# Purpose of the script : Construction of training and test datasets for modelling by company # Input : KPI construction function and clean databases in the 0_Input folder # Output : Train and test datasets by compagnies # Packages import pandas as pd import numpy as np import os import s3fs import re import warnings from datetime import date, timedelta, datetime from sklearn.model_selection import train_test_split # Create filesystem object S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"] fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL}) # Import KPI construction functions exec(open('0_KPI_functions.py').read()) # Ignore warning warnings.filterwarnings('ignore') def dataset_construction(min_date, end_features_date, max_date, directory_path): # Import of cleaned and merged datasets df_customerplus_clean_0 = display_input_databases(directory_path, file_name = "customerplus_cleaned") df_campaigns_information = display_input_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at']) df_products_purchased_reduced = display_input_databases(directory_path, file_name = "products_purchased_reduced", datetime_col = ['purchase_date']) df_target_information = display_input_databases(directory_path, file_name = "target_information") # Dates in datetime format max_date = pd.to_datetime(max_date, utc = True, format = 'ISO8601') end_features_date = pd.to_datetime(end_features_date, utc = True, format = 'ISO8601') min_date = pd.to_datetime(min_date, utc = True, format = 'ISO8601') # Filter for database df_campaigns_information df_campaigns_information = df_campaigns_information[(df_campaigns_information['sent_at'] <= end_features_date) & (df_campaigns_information['sent_at'] >= min_date)] df_campaigns_information['opened_at'][df_campaigns_information['opened_at'] >= end_features_date] = np.datetime64('NaT') # Filter for database df_products_purchased_reduced df_products_purchased_features = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= end_features_date) & (df_products_purchased_reduced['purchase_date'] >= min_date)] print("Data filtering : SUCCESS") # Building and merging features # Campaigns features df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_information, max_date = end_features_date) # Purchasing behavior features df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_features) # Socio-demographic features df_customerplus_clean = customerplus_kpi_function(customerplus_clean = df_customerplus_clean_0) # Targets features df_targets_kpi = targets_KPI(df_target = df_target_information) print("KPIs construction : SUCCESS") # Merge - campaigns features df_customer = pd.merge(df_customerplus_clean, df_campaigns_kpi, on = 'customer_id', how = 'left') # Fill NaN values df_customer[['nb_campaigns', 'nb_campaigns_opened']] = df_customer[['nb_campaigns', 'nb_campaigns_opened']].fillna(0) # Merge - targets features df_customer = pd.merge(df_customer, df_targets_kpi, on = 'customer_id', how = 'left') # Fill NaN values df_customer[['nb_targets', 'target_jeune', 'target_optin', 'target_optout', 'target_scolaire', 'target_entreprise', 'target_famille', 'target_newsletter', 'target_abonne']] = df_customer[['nb_targets', 'target_jeune', 'target_optin', 'target_optout', 'target_scolaire', 'target_entreprise', 'target_famille', 'target_newsletter', 'target_abonne']].fillna(0) # We standardise the number of targets closely linked to the company's operations df_customer['nb_targets'] = (df_customer['nb_targets'] - (df_customer['nb_targets'].mean())) / (df_customer['nb_targets'].std()) # Merge - purchasing behavior features df_customer_product = pd.merge(df_customer, df_tickets_kpi, on = 'customer_id', how = 'outer') # Fill NaN values df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']] = df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']].fillna(0) max_interval = (end_features_date - min_date) / np.timedelta64(1, 'D') + 1 df_customer_product[['purchase_date_max', 'purchase_date_min']] = df_customer_product[['purchase_date_max', 'purchase_date_min']].fillna(max_interval) df_customer_product[['time_between_purchase']] = df_customer_product[['time_between_purchase']].fillna(-1) # Customers who have neither received an e-mail nor made a purchase during the feature estimation period are removed df_customer_product = df_customer_product[(df_customer_product['nb_purchases'] > 0) | (df_customer_product['nb_campaigns'] > 0)] print("Explanatory variable construction : SUCCESS") # 2. Construction of the explained variable df_products_purchased_to_predict = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= max_date) & (df_products_purchased_reduced['purchase_date'] > end_features_date)] # Construction of the dependant variable df_products_purchased_to_predict['y_has_purchased'] = 1 y = df_products_purchased_to_predict[['customer_id', 'y_has_purchased']].drop_duplicates() print("Explained variable construction : SUCCESS") # 3. Merge between explained and explanatory variables dataset = pd.merge(df_customer_product, y, on = ['customer_id'], how = 'left') # 0 if there is no purchase dataset[['y_has_purchased']] = dataset[['y_has_purchased']].fillna(0) # add id_company prefix to customer_id dataset['customer_id'] = directory_path + '_' + dataset['customer_id'].astype('str') return dataset ## Exportation # Sectors companies = {'musee' : ['1', '2', '3', '4'], # , '101' 'sport': ['5', '6', '7', '8', '9'], 'musique' : ['10', '11', '12', '13', '14']} # Choosed sector type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?') list_of_comp = companies[type_of_comp] # Export folder BUCKET_OUT = f'projet-bdc2324-team1/Generalization/{type_of_comp}' # Dates used for the construction of features and the dependant variable start_date = "2021-05-01" end_of_features = "2022-11-01" final_date = "2023-11-01" # Anonymous customer to be deleted from the datasets anonymous_customer = {'1' : '1_1', '2' : '2_12184', '3' : '3_1', '4' : '4_2', '101' : '101_1', '5' : '5_191835', '6' : '6_591412', '7' : '7_49632', '8' : '8_1942', '9' : '9_19683', '10' : '10_19521', '11' : '11_36', '12' : '12_1706757', '13' : '13_8422', '14' : '14_6354'} for company in list_of_comp: dataset = dataset_construction(min_date = start_date, end_features_date = end_of_features, max_date = final_date, directory_path = company) # Deletion of the anonymous customer dataset = dataset[dataset['customer_id'] != anonymous_customer[company]] # Split between train and test dataset_train, dataset_test = train_test_split(dataset, test_size=0.3, random_state=42) # Dataset Test # Export FILE_KEY_OUT_S3 = "dataset_test" + company + ".csv" FILE_PATH_OUT_S3 = BUCKET_OUT + "/Test_set/" + FILE_KEY_OUT_S3 with fs.open(FILE_PATH_OUT_S3, 'w') as file_out: dataset_test.to_csv(file_out, index = False) print("Export of dataset test : SUCCESS") # Dataset train # Export FILE_KEY_OUT_S3 = "dataset_train" + company + ".csv" FILE_PATH_OUT_S3 = BUCKET_OUT + "/Train_set/" + FILE_KEY_OUT_S3 with fs.open(FILE_PATH_OUT_S3, 'w') as file_out: dataset_train.to_csv(file_out, index = False) print("Export of dataset train : SUCCESS") print("End of dataset generation for ", type_of_comp," compagnies : SUCCESS")