{ "cells": [ { "cell_type": "markdown", "id": "c4205b5d-e052-4863-a46b-20e4757052a7", "metadata": {}, "source": [ "# Business Data Challenge - Team 1" ] }, { "cell_type": "code", "execution_count": 1, "id": "ae3af8e6-ced8-4994-8877-fa98d4297cc0", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "markdown", "id": "dd3184e7-54a1-4463-af42-5850d9517a41", "metadata": {}, "source": [ "Configuration de l'accès aux données" ] }, { "cell_type": "code", "execution_count": 3, "id": "b6035982-9ff4-4013-9792-2d50e10db3d1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['bdc2324-data/1/1campaign_stats.csv',\n", " 'bdc2324-data/1/1campaigns.csv',\n", " 'bdc2324-data/1/1categories.csv',\n", " 'bdc2324-data/1/1countries.csv',\n", " 'bdc2324-data/1/1currencies.csv',\n", " 'bdc2324-data/1/1customer_target_mappings.csv',\n", " 'bdc2324-data/1/1customersplus.csv',\n", " 'bdc2324-data/1/1event_types.csv',\n", " 'bdc2324-data/1/1events.csv',\n", " 'bdc2324-data/1/1facilities.csv',\n", " 'bdc2324-data/1/1link_stats.csv',\n", " 'bdc2324-data/1/1pricing_formulas.csv',\n", " 'bdc2324-data/1/1product_packs.csv',\n", " 'bdc2324-data/1/1products.csv',\n", " 'bdc2324-data/1/1products_groups.csv',\n", " 'bdc2324-data/1/1purchases.csv',\n", " 'bdc2324-data/1/1representation_category_capacities.csv',\n", " 'bdc2324-data/1/1representations.csv',\n", " 'bdc2324-data/1/1seasons.csv',\n", " 'bdc2324-data/1/1structure_tag_mappings.csv',\n", " 'bdc2324-data/1/1suppliers.csv',\n", " 'bdc2324-data/1/1tags.csv',\n", " 'bdc2324-data/1/1target_types.csv',\n", " 'bdc2324-data/1/1targets.csv',\n", " 'bdc2324-data/1/1tickets.csv',\n", " 'bdc2324-data/1/1type_of_categories.csv',\n", " 'bdc2324-data/1/1type_of_pricing_formulas.csv',\n", " 'bdc2324-data/1/1type_ofs.csv']" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "import s3fs\n", "# Create filesystem object\n", "S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n", "fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})\n", "\n", "BUCKET = \"bdc2324-data/1\"\n", "fs.ls(BUCKET)" ] }, { "cell_type": "code", "execution_count": 4, "id": "b86c935d-124f-453f-80dd-83ea6770d09c", "metadata": {}, "outputs": [], "source": [ "dic_base=['campaign_stats','campaigns','categories','countries','currencies','customer_target_mappings','customersplus','event_types','events','facilities','link_stats','pricing_formulas','product_packs','products','products_groups','purchases','representation_category_capacities','representations','seasons','structure_tag_mappings','suppliers','tags','target_types','targets','tickets','type_of_categories','type_of_pricing_formulas','type_ofs']" ] }, { "cell_type": "code", "execution_count": 10, "id": "f6d0b27c-0ecd-406b-b042-6c3802dd68fd", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_1054/1008972637.py:5: DtypeWarning: Columns (1) have mixed types. Specify dtype option on import or set low_memory=False.\n", " globals()[nom_base] = pd.read_csv(file_in, sep=\",\")\n" ] } ], "source": [ "dic_base=['campaign_stats','campaigns','categories','countries','currencies','customer_target_mappings','customersplus','event_types','events','facilities','link_stats','pricing_formulas','product_packs','products','products_groups','purchases','representation_category_capacities','representations','seasons','structure_tag_mappings','suppliers','tags','target_types','targets','tickets','type_of_categories','type_of_pricing_formulas','type_ofs']\n", "for nom_base in dic_base:\n", " FILE_PATH_S3_fanta = 'bdc2324-data/1/1' + nom_base + '.csv'\n", " with fs.open(FILE_PATH_S3_fanta, mode=\"rb\") as file_in:\n", " globals()[nom_base] = pd.read_csv(file_in, sep=\",\")" ] }, { "cell_type": "code", "execution_count": 11, "id": "2a6b5e22-3370-457f-83b7-dd1e13663229", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'bdc2324-data/1/1type_ofs.csv'" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "FILE_PATH_S3_fanta" ] }, { "cell_type": "markdown", "id": "bcc14f93-2289-44eb-816b-a51049b258df", "metadata": {}, "source": [ "## Detection des valeur manquantes" ] }, { "cell_type": "code", "execution_count": 12, "id": "7f8083ec-3d08-4c4e-8d26-a5a4948c1c02", "metadata": {}, "outputs": [], "source": [ "dic_prod_princing=['type_of_pricing_formulas','products_groups','pricing_formulas','product_packs','products']" ] }, { "cell_type": "code", "execution_count": 16, "id": "a6de36fa-3d35-4b20-97f2-3e24d54c7f99", "metadata": {}, "outputs": [], "source": [ "def verifier_donnees_manquantes(base):\n", " donnees_manquantes = base.isna().sum()\n", " print(\"Données manquantes pour la base :\")\n", " print(donnees_manquantes)" ] }, { "cell_type": "code", "execution_count": 17, "id": "1c261736-11fb-44f4-a4b1-830cae755a65", "metadata": {}, "outputs": [ { "ename": "AttributeError", "evalue": "'str' object has no attribute 'isna'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[17], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m nom_base \u001b[38;5;129;01min\u001b[39;00m dic_prod_princing:\n\u001b[0;32m----> 2\u001b[0m \u001b[43mverifier_donnees_manquantes\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnom_base\u001b[49m\u001b[43m)\u001b[49m\n", "Cell \u001b[0;32mIn[16], line 2\u001b[0m, in \u001b[0;36mverifier_donnees_manquantes\u001b[0;34m(base)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mverifier_donnees_manquantes\u001b[39m(base):\n\u001b[0;32m----> 2\u001b[0m donnees_manquantes \u001b[38;5;241m=\u001b[39m \u001b[43mbase\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43misna\u001b[49m()\u001b[38;5;241m.\u001b[39msum()\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDonnées manquantes pour la base :\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m(donnees_manquantes)\n", "\u001b[0;31mAttributeError\u001b[0m: 'str' object has no attribute 'isna'" ] } ], "source": [ "for nom_base in dic_prod_princing:\n", " verifier_donnees_manquantes(nom_base)" ] }, { "cell_type": "code", "execution_count": 14, "id": "e0c67c01-e837-4772-b070-d1be0d895a36", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "id 0\n", "type_of_id 0\n", "pricing_formula_id 0\n", "created_at 0\n", "updated_at 0\n", "identifier 0\n", "dtype: int64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type_of_pricing_formulas.isna().sum()" ] }, { "cell_type": "code", "execution_count": null, "id": "57298669-8d55-40d5-a5aa-4c5df984eec7", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 5 }