BDC-team-1/0_2_Dataset_construction.py

214 lines
9.2 KiB
Python

# Business Data Challenge - Team 1
import pandas as pd
import numpy as np
import os
import s3fs
import re
import warnings
from datetime import date, timedelta, datetime
from sklearn.model_selection import train_test_split
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import KPI construction functions
exec(open('0_KPI_functions.py').read())
# Ignore warning
warnings.filterwarnings('ignore')
def display_covering_time(df, company, datecover):
"""
This function draws the time coverage of each company
"""
min_date = df['purchase_date'].min().strftime("%Y-%m-%d")
max_date = df['purchase_date'].max().strftime("%Y-%m-%d")
datecover[company] = [datetime.strptime(min_date, "%Y-%m-%d") + timedelta(days=x) for x in range((datetime.strptime(max_date, "%Y-%m-%d") - datetime.strptime(min_date, "%Y-%m-%d")).days)]
print(f'Couverture Company {company} : {min_date} - {max_date}')
return datecover
def compute_time_intersection(datecover):
"""
This function returns the time coverage for all companies
"""
timestamps_sets = [set(timestamps) for timestamps in datecover.values()]
intersection = set.intersection(*timestamps_sets)
intersection_list = list(intersection)
formated_dates = [dt.strftime("%Y-%m-%d") for dt in intersection_list]
return sorted(formated_dates)
def df_coverage_modelization(sport, coverage_features = 0.7):
"""
This function returns start_date, end_of_features and final dates
that help to construct train and test datasets
"""
datecover = {}
for company in sport:
df_products_purchased_reduced = display_databases(company, file_name = "products_purchased_reduced",
datetime_col = ['purchase_date'])
datecover = display_covering_time(df_products_purchased_reduced, company, datecover)
#print(datecover.keys())
dt_coverage = compute_time_intersection(datecover)
start_date = dt_coverage[0]
end_of_features = dt_coverage[int(0.7 * len(dt_coverage))]
final_date = dt_coverage[-1]
return start_date, end_of_features, final_date
def dataset_construction(min_date, end_features_date, max_date, directory_path):
# Import customerplus
df_customerplus_clean_0 = display_databases(directory_path, file_name = "customerplus_cleaned")
df_campaigns_information = display_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])
df_products_purchased_reduced = display_databases(directory_path, file_name = "products_purchased_reduced", datetime_col = ['purchase_date'])
# if directory_path == "101":
# df_products_purchased_reduced_1 = display_databases(directory_path, file_name = "products_purchased_reduced_1", datetime_col = ['purchase_date'])
# df_products_purchased_reduced = pd.concat([df_products_purchased_reduced, df_products_purchased_reduced_1])
# Filtre de cohérence pour la mise en pratique de notre méthode
max_date = pd.to_datetime(max_date, utc = True, format = 'ISO8601')
end_features_date = pd.to_datetime(end_features_date, utc = True, format = 'ISO8601')
min_date = pd.to_datetime(min_date, utc = True, format = 'ISO8601')
#Filtre de la base df_campaigns_information
df_campaigns_information = df_campaigns_information[(df_campaigns_information['sent_at'] <= end_features_date) & (df_campaigns_information['sent_at'] >= min_date)]
df_campaigns_information['opened_at'][df_campaigns_information['opened_at'] >= end_features_date] = np.datetime64('NaT')
#Filtre de la base df_products_purchased_reduced
df_products_purchased_features = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= end_features_date) & (df_products_purchased_reduced['purchase_date'] >= min_date)]
print("Data filtering : SUCCESS")
# Fusion de l'ensemble et creation des KPI
# KPI sur les campagnes publicitaires
df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_information)
# KPI sur le comportement d'achat
df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_features)
# KPI sur les données socio-démographiques
df_customerplus_clean = customerplus_kpi_function(customerplus_clean = df_customerplus_clean_0)
print("KPIs construction : SUCCESS")
# Fusion avec KPI liés au customer
df_customer = pd.merge(df_customerplus_clean, df_campaigns_kpi, on = 'customer_id', how = 'left')
# Fill NaN values
df_customer[['nb_campaigns', 'nb_campaigns_opened']] = df_customer[['nb_campaigns', 'nb_campaigns_opened']].fillna(0)
# Fusion avec KPI liés au comportement d'achat
df_customer_product = pd.merge(df_tickets_kpi, df_customer, on = 'customer_id', how = 'outer')
# Fill NaN values
df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']] = df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']].fillna(0)
max_interval = (end_features_date - min_date) / np.timedelta64(1, 'D') + 1
df_customer_product[['purchase_date_max', 'purchase_date_min']] = df_customer_product[['purchase_date_max', 'purchase_date_min']].fillna(max_interval)
df_customer_product[['time_between_purchase']] = df_customer_product[['time_between_purchase']].fillna(-1)
# Customers who have neither received an e-mail nor made a purchase during the feature estimation period are removed
df_customer_product = df_customer_product[(df_customer_product['nb_purchases'] > 0) | (df_customer_product['nb_campaigns'] > 0)]
print("Explanatory variable construction : SUCCESS")
# 2. Construction of the explained variable
df_products_purchased_to_predict = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= max_date) & (df_products_purchased_reduced['purchase_date'] > end_features_date)]
# Indicatrice d'achat
df_products_purchased_to_predict['y_has_purchased'] = 1
y = df_products_purchased_to_predict[['customer_id', 'y_has_purchased']].drop_duplicates()
print("Explained variable construction : SUCCESS")
# 3. Merge between explained and explanatory variables
dataset = pd.merge(df_customer_product, y, on = ['customer_id'], how = 'left')
# 0 if there is no purchase
dataset[['y_has_purchased']] = dataset[['y_has_purchased']].fillna(0)
# add id_company prefix to customer_id
dataset['customer_id'] = directory_path + '_' + dataset['customer_id'].astype('str')
return dataset
## Exportation
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
'sport': ['5', '6', '7', '8', '9'],
'musique' : ['10', '11', '12', '13', '14']}
type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
list_of_comp = companies[type_of_comp]
# Dossier d'exportation
BUCKET_OUT = f'projet-bdc2324-team1/Generalization/{type_of_comp}'
# Create test dataset and train dataset for sport companies
#start_date, end_of_features, final_date = df_coverage_modelization(list_of_comp, coverage_features = 0.7)
# start_date, end_of_features, final_date = df_coverage_modelization(list_of_comp, coverage_train = 0.7)
start_date = "2021-05-01"
end_of_features = "2022-11-01"
final_date = "2023-11-01"
anonymous_customer = {'1' : '1_1', '2' : '2_12184', '3' : '3_1', '4' : '4_2', '101' : '101_1',
'5' : '5_191835', '6' : '6_591412', '7' : '7_49632', '8' : '8_1942', '9' : '9_19683',
'10' : '10_19521', '11' : '11_36', '12' : '12_1706757', '13' : '13_8422', '14' : '14_6354'}
for company in list_of_comp:
dataset = dataset_construction(min_date = start_date, end_features_date = end_of_features,
max_date = final_date, directory_path = company)
# On retire le client anonyme
dataset = dataset[dataset['customer_id'] != anonymous_customer[company]]
# #train test set
# np.random.seed(42)
# split_ratio = 0.7
# split_index = int(len(dataset) * split_ratio)
# dataset = dataset.sample(frac=1).reset_index(drop=True)
# dataset_train = dataset.iloc[:split_index]
# dataset_test = dataset.iloc[split_index:]
dataset_train, dataset_test = train_test_split(dataset, test_size=0.3, random_state=42)
# Dataset Test
# Exportation
FILE_KEY_OUT_S3 = "dataset_test" + company + ".csv"
FILE_PATH_OUT_S3 = BUCKET_OUT + "/Test_set/" + FILE_KEY_OUT_S3
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
dataset_test.to_csv(file_out, index = False)
print("Exportation dataset test : SUCCESS")
# Dataset train
# Export
FILE_KEY_OUT_S3 = "dataset_train" + company + ".csv"
FILE_PATH_OUT_S3 = BUCKET_OUT + "/Train_set/" + FILE_KEY_OUT_S3
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
dataset_train.to_csv(file_out, index = False)
print("Exportation dataset train : SUCCESS")
print("FIN DE LA GENERATION DES DATASETS : SUCCESS")