# Business Data Challenge - Team 1 import pandas as pd import numpy as np import os import s3fs import re import warnings # Create filesystem object S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"] fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL}) # Import cleaning and merge functions exec(open('0_Cleaning_and_merge_functions.py').read()) # Output folder BUCKET_OUT = "projet-bdc2324-team1" # Ignore warning warnings.filterwarnings('ignore') def export_dataset(df, output_name): print('Exportation of temporary dataset :', output_name) FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + output_name with fs.open(FILE_PATH_OUT_S3, 'w') as file_out: df.to_csv(file_out, index = False) ## 1 - Cleaning of the datasets # Cleaning customerplus df1_customerplus_clean = preprocessing_customerplus(directory_path = "1") ## Exportation export_dataset(df = df1_customerplus_clean, output_name = "0_Input/Company_1/customerplus_cleaned.csv") # Cleaning target area df1_target_information = preprocessing_target_area(directory_path = "1") ## Exportation export_dataset(df = df1_campaigns_information, output_name = "0_Input/Company_1/Campaigns dataset clean.csv") # Cleaning campaign area df1_campaigns_information = preprocessing_campaigns_area(directory_path = "1") ## Exportation export_dataset(df = df1_campaigns_information, output_name = "0_Input/Company_1/Campaigns dataset clean.csv") ## Exportation export_dataset(df = df1_campaigns_information, output_name = "0_Temp/Company 1 - Campaigns dataset clean.csv") # Cleaning product area df1_products_purchased_reduced = uniform_product_df(directory_path = "1") ## Exportation export_dataset(df = df1_campaigns_information, output_name = "0_Input/Company_1/Campaigns dataset clean.csv") #Exportation export_dataset(df = df1_products_purchased_reduced, output_name = "0_Temp/Company 1 - Purchases.csv")