BDC-team-1/0_6_Segmentation.py
2024-03-20 13:07:33 +00:00

40 lines
1.3 KiB
Python

import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import pickle
import warnings
exec(open('utils_segmentation.py').read())
warnings.filterwarnings('ignore')
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# choose the type of companies for which you want to run the pipeline
type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
# load test set
dataset_test = load_test_file(type_of_activity)
# Load Model
model = load_model(type_of_activity, 'LogisticRegression_Benchmark')
# Processing
X_test = dataset_test[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max',
'time_between_purchase', 'nb_tickets_internet', 'is_email_true', 'opt_in', #'is_partner',
'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened']]
y_test = dataset_test[['y_has_purchased']]
# Prediction
y_pred_prob = model.predict_proba(X_test)[:, 1]
# Add probability to dataset_test
dataset_test['Probability_to_buy'] = y_pred_prob
print('probability added to dataset_test')
print(dataset_test.head())