BDC-team-1/0_Cleaning_and_merge.py
2024-02-19 22:11:28 +00:00

123 lines
5.3 KiB
Python

# Business Data Challenge - Team 1
import pandas as pd
import numpy as np
import os
import s3fs
import re
import warnings
# Import cleaning and merge functions
exec(open('BDC-team-1/0_KPI_functions.py').read())
## 2 - Construction of KPIs on a given period
def explanatory_variables(min_date, max_date, df_campaigns_information = df1_campaigns_information, df_products_purchased_reduced = df1_products_purchased_reduced, df_customerplus_clean = df1_customerplus_clean):
# Filtre de cohérence pour la mise en pratique de notre méthode
max_date = pd.to_datetime(max_date, utc = True, format = 'ISO8601')
min_date = pd.to_datetime(min_date, utc = True, format = 'ISO8601')
#Filtre de la base df_campaigns_information
df_campaigns_information = df_campaigns_information[(df_campaigns_information['sent_at'] <= max_date) & (df_campaigns_information['sent_at'] >= min_date)]
df_campaigns_information['opened_at'][df_campaigns_information['opened_at'] >= max_date] = np.datetime64('NaT')
#Filtre de la base df_products_purchased_reduced
df_products_purchased_reduced = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= max_date) & (df_products_purchased_reduced['purchase_date'] >= min_date)]
print("Data filtering : SUCCESS")
# Fusion de l'ensemble et creation des KPI
# KPI sur les campagnes publicitaires
df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_information)
# KPI sur le comportement d'achat
df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_reduced)
# KPI sur les données socio-demographique
## Le genre
df_customerplus_clean["gender_label"] = df_customerplus_clean["gender"].map({
0: 'female',
1: 'male',
2: 'other'
})
gender_dummies = pd.get_dummies(df_customerplus_clean["gender_label"], prefix='gender').astype(int)
df_customerplus_clean = pd.concat([df_customerplus_clean, gender_dummies], axis=1)
## Indicatrice si individue vit en France
df_customerplus_clean["country_fr"] = df_customerplus_clean["country"].apply(lambda x : int(x=="fr") if pd.notna(x) else np.nan)
print("KPIs construction : SUCCESS")
# Fusion avec KPI liés au customer
df_customer = pd.merge(df_customerplus_clean, df_campaigns_kpi, on = 'customer_id', how = 'left')
# Fill NaN values
df_customer[['nb_campaigns', 'nb_campaigns_opened']] = df_customer[['nb_campaigns', 'nb_campaigns_opened']].fillna(0)
# Fusion avec KPI liés au comportement d'achat
df_customer_product = pd.merge(df_tickets_kpi, df_customer, on = 'customer_id', how = 'outer')
# Fill NaN values
df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']] = df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']].fillna(0)
print("Explanatory variable construction : SUCCESS")
return df_customer_product
# Fonction pour créer les variables expliquée
def explained_variable(min_date, max_date, df_products_purchased_reduced = df1_products_purchased_reduced):
# Filtrer la base d'achat
df_products_purchased_reduced = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= max_date) & (df_products_purchased_reduced['purchase_date'] > min_date)]
# Indicatrice d'achat
df_products_purchased_reduced['y_has_purchased'] = 1
y = df_products_purchased_reduced[['customer_id', 'event_type_id', 'y_has_purchased']].drop_duplicates()
print("Explained variable construction : SUCCESS")
return y
## Exportation
# Dossier d'exportation
BUCKET_OUT = "projet-bdc2324-team1/1_Output/Logistique Regression databases - First approach"
# Dataset test
X_test = explanatory_variables(min_date = "2021-08-01", max_date = "2023-08-01", df_campaigns_information = df1_campaigns_information, df_products_purchased_reduced = df1_products_purchased_reduced, df_customerplus_clean = df1_customerplus_clean)
y_test = explained_variable(min_date = "2023-08-01", max_date = "2023-11-01", df_products_purchased_reduced = df1_products_purchased_reduced)
dataset_test = pd.merge(X_test, y_test, on = ['customer_id', 'event_type_id'], how = 'left')
# Exportation
FILE_KEY_OUT_S3 = "dataset_test.csv"
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
dataset_test.to_csv(file_out, index = False)
print("Exportation dataset test : SUCCESS")
# Dataset train
X_train = explanatory_variables(min_date = "2021-05-01", max_date = "2023-05-01", df_campaigns_information = df1_campaigns_information, df_products_purchased_reduced = df1_products_purchased_reduced, df_customerplus_clean = df1_customerplus_clean)
y_train = explained_variable(min_date = "2023-05-01", max_date = "2023-08-01", df_products_purchased_reduced = df1_products_purchased_reduced)
dataset_train = pd.merge(X_train, y_train, on = ['customer_id', 'event_type_id'], how = 'left')
# Exportation
FILE_KEY_OUT_S3 = "dataset_train.csv"
FILE_PATH_OUT_S3 = BUCKET_OUT + "/" + FILE_KEY_OUT_S3
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
dataset_train.to_csv(file_out, index = False)
print("Exportation dataset train : SUCCESS")
print("FIN DE LA GENERATION DES DATASETS : SUCCESS")