BDC-team-1/Spectacle/Stat_desc.ipynb
2024-03-02 12:32:54 +00:00

656 lines
25 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "aa915888-cede-4eb0-8a26-7df573d29a3e",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"import s3fs\n",
"import warnings\n",
"from datetime import date, timedelta, datetime\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "17949e81-c30b-4fdf-9872-d7dc2b22ba9e",
"metadata": {},
"outputs": [],
"source": [
"# Import KPI construction functions\n",
"#exec(open('0_KPI_functions.py').read())\n",
"exec(open('../0_KPI_functions.py').read())\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9c1737a2-bad8-4266-8dec-452085d8cfe7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['projet-bdc2324-team1/0_Input/Company_10/campaigns_information.csv',\n",
" 'projet-bdc2324-team1/0_Input/Company_10/customerplus_cleaned.csv',\n",
" 'projet-bdc2324-team1/0_Input/Company_10/products_purchased_reduced.csv',\n",
" 'projet-bdc2324-team1/0_Input/Company_10/target_information.csv']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create filesystem object\n",
"S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n",
"fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})\n",
"\n",
"BUCKET = \"projet-bdc2324-team1/0_Input/Company_10\"\n",
"fs.ls(BUCKET)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a35dc2f6-2017-4b21-abd2-2c4c112c96b2",
"metadata": {},
"outputs": [],
"source": [
"dic_base=['campaigns_information','customerplus_cleaned','products_purchased_reduced','target_information']\n",
"for nom_base in dic_base:\n",
" FILE_PATH_S3_fanta = 'projet-bdc2324-team1/0_Input/Company_10/' + nom_base + '.csv'\n",
" with fs.open(FILE_PATH_S3_fanta, mode=\"rb\") as file_in:\n",
" globals()[nom_base] = pd.read_csv(file_in, sep=\",\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "40b705eb-fd18-436b-b150-61611a3c6a84",
"metadata": {},
"outputs": [],
"source": [
"\n",
"def display_databases(directory_path, file_name, datetime_col = None):\n",
" \"\"\"\n",
" This function returns the file from s3 storage \n",
" \"\"\"\n",
" file_path = \"projet-bdc2324-team1\" + \"/0_Input/Company_\" + directory_path + \"/\" + file_name + \".csv\"\n",
" print(\"File path : \", file_path)\n",
" with fs.open(file_path, mode=\"rb\") as file_in:\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser) \n",
" return df \n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "afd044b8-ac83-4a35-b959-700cae0b3b41",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_10/customerplus_cleaned.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_10/campaigns_information.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_10/products_purchased_reduced.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_10/target_information.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n",
"<string>:27: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_11/customerplus_cleaned.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_11/campaigns_information.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_11/products_purchased_reduced.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_11/target_information.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n",
"<string>:27: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_12/customerplus_cleaned.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_12/campaigns_information.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_12/products_purchased_reduced.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n",
"/tmp/ipykernel_16962/2987234667.py:8: DtypeWarning: Columns (4,8,10) have mixed types. Specify dtype option on import or set low_memory=False.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_12/target_information.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n",
"<string>:27: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_13/customerplus_cleaned.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_13/campaigns_information.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_13/products_purchased_reduced.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_13/target_information.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n",
"<string>:27: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_14/customerplus_cleaned.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_14/campaigns_information.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_14/products_purchased_reduced.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n",
"/tmp/ipykernel_16962/2987234667.py:8: DtypeWarning: Columns (8,9) have mixed types. Specify dtype option on import or set low_memory=False.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_14/target_information.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_16962/2987234667.py:8: FutureWarning: The argument 'date_parser' is deprecated and will be removed in a future version. Please use 'date_format' instead, or read your data in as 'object' dtype and then call 'to_datetime'.\n",
" df = pd.read_csv(file_in, sep=\",\", parse_dates = datetime_col, date_parser=custom_date_parser)\n",
"<string>:27: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n"
]
}
],
"source": [
"#creation de KPI aggreger par thématique\n",
"\n",
"nb_compagnie=['10','11','12','13','14']\n",
"for directory_path in nb_compagnie:\n",
" df_customerplus_clean_0 = display_databases(directory_path, file_name = \"customerplus_cleaned\")\n",
" df_campaigns_information = display_databases(directory_path, file_name = \"campaigns_information\", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])\n",
" df_products_purchased_reduced = display_databases(directory_path, file_name = \"products_purchased_reduced\", datetime_col = ['purchase_date'])\n",
" df_target_information = display_databases(directory_path, file_name = \"target_information\")\n",
" df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_information) \n",
" df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_reduced)\n",
" df_customerplus_clean = customerplus_kpi_function(customerplus_clean = df_customerplus_clean_0)\n",
"\n",
" \n",
"#creation de la colonne Number compagnie\n",
" df_tickets_kpi[\"Number_compagnie\"]=int(directory_path)\n",
" df_campaigns_kpi[\"Number_compagnie\"]=int(directory_path)\n",
" df_customerplus_clean[\"Number_compagnie\"]=int(directory_path)\n",
" df_target_information[\"Number_compagnie\"]=int(directory_path)\n",
"\n",
" if nb_compagnie.index(directory_path)>=1:\n",
" customerplus_clean_spectacle=pd.concat([customerplus_clean_spectacle,df_customerplus_clean],axis=0)\n",
" campaigns_information_spectacle=pd.concat([campaigns_information_spectacle,df_campaigns_kpi],axis=0)\n",
" products_purchased_reduced_spectacle=pd.concat([products_purchased_reduced_spectacle,df_tickets_kpi],axis=0)\n",
" target_information_spectacle=pd.concat([target_information_spectacle,df_target_information],axis=0)\n",
" else:\n",
" customerplus_clean_spectacle=df_customerplus_clean\n",
" campaigns_information_spectacle=df_campaigns_kpi\n",
" products_purchased_reduced_spectacle=df_tickets_kpi\n",
" target_information_spectacle=df_target_information"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "05b9a396-dcd7-4d3d-8b39-5ca48beba4b0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>customer_id</th>\n",
" <th>nb_campaigns</th>\n",
" <th>nb_campaigns_opened</th>\n",
" <th>time_to_open</th>\n",
" <th>Number_compagnie</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>29</td>\n",
" <td>4</td>\n",
" <td>0.0</td>\n",
" <td>NaT</td>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>37</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>NaT</td>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>39</td>\n",
" <td>4</td>\n",
" <td>1.0</td>\n",
" <td>0 days 05:16:38</td>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>41</td>\n",
" <td>4</td>\n",
" <td>1.0</td>\n",
" <td>0 days 01:12:29</td>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>44</td>\n",
" <td>4</td>\n",
" <td>0.0</td>\n",
" <td>NaT</td>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>254699</th>\n",
" <td>6837769</td>\n",
" <td>1</td>\n",
" <td>1.0</td>\n",
" <td>0 days 23:42:15</td>\n",
" <td>14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>254700</th>\n",
" <td>6875038</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>NaT</td>\n",
" <td>14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>254701</th>\n",
" <td>6875066</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>NaT</td>\n",
" <td>14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>254702</th>\n",
" <td>6875099</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>NaT</td>\n",
" <td>14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>254703</th>\n",
" <td>6875143</td>\n",
" <td>1</td>\n",
" <td>1.0</td>\n",
" <td>0 days 01:17:01</td>\n",
" <td>14</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>688953 rows × 5 columns</p>\n",
"</div>"
],
"text/plain": [
" customer_id nb_campaigns nb_campaigns_opened time_to_open \\\n",
"0 29 4 0.0 NaT \n",
"1 37 3 0.0 NaT \n",
"2 39 4 1.0 0 days 05:16:38 \n",
"3 41 4 1.0 0 days 01:12:29 \n",
"4 44 4 0.0 NaT \n",
"... ... ... ... ... \n",
"254699 6837769 1 1.0 0 days 23:42:15 \n",
"254700 6875038 1 0.0 NaT \n",
"254701 6875066 1 0.0 NaT \n",
"254702 6875099 1 0.0 NaT \n",
"254703 6875143 1 1.0 0 days 01:17:01 \n",
"\n",
" Number_compagnie \n",
"0 10 \n",
"1 10 \n",
"2 10 \n",
"3 10 \n",
"4 10 \n",
"... ... \n",
"254699 14 \n",
"254700 14 \n",
"254701 14 \n",
"254702 14 \n",
"254703 14 \n",
"\n",
"[688953 rows x 5 columns]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#customerplus_clean_spectacle\n",
"campaigns_information_spectacle\n",
"#products_purchased_reduced_spectacle\n",
"#target_information_spectacle"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2db28cf-c162-4c59-a278-1a30060bdfc0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}