 NaN NaT \n", "1 NaN NaT \n", "2 NaN NaT \n", "3 NaN NaT \n", "4 0.0 NaT \n", "\n", "[5 rows x 40 columns]" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Add campaigns information\n", "\n", "df1_customer = df1_customer.merge(df1_campaigns_kpi, how='left', on='customer_id')\n", "df1_customer.head()" ] }, { "cell_type": "code", "execution_count": 45, "id": "25e54131-6835-4e94-86d3-1a78520ed7bc", "metadata": {}, "outputs": [], "source": [ "## Exportation\n", "\n", "# Exportation vers 'projet-bdc2324-team1'\n", "BUCKET_OUT = \"projet-bdc2324-team1\"\n", "FILE_KEY_OUT_S3 = \"0_Temp/Company 1 - customer_event.csv\"\n", "FILE_PATH_OUT_S3 = BUCKET_OUT + \"/\" + FILE_KEY_OUT_S3\n", "\n", "with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:\n", " df1_customer.to_csv(file_out, index = False)" ] }, { "cell_type": "markdown", "id": "edae177c-1247-454d-b3d1-08fea37001f7", "metadata": {}, "source": [ "## End of Alexis' work" ] }, { "cell_type": "code", "execution_count": 46, "id": "8710611c-7eb8-45ca-bdcc-009f4081f9e2", "metadata": {}, "outputs": [], "source": [ "# Fusion avec KPI campaigns liés au customer\n", "#df1_customer = pd.merge(df1_customerplus_clean, df1_campaigns_kpi, on = 'customer_id', how = 'left')\n", "#df1_customer.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "a89fad43-ee68-4081-9384-3e9f08ec6a59", "metadata": {}, "outputs": [], "source": [ "df1_customer_product = pd.merge(df1_customer, nb_tickets, on = 'customer_id', how = 'left')\n", "print(\"shape : \", df1_customer_product.shape)\n", "df1_customer_product.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "a19fec00-4ece-400c-937c-ce5cd8daccfd", "metadata": {}, "outputs": [], "source": [ "df1_customer_product.to_csv(\"customer_product.csv\", index = False)" ] }, { "cell_type": "markdown", "id": "7c3211a5-a851-43bc-a1f0-b39d51857fb7", "metadata": {}, "source": [ "# Fusion des bases locales" ] }, { "cell_type": "code", "execution_count": 63, "id": "46de1912-4a66-46e5-8b9e-7768b2d2723b", "metadata": {}, "outputs": [], "source": [ "# Fusion avec KPI liés au customer\n", "df1_customer = pd.merge(df1_customerplus_clean, df1_campaigns_kpi, on = 'customer_id', how = 'left')\n", "\n", "# Fill NaN values\n", "df1_customer[['nb_campaigns', 'nb_campaigns_opened']] = df1_customer[['nb_campaigns', 'nb_campaigns_opened']].fillna(0)" ] }, { "cell_type": "code", "execution_count": 64, "id": "d53825e4-6453-45bc-94f2-7b2504ec4afb", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idbirthdatestreet_idis_partnergenderis_email_trueopt_instructure_idprofessionlanguage...average_ticket_baskettotal_pricepurchase_countfirst_buying_datecountryagetenant_idnb_campaignsnb_campaigns_openedtime_to_open
012751NaN2False1TrueTrueNaNNaNNaN...NaNNaN0NaTfrNaN13110.00.0NaT
112825NaN2False2TrueTrueNaNNaNNaN...NaNNaN0NaTfrNaN13110.00.0NaT
211261NaN2False1TrueTrueNaNNaNNaN...NaNNaN0NaTfrNaN13110.00.0NaT
313071NaN2False2TrueTrueNaNNaNNaN...NaNNaN0NaTfrNaN13110.00.0NaT
4653061NaN10False2TrueFalseNaNNaNNaN...NaNNaN0NaTNaNNaN131180.02.00 days 19:53:02.500000
\n", "

5 rows × 28 columns

\n", "
" ], "text/plain": [ " customer_id birthdate street_id is_partner gender is_email_true \\\n", "0 12751 NaN 2 False 1 True \n", "1 12825 NaN 2 False 2 True \n", "2 11261 NaN 2 False 1 True \n", "3 13071 NaN 2 False 2 True \n", "4 653061 NaN 10 False 2 True \n", "\n", " opt_in structure_id profession language ... average_ticket_basket \\\n", "0 True NaN NaN NaN ... NaN \n", "1 True NaN NaN NaN ... NaN \n", "2 True NaN NaN NaN ... NaN \n", "3 True NaN NaN NaN ... NaN \n", "4 False NaN NaN NaN ... NaN \n", "\n", " total_price purchase_count first_buying_date country age tenant_id \\\n", "0 NaN 0 NaT fr NaN 1311 \n", "1 NaN 0 NaT fr NaN 1311 \n", "2 NaN 0 NaT fr NaN 1311 \n", "3 NaN 0 NaT fr NaN 1311 \n", "4 NaN 0 NaT NaN NaN 1311 \n", "\n", " nb_campaigns nb_campaigns_opened time_to_open \n", "0 0.0 0.0 NaT \n", "1 0.0 0.0 NaT \n", "2 0.0 0.0 NaT \n", "3 0.0 0.0 NaT \n", "4 80.0 2.0 0 days 19:53:02.500000 \n", "\n", "[5 rows x 28 columns]" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_customer.head()" ] }, { "cell_type": "code", "execution_count": 67, "id": "1e42a790-b215-4107-a969-85005da06ebd", "metadata": {}, "outputs": [], "source": [ "# Fusion avec KPI liés au comportement d'achat\n", "df1_customer_product = pd.merge(df1_tickets_kpi, df1_customer, on = 'customer_id', how = 'outer')\n", "\n", "# Fill NaN values\n", "df1_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']] = df1_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']].fillna(0)" ] }, { "cell_type": "code", "execution_count": 66, "id": "d950f24d-a5d1-4f1e-aeaa-ca826470365f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['customer_id', 'event_type_id', 'nb_tickets', 'nb_purchases',\n", " 'total_amount', 'nb_suppliers', 'vente_internet_max',\n", " 'purchase_date_min', 'purchase_date_max', 'time_between_purchase',\n", " 'nb_tickets_internet', 'name_event_types', 'avg_amount', 'birthdate',\n", " 'street_id', 'is_partner', 'gender', 'is_email_true', 'opt_in',\n", " 'structure_id', 'profession', 'language', 'mcp_contact_id',\n", " 'last_buying_date', 'max_price', 'ticket_sum', 'average_price',\n", " 'fidelity', 'average_purchase_delay', 'average_price_basket',\n", " 'average_ticket_basket', 'total_price', 'purchase_count',\n", " 'first_buying_date', 'country', 'age', 'tenant_id', 'nb_campaigns',\n", " 'nb_campaigns_opened', 'time_to_open'],\n", " dtype='object')" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1_customer_product" ] }, { "cell_type": "code", "execution_count": 68, "id": "ebf6d843-dcc0-4e83-b063-94806c0bac17", "metadata": {}, "outputs": [], "source": [ "## Exportation\n", "\n", "# Exportation vers 'projet-bdc2324-team1'\n", "BUCKET_OUT = \"projet-bdc2324-team1\"\n", "FILE_KEY_OUT_S3 = \"1_Output/Company 1 - Segmentation base.csv\"\n", "FILE_PATH_OUT_S3 = BUCKET_OUT + \"/\" + FILE_KEY_OUT_S3\n", "\n", "with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:\n", " df1_customer_product.to_csv(file_out, index = False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 5 }