{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "e1e8183d-1c75-43d5-84f2-11ed4a043e95", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "5488" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "56*98" ] }, { "cell_type": "code", "execution_count": 2, "id": "e179529c-1e9e-484c-810d-cc5283b301e0", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[0.4938, 0.6272, 0.7424, 0.8706, 0.0350, 0.4712, 0.2920, 0.3668, 0.1011],\n", " [0.2043, 0.3699, 0.6485, 0.3753, 0.7622, 0.6652, 0.9545, 0.9230, 0.1376],\n", " [0.0024, 0.9363, 0.4466, 0.0182, 0.6990, 0.2950, 0.9408, 0.4459, 0.4602],\n", " [0.9974, 0.5928, 0.1695, 0.4071, 0.9829, 0.9592, 0.5724, 0.5596, 0.1615],\n", " [0.7799, 0.5518, 0.4942, 0.0703, 0.3000, 0.8426, 0.4958, 0.7940, 0.2984]])\n" ] } ], "source": [ "import torch\n", "A = torch.rand(5,9)\n", "print(A)" ] }, { "cell_type": "code", "execution_count": null, "id": "c4ff8b0e-5adc-482c-a224-425c3794ec80", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" } }, "nbformat": 4, "nbformat_minor": 5 }