Téléverser les fichiers vers "/"

This commit is contained in:
Anna Simoni 2024-09-13 13:03:38 +02:00
parent 8b46980c4c
commit d13815d3fb

268
Main_Monte_Carlo.R Normal file
View File

@ -0,0 +1,268 @@
#install.packages("telescope")
#installed.packages("extraDistr")
#
rm(list = ls())
#
library("telescope")
library("stats")
library("extraDistr") # Package for the "dbnbinom" probability mass function
source("C:/Users/Anna SIMONI/CREST Dropbox/Anna Simoni/ANNA/Groupped_Panel_data/Simulations/Finite_Mixture/Code_for_our_paper/sampleUniNormMixture.R")
source("C:/Users/Anna SIMONI/CREST Dropbox/Anna Simoni/ANNA/Groupped_Panel_data/Simulations/Finite_Mixture/Code_for_our_paper/priorOnK_spec.R")
source("C:/Users/Anna SIMONI/CREST Dropbox/Anna Simoni/ANNA/Groupped_Panel_data/Simulations/Finite_Mixture/Code_for_our_paper/prior_alpha_e0.R")
source("C:/Users/Anna SIMONI/CREST Dropbox/Anna Simoni/ANNA/Groupped_Panel_data/Simulations/Finite_Mixture/Code_for_our_paper/sample_e0_alpha.R")
source("C:/Users/Anna SIMONI/CREST Dropbox/Anna Simoni/ANNA/Groupped_Panel_data/Simulations/Finite_Mixture/Code_for_our_paper/sampleK.R")
source("C:/Users/Anna SIMONI/CREST Dropbox/Anna Simoni/ANNA/Groupped_Panel_data/Simulations/Finite_Mixture/Code_for_our_paper/identifyMixture.R")
############################
## (1) Set the Parameters ##
############################
set.seed(123)
TT <- 50 # Number of time series observations
N <- 50 # Number of cross-section observations
MC <- 50 # Number of Monte Carlo iterations
#
sigma_Z <- 1 # standard deviation of the covariates Z
beta <- 0 # value of the common parameter
## Parameters of the mixture:
K <- 3 # Number of the mixture components
w_true <- c(1/3,1/3,1/3) # Vector of weights of each component of the mixture
alpha_true <- c(0,5,-5) # True values of the incidental parameter for the K mixture components
var_u <- c(1,1,1) # True values of the variance of the model error for the K mixture components
## Parameters of the MCMC sampler:
Mmax <- 10000 # the maximum number of iterations
thin <- 1 # the thinning imposed to reduce auto-correlation in the chain by only recording every `thined' observation
burnin <- 100 # the number of burn-in iterations not recorded
M <- Mmax/thin # the number of recorded observations.
Kmax <- 50 # the maximum number of components possible during sampling
Kinit <- 10 # the initial number of filled components
## Initial values:
# we use initial values corresponding to equal component sizes and half of the value of `C0` for the variances.
eta_0 <- rep(1/Kinit, Kinit)
r <- 1 # dimension
c0 <- 2 + (r-1)/2
g0 <- 0.2 + (r-1) / 2
# Initial value for beta
beta_0 <- beta
###############
## (2) Prior ##
###############
# Static specification for the weights with a fixed prior on $e_0$ where the value is set to 1.
G <- "MixStatic"
priorOn_n0 <- priorOnE0_spec("e0const", 1) # Prior on the hyperparameter of the Dirichlet prior
priorOn_K <- priorOnK_spec("BNB_143", 30) # Prior on K. This gives the function to compute log(PMF)-log(.5).
# Prior on the common coefficient beta: N(beta_prior,Omega_prior)
beta_prior <- 0
Omega_prior <- 1
# Initialization of matrices to store the results
theta_alpha <- array(,dim=c(M,Kmax,MC))
theta_Sigma2 <- array(,dim=c(M,Kmax,MC))
Beta <- matrix(,M,MC)
Eta <- array(,dim=c(M,Kmax,MC))
S_label <- array(,dim=c(M,N,MC))
Nk <- array(,dim=c(M,Kmax,MC))
K_MC <- matrix(,M,MC)
#
Kplus <- matrix(,M,MC)
Kplus_stat <- matrix(,MC,4)
K_stat <- matrix(,MC,5)
#
# Estimators
theta_alpha_hat <- matrix(,MC,Kmax)
theta_Sigma2_hat <- matrix(,MC,Kmax)
Eta_hat <- matrix(,MC,Kmax)
Beta_hat <- matrix(,MC,3)
#####################
## (3) Monte Carlo ##
#####################
for (mc in 1:MC){
#print(mc)
cat("mc = ",mc)
## (3.1) Simulate the Z and Y
#
ZZ <- rnorm(N*TT, mean = 0, sd = sigma_Z)
Z <- matrix(ZZ,TT,N)
rm(ZZ)
S_unif <- runif(N, min = 0, max = 1)
S <- matrix(,N,1) # S is the latent allocation variable
Y <- matrix(,TT,N)
for (ii in 1:N){
# Fill the latent allocation variable S
if (S_unif[ii] >= 0 & S_unif[ii] < w_true[1]) {
S[ii,1] <- 1
} else if (S_unif[ii] >= w_true[1] & S_unif[ii] < (w_true[1] + w_true[2])) {
S[ii,1] <- 2
} else {
S[ii,1] <- 3
}
u <- rnorm(TT, mean = 0, sd = sqrt(var_u[S[ii]]))
Y[,ii] <- alpha_true[S[ii]] + beta*Z[,ii] + u
}
rm(S,S_unif,u)
Y_mean <- colMeans(Y)
## (3.2) Initial values of the other parameters (not specified outside the loop):
# Component-specific priors on \alpha_k (i.e. N(b0,B0)) and \sigma_k^2 (i.e. IG(c_0,C_0)) following Richardson and Green (1997).
R <- diff(range(Y))
C0 <- diag(c(0.02*(R^2)), nrow = r)
sigma2_0 <- array(0, dim = c(1, 1, Kinit))
sigma2_0[1, 1, ] <- 0.5 * C0
G0 <- diag(10/(R^2), nrow = r)
B0 <- diag((R^2), nrow = r) # prior variance of alpha_k
b0 <- as.matrix((max(Y) + min(Y))/2, ncol = 1) # prior mean of alpha_k
## (3.3) Initial partition of the data and initial parameter values to start the MCMC.
# We use `kmeans()` to determine the initial partition $S_0$ and the initial component-specific means \mu_0.
cl_y <- kmeans(Y_mean, centers = Kinit, nstart = 30)
S_0 <- cl_y$cluster
alpha_0 <- t(cl_y$centers)
## (3.3) MCMC sampling
# We draw samples from the posterior using the telescoping sampler of Fruhwirth-Schnatter.
estGibbs <- sampleUniNormMixture(
Y, Z, S_0, alpha_0, sigma2_0, eta_0, beta_0,
c0, g0, G0, C0, b0, B0, beta_prior, Omega_prior,
M, burnin, thin, Kmax,
G, priorOn_K, priorOn_n0)
#The sampling function returns a named list where the sampled parameters and latent variables are contained.
theta_alpha[,,mc] <- estGibbs$Mu
theta_Sigma2[,,mc] <- estGibbs$Sigma2
Beta[,mc] <- estGibbs$Beta
Eta[,,mc] <- estGibbs$Eta
S_label[,,mc] <- estGibbs$S
Nk[,,mc] <- estGibbs$Nk
K_MC[,mc] <- estGibbs$K
Kplus[,mc] <- estGibbs$Kp
nonnormpost_mode_list <- estGibbs$nonnormpost_mode_list
acc <- estGibbs$acc
e0 <- estGibbs$e0
alpha_Dir <- estGibbs$alpha
#########################################
## Identification of the mixture model ##
#########################################
## Step 1: Estimating $K_+$ and $K$
## K_+ ##
Nk_mc <- Nk[,,mc]
Kplus_mc <- rowSums(Nk_mc != 0, na.rm = TRUE)
p_Kplus <- tabulate(Kplus_mc, nbins = max(Kplus_mc))/M
# The distribution of $K_+$ is characterized using the 1st and 3rd quartile as well as the median.
Kplus_stat[mc,1:3] <- quantile(Kplus_mc, probs = c(0.25, 0.5, 0.75))
# Point estimate for K_+ by taking the mode and determine the number of MCMC draws where exactly K_+
# components were filled.
Kplus_hat <- which.max(p_Kplus)
Kplus_stat[mc,4] <- Kplus_hat
M0 <- sum(Kplus_mc == Kplus_hat)
## K ##
# We also determine the posterior distribution of the number of components K directly drawn using the
# telescoping sampler.
K_mc <- K_MC[,mc]
p_K <- tabulate(K_mc, nbins = max(K_mc, na.rm = TRUE))/M
round(p_K[1:20], digits = 2)
# The posterior mode can be determined as well as the posterior mean and quantiles of the posterior.
K_hat <- which.max(tabulate(K_mc, nbins = max(K_mc)))
K_stat[mc,4] <- K_hat
K_stat[mc,5] <- mean(K_mc)
K_stat[mc,1:3] <- quantile(K_mc, probs = c(0.25, 0.5, 0.75))
## Step 2: Extracting the draws with exactly \hat{K}_+ non-empty components
# Select those draws where the number of filled components was exactly \hat{K}_+:
index <- Kplus_mc == Kplus_hat
Nk_mc[is.na(Nk_mc)] <- 0
Nk_Kplus <- (Nk_mc[index, ] > 0)
# We extract the cluster means, data cluster sizes and cluster assignments for the draws where exactly
# \hat{K}_+ components were filled.
Mu_inter <- estGibbs$Mu[index, , , drop = FALSE]
Mu_Kplus <- array(0, dim = c(M0, 1, Kplus_hat))
Mu_Kplus[, 1, ] <- Mu_inter[, 1, ][Nk_Kplus] # Here, 'Nk_Kplus' is used to subset the extracted
# elements from Mu_inter. It selects specific rows
# from the first column of Mu_inter based on the
# indices in Nk_Kplus.
Sigma2_inter <- estGibbs$Sigma2[index, , , drop = FALSE]
Sigma2_Kplus <- array(0, dim = c(M0, 1, Kplus_hat))
Sigma2_Kplus[, 1, ] <- Sigma2_inter[, 1, ][Nk_Kplus]
Eta_inter <- estGibbs$Eta[index, ]
Eta_Kplus <- matrix(Eta_inter[Nk_Kplus], ncol = Kplus_hat)
Eta_Kplus <- sweep(Eta_Kplus, 1, rowSums(Eta_Kplus), "/") # it normalizes the weights eta
w <- which(index)
S_Kplus <- matrix(0, M0, ncol(Y))
for (i in seq_along(w)) {
m <- w[i]
perm_S <- rep(0, Kmax)
perm_S[Nk_mc[m, ] != 0] <- 1:Kplus_hat # It assigns the sequence '1:Kplus_hat' to the positions in
# perm_S where Nk[m, ] is not zero.
S_Kplus[i, ] <- perm_S[S_label[m, ,mc]] # 'perm_S[S[m, ]]' indexes the vector 'perm_S' using the
# values in S[m, ]. This permutes or reassigns the values in
# 'S[m, ]' based on the mapping in 'perm_S'.
}
## Step 3: Clustering and relabeling of the MCMC draws in the point process representation
# For model identification, we cluster the draws of the means where exactly \hat{K}_+ components were
# filled in the point process representation using k-means clustering.
Func_init <- nonnormpost_mode_list[[Kplus_hat]]$mu
identified_Kplus <- identifyMixture(
Mu_Kplus, Mu_Kplus, Eta_Kplus, S_Kplus, Sigma2_Kplus, Func_init)
#A named list is returned which contains the proportion of draws where the clustering did not result in a
# permutation and hence no relabeling could be performed and the draws had to be omitted.
identified_Kplus$non_perm_rate
## Step 4: Estimating data cluster specific parameters and determining the final partition
# The relabeled draws are also returned which can be used to determine posterior mean values for data
# cluster specific parameters.
Mu_mean <- colMeans(identified_Kplus$Mu)
theta_alpha_hat[mc,1:length(Mu_mean)] <- colMeans(identified_Kplus$Mu)
theta_Sigma2_hat[mc,1:length(Mu_mean)] <- colMeans(identified_Kplus$Sigma2)
Eta_hat[mc,1:length(colMeans(identified_Kplus$Eta))] <- colMeans(identified_Kplus$Eta)
Beta_hat[mc,1] <- mean(Beta[,mc])
Beta_hat[mc,2:3] <- quantile(Beta[,mc], probs = c(0.025,0.975), na.rm =TRUE)
rm(R, C0, sigma2_0, G0, B0, b0, cl_y, S_0, alpha_0, estGibbs, nonnormpost_mode_list, acc, e0, alpha_Dir,
Kplus_mc, Nk_mc, p_Kplus, Kplus_hat, K_mc, index, Mu_inter, Mu_Kplus, Nk_Kplus, Sigma2_inter,
Sigma2_Kplus, Eta_inter, Eta_Kplus, w, S_Kplus, perm_S, Func_init, identified_Kplus, Mu_mean)
}
theta_alpha_hat2<-t(apply(theta_alpha_hat[,1:3],1,sort))
theta_alpha_hat_means <- colMeans(theta_alpha_hat2)
Beta_hat_mean <- colMeans(Beta_hat)
MSE_beta = mean((Beta_hat[,1] - beta)^2)
MSE_alpha = colMeans((theta_alpha_hat2[,1:3] - matrix(rep(sort(alpha_true),MC), ncol=3, byrow=TRUE))^2)
RMSE_alpha <- sqrt(MSE_alpha)
Eta_hat2 <- t(matrix(Eta_hat[order(row(theta_alpha_hat[,1:3]), theta_alpha_hat[,1:3])], byrow = FALSE, ncol = ncol(Eta_hat)))
Eta_hat_means <- colMeans(Eta_hat2)
MSE_eta = colMeans((Eta_hat2[,1:3] - matrix(rep(w_true,MC), ncol=3, byrow=TRUE))^2)
theta_Sigma2_hat2 <- t(matrix(theta_Sigma2_hat[order(row(theta_alpha_hat[,1:3]), theta_alpha_hat[,1:3])], byrow = FALSE, ncol = ncol(theta_Sigma2_hat)))
theta_Sigma2_hat_means <- colMeans(theta_Sigma2_hat2)
Sigma2_sorted <- var_u[order(sort(alpha_true))]
MSE_Sigma2 = colMeans((theta_Sigma2_hat2[,1:3] - matrix(rep(Sigma2_sorted,MC), ncol=3, byrow=TRUE))^2)
#MSE_beta = mean(Beta_hat[,1] - beta)^2
#MSE_alpha = colMeans((theta_alpha_hat[,1:3] - matrix(rep(alpha_true,MC), ncol=3, byrow=TRUE))^2)
#MSE_eta = colMeans((Eta_hat[,1:3] - matrix(rep(w_true,MC), ncol=3, byrow=TRUE))^2)