336 lines
13 KiB
Python
336 lines
13 KiB
Python
# functions for segmentation and graphics associated
|
|
|
|
def load_model(type_of_activity, model):
|
|
"""
|
|
Loads from S3 storage the optimal parameters of the chosen ML model saved in a pickle file.
|
|
|
|
Args:
|
|
- type_of_activity (str)
|
|
- model (str)
|
|
|
|
Returns:
|
|
Model: machine learning model pre-trained with a scikit learn pipeline.
|
|
"""
|
|
|
|
BUCKET = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/standard/{type_of_activity}/{model}/"
|
|
filename = model + '.pkl'
|
|
file_path = BUCKET + filename
|
|
with fs.open(file_path, mode="rb") as f:
|
|
model_bytes = f.read()
|
|
|
|
model = pickle.loads(model_bytes)
|
|
return model
|
|
|
|
|
|
def load_test_file(type_of_activity):
|
|
"""
|
|
Load the test dataset from S3 storage for the type of activity specified.
|
|
|
|
Args:
|
|
- type_of_activity (str)
|
|
|
|
Returns:
|
|
DataFrame: Test dataset.
|
|
"""
|
|
|
|
file_path_test = f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_activity}/Test_set.csv"
|
|
with fs.open(file_path_test, mode="rb") as file_in:
|
|
dataset_test = pd.read_csv(file_in, sep=",")
|
|
return dataset_test
|
|
|
|
|
|
def save_file_s3_mp(File_name, type_of_activity):
|
|
"""
|
|
Save a matplotlib figure to S3 storage to the location assigned for the type of activity specified.
|
|
|
|
Args:
|
|
- File_name (str)
|
|
- type_of_activity (str)
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
image_buffer = io.BytesIO()
|
|
plt.savefig(image_buffer, format='png', dpi=110)
|
|
image_buffer.seek(0)
|
|
PATH = f"projet-bdc2324-team1/2_Output/2_2_Segmentation_and_Marketing_Personae/{type_of_activity}/"
|
|
FILE_PATH_OUT_S3 = PATH + File_name + type_of_activity + '.png'
|
|
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
|
|
s3_file.write(image_buffer.read())
|
|
plt.close()
|
|
|
|
def save_txt_file_s3(file_name, type_of_activity, content):
|
|
"""
|
|
Save a text file to S3 storage to the location assigned for the type of activity specified.
|
|
|
|
Args:
|
|
- file_name (str)
|
|
- type_of_activity (str)
|
|
- content (str)
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
FILE_PATH = f"projet-bdc2324-team1/2_Output/2_2_Segmentation_and_Marketing_Personae/{type_of_activity}/"
|
|
FILE_PATH_OUT_S3 = FILE_PATH + file_name + type_of_activity + '.txt'
|
|
with fs.open(FILE_PATH_OUT_S3, 'w') as s3_file:
|
|
s3_file.write(content)
|
|
|
|
def df_business_fig(df, segment, list_var) :
|
|
"""
|
|
Compute business key performance indicators (KPIs) based on segment-wise aggregation of variables.
|
|
|
|
Args:
|
|
- df (DataFrame): The DataFrame containing data.
|
|
- segment (str): The column name representing segments.
|
|
- list_var (list of str): The list of variable names to be aggregated.
|
|
|
|
Returns:
|
|
DataFrame: The DataFrame containing business KPIs.
|
|
"""
|
|
|
|
df_business_kpi = df.groupby(segment)[list_var].sum().reset_index()
|
|
df_business_kpi.insert(1, "size", df.groupby(segment).size().values)
|
|
all_var = ["size"] + list_var
|
|
df_business_kpi[all_var] = 100 * df_business_kpi[all_var] / df_business_kpi[all_var].sum()
|
|
|
|
return df_business_kpi
|
|
|
|
|
|
def hist_segment_business_KPIs(df, segment, size, nb_tickets, nb_purchases, total_amount, nb_campaigns, type_of_activity) :
|
|
"""
|
|
Plot a histogram stacking the relative weight of each segment regarding some key business indicators.
|
|
|
|
Args:
|
|
- df (DataFrame): The DataFrame containing pre aggregated data about some key business indicators
|
|
- segment (str): The column name representing segments.
|
|
- size (str): The column name representing the size.
|
|
- nb_tickets (str): The column name representing the number of tickets.
|
|
- nb_purchases (str): The column name representing the number of purchases.
|
|
- total_amount (str): The column name representing the total amount.
|
|
- nb_campaigns (str): The column name representing the number of campaigns.
|
|
- type_of_activity (str)
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
plt.figure()
|
|
|
|
df_plot = df[[segment, size, nb_tickets, nb_purchases, total_amount, nb_campaigns]]
|
|
|
|
x = ["number of\ncustomers", "number of\ntickets", "number of\npurchases", "total\namount",
|
|
"number of\ncampaigns"]
|
|
|
|
bottom = np.zeros(5)
|
|
|
|
# types of blue color
|
|
colors = plt.cm.Blues(np.linspace(0.1, 0.9, 4))
|
|
|
|
for i in range(4) :
|
|
height = list(df_plot.loc[i,size:].values)
|
|
plt.bar(x=x, height=height, label = str(df_plot[segment][i]), bottom=bottom, color=colors[i])
|
|
bottom+=height
|
|
|
|
# Ajust margins
|
|
plt.subplots_adjust(left = 0.125, right = 0.8, bottom = 0.1, top = 0.9)
|
|
|
|
plt.legend(title = "segment", loc = "upper right", bbox_to_anchor=(1.2, 1))
|
|
plt.ylabel("Fraction represented by the segment (%)")
|
|
plt.title(f"Relative weight of each segment regarding business KPIs\nfor {type_of_activity} companies", size=12)
|
|
# plt.show()
|
|
|
|
|
|
# def df_segment_mp(df) :
|
|
# df_mp = df.groupby("segment")[["gender_female", "gender_male", "gender_other", "country_fr"]].mean().reset_index()
|
|
# df_mp.insert(3, "share_known_gender", df_mp["gender_female"]+df_mp["gender_male"])
|
|
# df_mp.insert(4, "share_of_women", df_mp["gender_female"]/(df_mp["share_known_gender"]))
|
|
# return df_mp
|
|
|
|
|
|
# def df_segment_pb (df) :
|
|
# df_pb = df.groupby("segment")[["prop_purchases_internet", "taux_ouverture_mail", "opt_in"]].mean().reset_index()
|
|
# return df_pb
|
|
|
|
|
|
def radar_mp_plot(df, categories, index) :
|
|
"""
|
|
Plot a radar chart describing marketing personae of the segment associated to index for the given categories, for the type of activity specified.
|
|
|
|
Args:
|
|
- df (DataFrame): The DataFrame containing data about categories describing the marketing personae associated to each segment
|
|
- categories (list of str):
|
|
- index (int): The index (between 0 and 3) identifying the segment. Here, index = number of the segment - 1
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
categories = categories
|
|
|
|
# true values are used to print the true value in parenthesis
|
|
tvalues = list(df.loc[index,categories])
|
|
|
|
max_values = df[categories].max()
|
|
|
|
# values are true values / max among the 4 segments, allows to
|
|
# put values in relation with the values for other segments
|
|
# if the point has a maximal abscisse it means that value is maximal for the segment considered
|
|
# , event if not equal to 1
|
|
|
|
values = list(df.loc[index,categories]/max_values)
|
|
|
|
# values normalized are used to adjust the value around the circle
|
|
# for instance if the maximum of values is equal to 0.8, we want the point to be
|
|
# at 8/10th of the circle radius, not at the edge
|
|
values_normalized = [ max(values) * elt for elt in values]
|
|
|
|
# Nb of categories
|
|
num_categories = len(categories)
|
|
|
|
angles = np.linspace(0, 2 * np.pi, num_categories, endpoint=False).tolist()
|
|
|
|
# Initialize graphic
|
|
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
|
|
|
|
# we have to draw first a transparent line (alpha=0) of values to adjust the radius of the circle
|
|
# which is based on max(value)
|
|
# if we don't plot this transparent line, the radius of the circle will be too small
|
|
ax.plot(angles + angles[:1], values + values[:1], color='skyblue', alpha=0, linewidth=1.5)
|
|
ax.plot(angles + angles[:1], values_normalized + values_normalized[:1], color='black', alpha = 0.5, linewidth=1.2)
|
|
|
|
# fill the sector
|
|
ax.fill(angles, values_normalized, color='orange', alpha=0.4)
|
|
|
|
# labels
|
|
ax.set_yticklabels([])
|
|
ax.set_xticks(angles)
|
|
ticks = [categories[i].replace("_"," ") + f"\n({round(100 * tvalues[i],2)}%)" for i in range(len(categories))]
|
|
ax.set_xticklabels(ticks, color="black")
|
|
|
|
ax.spines['polar'].set_visible(False)
|
|
|
|
plt.title(f'Characteristics of the segment {index+1}\n')
|
|
|
|
# plt.show()
|
|
|
|
|
|
def radar_mp_plot_all(df, type_of_activity) :
|
|
"""
|
|
Plot exactly the same radar charts as radar_mp_plot, but for all segments.
|
|
|
|
Args:
|
|
- df (DataFrame)
|
|
- type_of_activity (str)
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
# table summarizing variables relative to marketing personae
|
|
df_mp = df.groupby("segment")[["gender_female", "gender_male", "gender_other", "age"]].mean().reset_index()
|
|
#df_mp.insert(3, "share_known_gender", df_mp["gender_female"]+df_mp["gender_male"])
|
|
df_mp.insert(4, "share_of_women", df_mp["gender_female"]/(df_mp["gender_female"]+df_mp["gender_male"]))
|
|
|
|
# table relative to purchasing behaviour
|
|
df_pb = df.groupby("segment")[["prop_purchases_internet", "taux_ouverture_mail", "opt_in"]].mean().reset_index()
|
|
|
|
# concatenation of tables to prepare the plot
|
|
df_used = pd.concat([df_pb, df_mp[[ 'share_of_women', 'age']]], axis=1)
|
|
|
|
# rename columns for the plot
|
|
df_used = df_used.rename(columns={'taux_ouverture_mail': 'mails_opened', 'prop_purchases_internet': 'purchases_internet'})
|
|
|
|
# visualization
|
|
nb_segments = df_used.shape[0]
|
|
categories = list(df_used.drop("segment", axis=1).columns)
|
|
|
|
var_not_perc = ["age"]
|
|
|
|
# Initialize graphic
|
|
fig, ax = plt.subplots(2,2, figsize=(20, 21), subplot_kw=dict(polar=True))
|
|
|
|
for index in range(nb_segments) :
|
|
row = index // 2 # Division entière pour obtenir le numéro de ligne
|
|
col = index % 2
|
|
|
|
# true values are used to print the true value in parenthesis
|
|
tvalues = list(df_used.loc[index,categories])
|
|
|
|
max_values = df_used[categories].max()
|
|
|
|
# values are true values / max among the 4 segments, allows to
|
|
# put values in relation with the values for other segments
|
|
# if the point has a maximal abscisse it means that value is maximal for the segment considered
|
|
# , event if not equal to 1
|
|
|
|
values = list(df_used.loc[index,categories]/max_values)
|
|
|
|
# values normalized are used to adjust the value around the circle
|
|
# for instance if the maximum of values is equal to 0.8, we want the point to be
|
|
# at 8/10th of the circle radius, not at the edge
|
|
values_normalized = [ max(values) * elt for elt in values]
|
|
|
|
# Nb of categories
|
|
num_categories = len(categories)
|
|
|
|
angles = np.linspace(0, 2 * np.pi, num_categories, endpoint=False).tolist()
|
|
|
|
# we have to draw first a transparent line (alpha=0) of values to adjust the radius of the circle
|
|
# which is based on max(value)
|
|
# if we don't plot this transparent line, the radius of the circle will be too small
|
|
ax[row, col].plot(angles + angles[:1], values + values[:1], color='skyblue', alpha=0, linewidth=1.5)
|
|
ax[row, col].plot(angles + angles[:1], values_normalized + values_normalized[:1], color='black', alpha = 0.5,
|
|
linewidth=1.2)
|
|
|
|
# fill the sector
|
|
ax[row, col].fill(angles, values_normalized, color='orange', alpha=0.4, label = index)
|
|
|
|
# labels
|
|
ax[row, col].set_yticklabels([])
|
|
ax[row, col].set_xticks(angles)
|
|
|
|
# define the ticks
|
|
values_printed = [str(round(tvalues[i],2)) if categories[i] in var_not_perc else f"{round(100 * tvalues[i],2)}%" for i in range(len(categories))]
|
|
ticks = [categories[i].replace("_"," ") + f"\n({values_printed[i]})" for i in range(len(categories))]
|
|
ax[row, col].set_xticklabels(ticks, color="black", size = 20)
|
|
|
|
ax[row, col].spines['polar'].set_visible(False)
|
|
|
|
ax[row, col].set_title(f'Segment {index+1}\n', size = 24)
|
|
|
|
fig.suptitle(f"Characteristics of marketing personae of {type_of_activity} companies", size=32)
|
|
|
|
plt.tight_layout()
|
|
# plt.show()
|
|
|
|
|
|
def known_sociodemo_caracteristics(df, type_of_activity) :
|
|
"""
|
|
Compute the share of non-NaN values for some sociodemographic caracteristics features and save the result in a latex table.
|
|
|
|
Args:
|
|
- df (DataFrame)
|
|
- type_of_activity (str)
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
table_share_known = df.groupby("segment")[["is_profession_known", "is_zipcode_known", "categorie_age_inconnue", "gender_other"]].mean().mul(100).reset_index()
|
|
table_share_known.columns = ['Segment', 'Share of Known Profession (%)', 'Share of Known Zipcode (%)', 'Share of Unknown Age (%)', 'Share of Unknown Gender (%)']
|
|
table_share_known= table_share_known.pivot_table(index=None, columns='Segment')
|
|
|
|
# Arrondir les valeurs du DataFrame à une décimale
|
|
table_share_known_rounded = table_share_known.round(1)
|
|
|
|
# Convertir le DataFrame en format LaTeX avec les valeurs arrondies et le symbole '%'
|
|
latex_table = tabulate(table_share_known_rounded, headers='keys', tablefmt='latex_raw', floatfmt=".1f")
|
|
latex_table = latex_table.replace('%', '\\%')
|
|
|
|
save_txt_file_s3("table_known_socio_demo_caracteristics", type_of_activity, latex_table)
|
|
|
|
|