import best_restaurants_scraping_v2 import gault_et_millau_scraping_v2 import le_fooding_scraping import petit_fute_scraping_v2 import resto_de_paris_scraping import google_scraping import datetime from icecream import ic def main(): # Choose desired path to export scraped data desired_path = '/Users/oliviermeyer/Desktop/' # Initial scraping df1 = best_restaurants_scraping_v2.complete_scraping() # df2 = gault_et_millau_scraping_v2.complete_scraping() df3_1 = le_fooding_scraping.complete_scraping() df4_1 = petit_fute_scraping_v2.complete_scraping() df5 = resto_de_paris_scraping.complete_scraping() # Google scraping for dataframe without menus df3_2 = google_scraping.google_scrap_fooding(df3_1) df4_2 = google_scraping.google_scrap_fute(df4_1) # Get today's date in string date = str(datetime.date.today()) # Export all the dataframes df1.to_csv(desired_path + 'best_restaurants_' + date + '.csv', index=False, header=True, escapechar='\\') # df2.to_csv(desired_path + 'gault_et_millau_' + date + '.csv', index=False, header=True, escapechar='\\') df3_2.to_csv(desired_path + 'le_fooding_' + date + '.csv', index=False, header=True, escapechar='\\') df4_2.to_csv(desired_path + 'petit_fute_' + date + '.csv', index=False, header=True, escapechar='\\') df5.to_csv(desired_path + 'resto_de_paris_' + date + '.csv', index=False, header=True, escapechar='\\') # List of days that have been processed done_dates = [] # Call the main function every new day while True: today = datetime.date.today() if today not in done_dates: ic() main()