BDC-team-1/0_Cleaning_and_merge_functions.py

261 lines
11 KiB
Python

# Cleaning and merge functions
# Cleaning function
def cleaning_date(df, column_name):
"""
Nettoie la colonne spécifiée du DataFrame en convertissant les valeurs en datetime avec le format ISO8601.
Parameters:
- df: DataFrame
Le DataFrame contenant la colonne à nettoyer.
- column_name: str
Le nom de la colonne à nettoyer.
Returns:
- DataFrame
Le DataFrame modifié avec la colonne nettoyée.
"""
df[column_name] = pd.to_datetime(df[column_name], utc = True, format = 'ISO8601')
return df
def preprocessing_customerplus(customerplus = None):
customerplus_copy = customerplus.copy()
# Passage en format date
cleaning_date(customerplus_copy, 'first_buying_date')
cleaning_date(customerplus_copy, 'last_visiting_date')
# Selection des variables
customerplus_copy.drop(['lastname', 'firstname', 'birthdate', 'profession', 'language', 'age', 'email', 'civility', 'note', 'created_at', 'updated_at', 'deleted_at', 'extra', 'reference', 'extra_field', 'identifier', 'need_reload', 'preferred_category', 'preferred_supplier', 'preferred_formula', 'zipcode', 'last_visiting_date'], axis = 1, inplace=True)
customerplus_copy.rename(columns = {'id' : 'customer_id'}, inplace = True)
return customerplus_copy
def preprocessing_tickets_area(tickets = None, purchases = None, suppliers = None, type_ofs = None):
# Base des tickets
tickets = tickets[['id', 'purchase_id', 'product_id', 'is_from_subscription', 'type_of', 'supplier_id']]
tickets.rename(columns = {'id' : 'ticket_id'}, inplace = True)
# Base des fournisseurs
suppliers = suppliers[['id', 'name']]
suppliers.rename(columns = {'name' : 'supplier_name'}, inplace = True)
suppliers['supplier_name'] = suppliers['supplier_name'].fillna('')
# Base des types de billets
type_ofs = type_ofs[['id', 'name', 'children']]
type_ofs.rename(columns = {'name' : 'type_of_ticket_name'}, inplace = True)
# Base des achats
# Nettoyage de la date d'achat
cleaning_date(purchases, 'purchase_date')
# Selection des variables
purchases = purchases[['id', 'purchase_date', 'customer_id']]
# Fusions
# Fusion avec fournisseurs
ticket_information = pd.merge(tickets, suppliers, left_on = 'supplier_id', right_on = 'id', how = 'inner')
ticket_information.drop(['supplier_id', 'id'], axis = 1, inplace=True)
# Fusion avec type de tickets
ticket_information = pd.merge(ticket_information, type_ofs, left_on = 'type_of', right_on = 'id', how = 'inner')
ticket_information.drop(['type_of', 'id'], axis = 1, inplace=True)
# Fusion avec achats
ticket_information = pd.merge(ticket_information, purchases, left_on = 'purchase_id', right_on = 'id', how = 'inner')
ticket_information.drop(['id'], axis = 1, inplace=True)
return ticket_information
def preprocessing_target_area(targets = None, target_types = None, customer_target_mappings = None):
# Target.csv cleaning
targets = targets[["id", "target_type_id", "name"]]
targets.rename(columns = {'id' : 'target_id' , 'name' : 'target_name'}, inplace = True)
# target_type cleaning
target_types = target_types[["id","is_import","name"]].add_prefix("target_type_")
#customer_target_mappings cleaning
customer_target_mappings = customer_target_mappings[["id", "customer_id", "target_id"]]
# Merge target et target_type
targets_full = pd.merge(targets, target_types, left_on='target_type_id', right_on='target_type_id', how='inner')
targets_full.drop(['target_type_id'], axis = 1, inplace=True)
# Merge
targets_full = pd.merge(customer_target_mappings, targets_full, left_on='target_id', right_on='target_id', how='inner')
targets_full.drop(['target_id'], axis = 1, inplace=True)
return targets_full
def preprocessing_campaigns_area(campaign_stats = None, campaigns = None):
# campaign_stats cleaning
campaign_stats = campaign_stats[["id", "campaign_id", "customer_id", "opened_at", "sent_at", "delivered_at"]]
cleaning_date(campaign_stats, 'opened_at')
cleaning_date(campaign_stats, 'sent_at')
cleaning_date(campaign_stats, 'delivered_at')
# campaigns cleaning
campaigns = campaigns[["id", "name", "service_id", "sent_at"]].add_prefix("campaign_")
cleaning_date(campaigns, 'campaign_sent_at')
# Merge
campaigns_full = pd.merge(campaign_stats, campaigns, on = "campaign_id", how = "left")
campaigns_full.drop(['campaign_id'], axis = 1, inplace=True)
return campaigns_full
def display_databases(file_name):
"""
This function returns the file from s3 storage
"""
file_path = BUCKET + "/" + directory_path + "/" + file_name
print("File path : ", file_path)
with fs.open(file_path, mode="rb") as file_in:
df = pd.read_csv(file_in, sep=",")
print("Shape : ", df.shape)
return df
def remove_horodates(df):
"""
this function remove horodate columns like created_at and updated_at
"""
df = df.drop(columns = ["created_at", "updated_at"])
return df
def order_columns_id(df):
"""
this function puts all id columns at the beginning in order to read the dataset easier
"""
substring = 'id'
id_columns = [col for col in df.columns if substring in col]
remaining_col = [col for col in df.columns if substring not in col]
new_order = id_columns + remaining_col
return df[new_order]
def process_df_2(df):
"""
This function organizes dataframe
"""
df = remove_horodates(df)
print("Number of columns : ", len(df.columns))
df = order_columns_id(df)
print("Columns : ", df.columns)
return df
def load_dataset(name):
"""
This function loads csv file
"""
df = display_databases(name)
df = process_df_2(df)
# drop na :
#df = df.dropna(axis=1, thresh=len(df))
# if identifier in table : delete it
if 'identifier' in df.columns:
df = df.drop(columns = 'identifier')
return df
def create_products_table():
# first merge products and categories
print("first merge products and categories")
products = load_dataset("1products.csv")
categories = load_dataset("1categories.csv")
# Drop useless columns
products = products.drop(columns = ['apply_price', 'extra_field', 'amount_consumption'])
categories = categories.drop(columns = ['extra_field', 'quota'])
#Merge
products_theme = products.merge(categories, how = 'left', left_on = 'category_id',
right_on = 'id', suffixes=('_products', '_categories'))
products_theme = products_theme.rename(columns = {"name" : "name_categories"})
# Second merge products_theme and type of categories
print("Second merge products_theme and type of categories")
type_of_categories = load_dataset("1type_of_categories.csv")
type_of_categories = type_of_categories.drop(columns = 'id')
products_theme = products_theme.merge(type_of_categories, how = 'left', left_on = 'category_id',
right_on = 'category_id' )
# Index cleaning
products_theme = products_theme.drop(columns = ['id_categories'])
products_theme = order_columns_id(products_theme)
return products_theme
def create_events_table():
# first merge events and seasons :
print("first merge events and seasons : ")
events = load_dataset("1events.csv")
seasons = load_dataset("1seasons.csv")
# Drop useless columns
events = events.drop(columns = ['manual_added', 'is_display'])
seasons = seasons.drop(columns = ['start_date_time'])
events_theme = events.merge(seasons, how = 'left', left_on = 'season_id', right_on = 'id', suffixes=('_events', '_seasons'))
# Secondly merge events_theme and event_types
print("Secondly merge events_theme and event_types : ")
event_types = load_dataset("1event_types.csv")
event_types = event_types.drop(columns = ['fidelity_delay'])
events_theme = events_theme.merge(event_types, how = 'left', left_on = 'event_type_id', right_on = 'id', suffixes=('_events', '_event_type'))
events_theme = events_theme.rename(columns = {"name" : "name_event_types"})
events_theme = events_theme.drop(columns = 'id')
# thirdly merge events_theme and facilities
print("thirdly merge events_theme and facilities : ")
facilities = load_dataset("1facilities.csv")
facilities = facilities.drop(columns = ['fixed_capacity'])
events_theme = events_theme.merge(facilities, how = 'left', left_on = 'facility_id', right_on = 'id', suffixes=('_events', '_facility'))
events_theme = events_theme.rename(columns = {"name" : "name_facilities", "id_events" : "event_id"})
events_theme = events_theme.drop(columns = 'id')
# Index cleaning
events_theme = events_theme.drop(columns = ['id_seasons'])
events_theme = order_columns_id(events_theme)
return events_theme
def create_representations_table():
representations = load_dataset("1representations.csv")
representations = representations.drop(columns = ['serial', 'open', 'satisfaction', 'is_display', 'expected_filling',
'max_filling', 'extra_field', 'start_date_time', 'end_date_time', 'name',
'representation_type_id'])
representations_capacity = load_dataset("1representation_category_capacities.csv")
representations_capacity = representations_capacity.drop(columns = ['expected_filling', 'max_filling'])
representations_theme = representations.merge(representations_capacity, how='left',
left_on='id', right_on='representation_id',
suffixes=('_representation', '_representation_cap'))
# index cleaning
representations_theme = representations_theme.drop(columns = ["id_representation"])
representations_theme = order_columns_id(representations_theme)
return representations_theme
def uniform_product_df():
"""
This function returns the uniform product dataset
"""
print("Products theme columns : ", products_theme.columns)
print("\n Representation theme columns : ", representation_theme.columns)
print("\n Events theme columns : ", events_theme.columns)
products_global = products_theme.merge(representation_theme, how='left',
on= ["representation_id", "category_id"])
products_global = products_global.merge(events_theme, how='left', on='event_id',
suffixes = ("_representation", "_event"))
products_global = order_columns_id(products_global)
# remove useless columns
products_global = products_global.drop(columns = ['type_of_id']) # 'name_events', 'name_seasons', 'name_categories'
return products_global