Tarata/Titanic.ipynb

1073 lines
53 KiB
Plaintext
Raw Permalink Normal View History

2023-05-15 16:40:08 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 32,
"id": "38b06b0d-0dea-4af3-805b-b89e702b7342",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"url = \"https://pixees.fr/informatiquelycee/n_site/asset/titanic.csv\""
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "740c50e6-d0c1-4884-a850-9efeac8ae0f8",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib as plt\n",
"titanic = pd.io.parsers.read_csv(url)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "1a9d6995-a967-4d87-9ea0-e1676b02b3a6",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>PassengerId</th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Name</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" <th>SibSp</th>\n",
" <th>Parch</th>\n",
" <th>Ticket</th>\n",
" <th>Fare</th>\n",
" <th>Cabin</th>\n",
" <th>Embarked</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>Braund, Mr. Owen Harris</td>\n",
" <td>male</td>\n",
" <td>22.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>A/5 21171</td>\n",
" <td>7.2500</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
" <td>female</td>\n",
" <td>38.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>PC 17599</td>\n",
" <td>71.2833</td>\n",
" <td>C85</td>\n",
" <td>C</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>Heikkinen, Miss. Laina</td>\n",
" <td>female</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>STON/O2. 3101282</td>\n",
" <td>7.9250</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
" <td>female</td>\n",
" <td>35.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>113803</td>\n",
" <td>53.1000</td>\n",
" <td>C123</td>\n",
" <td>S</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>Allen, Mr. William Henry</td>\n",
" <td>male</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>373450</td>\n",
" <td>8.0500</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" PassengerId Survived Pclass \\\n",
"0 1 0 3 \n",
"1 2 1 1 \n",
"2 3 1 3 \n",
"3 4 1 1 \n",
"4 5 0 3 \n",
"\n",
" Name Sex Age SibSp \\\n",
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
"4 Allen, Mr. William Henry male 35.0 0 \n",
"\n",
" Parch Ticket Fare Cabin Embarked \n",
"0 0 A/5 21171 7.2500 NaN S \n",
"1 0 PC 17599 71.2833 C85 C \n",
"2 0 STON/O2. 3101282 7.9250 NaN S \n",
"3 0 113803 53.1000 C123 S \n",
"4 0 373450 8.0500 NaN S "
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"titanic.head()"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "8d952731-6adc-4501-ba7f-56470e052b39",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 891 entries, 0 to 890\n",
"Data columns (total 12 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 PassengerId 891 non-null int64 \n",
" 1 Survived 891 non-null int64 \n",
" 2 Pclass 891 non-null int64 \n",
" 3 Name 891 non-null object \n",
" 4 Sex 891 non-null object \n",
" 5 Age 714 non-null float64\n",
" 6 SibSp 891 non-null int64 \n",
" 7 Parch 891 non-null int64 \n",
" 8 Ticket 891 non-null object \n",
" 9 Fare 891 non-null float64\n",
" 10 Cabin 204 non-null object \n",
" 11 Embarked 889 non-null object \n",
"dtypes: float64(2), int64(5), object(5)\n",
"memory usage: 83.7+ KB\n"
]
}
],
"source": [
"titanic.info()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "f1f8916a-b816-435e-a774-6d4922625ba9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"titanic = titanic.drop(['Name', 'PassengerId', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "855b71ca-0050-4805-9994-473cae0ef160",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>886</th>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>male</td>\n",
" <td>27.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>887</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>female</td>\n",
" <td>19.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>888</th>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>female</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>889</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>male</td>\n",
" <td>26.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>890</th>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>male</td>\n",
" <td>32.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Pclass Sex Age\n",
"886 0 2 male 27.0\n",
"887 1 1 female 19.0\n",
"888 0 3 female NaN\n",
"889 1 1 male 26.0\n",
"890 0 3 male 32.0"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"titanic.tail()"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "a344b6de-0adc-41f3-aff0-d0fc5c8a6122",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"titanic = titanic.dropna(axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "e4ca7224-7526-4f5f-8ea5-0ef1163fcc88",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>714.000000</td>\n",
" <td>714.000000</td>\n",
" <td>714.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>0.406162</td>\n",
" <td>2.236695</td>\n",
" <td>29.699118</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.491460</td>\n",
" <td>0.838250</td>\n",
" <td>14.526497</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>0.420000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>20.125000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>0.000000</td>\n",
" <td>2.000000</td>\n",
" <td>28.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>1.000000</td>\n",
" <td>3.000000</td>\n",
" <td>38.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>1.000000</td>\n",
" <td>3.000000</td>\n",
" <td>80.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Pclass Age\n",
"count 714.000000 714.000000 714.000000\n",
"mean 0.406162 2.236695 29.699118\n",
"std 0.491460 0.838250 14.526497\n",
"min 0.000000 1.000000 0.420000\n",
"25% 0.000000 1.000000 20.125000\n",
"50% 0.000000 2.000000 28.000000\n",
"75% 1.000000 3.000000 38.000000\n",
"max 1.000000 3.000000 80.000000"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"titanic.describe()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "708acc2d-35d6-4a4e-8a61-286293ee4749",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"3 355\n",
"1 186\n",
"2 173\n",
"Name: Pclass, dtype: int64"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"titanic['Pclass'].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "1634faa8-5376-425c-80f2-e5a888dc4f49",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: >"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGYCAYAAABoLxltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAf9klEQVR4nO3df2zU9eHH8dfZ0gNq76QU7kc4ahOqm7aQWAzQqBQoxWZQBCJMEgeRGeVHk6YwtBCzumirLF/QwEa2hYDAsPyhVTMQKQHqmo4FujEp/sJYYgk9O1m5a7G7Yvl8/1j2yY4CetBy77bPR/JJvM/7fZ97f+K5Pve5Xw7LsiwBAAAY5I54LwAAAOBqBAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4yTGewE348qVKzp//rxSUlLkcDjivRwAAPADWJal9vZ2+f1+3XHHja+R9MtAOX/+vAKBQLyXAQAAbkJzc7PGjBlzwzn9MlBSUlIk/ecEXS5XnFcDAAB+iHA4rEAgYP8dv5F+GSj/fVnH5XIRKAAA9DM/5O0ZvEkWAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGSYz3Aga6u5/fF+8lDAhnX/lJvJcAALiNYrqCsnXrVo0fP14ul0sul0tTpkzR+++/b48vXbpUDocjaps8eXLUMSKRiIqLi5WWlqbk5GQVFRXp3LlzvXM2AABgQIgpUMaMGaNXXnlFJ06c0IkTJzR9+nTNnTtXp0+ftuc8+uijamlpsbf9+/dHHaOkpETV1dWqqqpSXV2dOjo6NHv2bHV3d/fOGQEAgH4vppd45syZE3X75Zdf1tatW3Xs2DHdf//9kiSn0ymv13vN+4dCIW3btk27du1Sfn6+JGn37t0KBAI6dOiQZs2adTPnAAAABpibfpNsd3e3qqqqdOnSJU2ZMsXef/ToUY0ePVr33HOPnn76abW2ttpjDQ0Nunz5sgoKCux9fr9fWVlZqq+vv+5jRSIRhcPhqA0AAAxcMQfKqVOndOedd8rpdOrZZ59VdXW17rvvPklSYWGh/vjHP+rw4cP6v//7Px0/flzTp09XJBKRJAWDQSUlJWnEiBFRx/R4PAoGg9d9zMrKSrndbnsLBAKxLhsAAPQjMX+K595779XJkyd18eJFvfXWW1qyZIlqa2t13333adGiRfa8rKwsTZw4Uenp6dq3b5/mz59/3WNaliWHw3Hd8bKyMpWWltq3w+EwkQIAwAAWc6AkJSVp3LhxkqSJEyfq+PHjev311/W73/2ux1yfz6f09HSdOXNGkuT1etXV1aW2traoqyitra3Kzc297mM6nU45nc5YlwoAAPqpW/6iNsuy7JdwrnbhwgU1NzfL5/NJknJycjRkyBDV1NTYc1paWtTY2HjDQAEAAINLTFdQ1q1bp8LCQgUCAbW3t6uqqkpHjx7VgQMH1NHRofLyci1YsEA+n09nz57VunXrlJaWpnnz5kmS3G63li1bptWrV2vkyJFKTU3VmjVrlJ2dbX+qBwAAIKZA+frrr/Xkk0+qpaVFbrdb48eP14EDBzRz5kx1dnbq1KlT2rlzpy5evCifz6dp06Zp7969SklJsY+xadMmJSYmauHChers7NSMGTO0Y8cOJSQk9PrJAQCA/slhWZYV70XEKhwOy+12KxQKyeVyxXs5N8RX3fcOvuoeAPq/WP5+82OBAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACME1OgbN26VePHj5fL5ZLL5dKUKVP0/vvv2+OWZam8vFx+v1/Dhg1TXl6eTp8+HXWMSCSi4uJipaWlKTk5WUVFRTp37lzvnA0AABgQYgqUMWPG6JVXXtGJEyd04sQJTZ8+XXPnzrUjZMOGDdq4caO2bNmi48ePy+v1aubMmWpvb7ePUVJSourqalVVVamurk4dHR2aPXu2uru7e/fMAABAv+WwLMu6lQOkpqbq17/+tZ566in5/X6VlJToueeek/SfqyUej0evvvqqnnnmGYVCIY0aNUq7du3SokWLJEnnz59XIBDQ/v37NWvWrB/0mOFwWG63W6FQSC6X61aW3+fufn5fvJcwIJx95SfxXgIA4BbF8vf7pt+D0t3draqqKl26dElTpkxRU1OTgsGgCgoK7DlOp1NTp05VfX29JKmhoUGXL1+OmuP3+5WVlWXPuZZIJKJwOBy1AQCAgSvmQDl16pTuvPNOOZ1OPfvss6qurtZ9992nYDAoSfJ4PFHzPR6PPRYMBpWUlKQRI0Zcd861VFZWyu1221sgEIh12QAAoB+JOVDuvfdenTx5UseOHdPy5cu1ZMkSffzxx/a4w+GImm9ZVo99V/u+OWVlZQqFQvbW3Nwc67IBAEA/EnOgJCUlady4cZo4caIqKys1YcIEvf766/J6vZLU40pIa2urfVXF6/Wqq6tLbW1t151zLU6n0/7k0H83AAAwcN3y96BYlqVIJKKMjAx5vV7V1NTYY11dXaqtrVVubq4kKScnR0OGDIma09LSosbGRnsOAABAYiyT161bp8LCQgUCAbW3t6uqqkpHjx7VgQMH5HA4VFJSooqKCmVmZiozM1MVFRUaPny4Fi9eLElyu91atmyZVq9erZEjRyo1NVVr1qxRdna28vPz++QEAQBA/xNToHz99dd68skn1dLSIrfbrfHjx+vAgQOaOXOmJGnt2rXq7OzUihUr1NbWpkmTJungwYNKSUmxj7Fp0yYlJiZq4cKF6uzs1IwZM7Rjxw4lJCT07pkBAIB+65a/ByUe+B6UwYfvQQGA/u+2fA8KAABAXyFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcWIKlMrKSj344INKSUnR6NGj9dhjj+mzzz6LmrN06VI5HI6obfLkyVFzIpGIiouLlZaWpuTkZBUVFencuXO3fjYAAGBAiClQamtrtXLlSh07dkw1NTX67rvvVFBQoEuXLkXNe/TRR9XS0mJv+/fvjxovKSlRdXW1qqqqVFdXp46ODs2ePVvd3d23fkYAAKDfS4xl8oEDB6Jub9++XaNHj1ZDQ4MeeeQRe7/T6ZTX673mMUKhkLZt26Zdu3YpPz9fkrR7924FAgEdOnRIs2bNivUcAADAAHNL70EJhUKSpNTU1Kj9R48e1ejRo3XPPffo6aefVmtrqz3W0NCgy5cvq6CgwN7n9/uVlZWl+vr6W1kOAAAYIGK6gvK/LMtSaWmpHnroIWVlZdn7CwsL9fjjjys9PV1NTU164YUXNH36dDU0NMjpdCoYDCopKUkjRoyIOp7H41EwGLzmY0UiEUUiEft2OBy+2WUDAIB+4KYDZdWqVfroo49UV1cXtX/RokX2P2dlZWnixIlKT0/Xvn37NH/+/Osez7IsORyOa45VVlbqxRdfvNmlAgCAfuamXuIpLi7We++9pyNHjmjMmDE3nOvz+ZSenq4zZ85Ikrxer7q6utTW1hY1r7W1VR6P55rHKCsrUygUsrf
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"titanic['Pclass'].value_counts().plot.bar()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "189efdcd-be75-4bc1-9ec0-8068be847fcf",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: >"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApbElEQVR4nO3de3SU5YHH8d8kmQwEEzTEMMkaQlBcWkMpkCq3llBNMCIepOuNbQ3rtVvKwgYqIMthqHI59KzFhS1rXRa1ISdsj8DaYgtBuZSlbiXKFrCLoYaLEswBJSEEhzF59g8PU8cESMI7zjMv3885c8K87zNPnl/mTfidd24eY4wRAACARRJivQAAAIAvoqAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKyTFOsFdEVra6uOHTum1NRUeTyeWC8HAAB0gDFGp0+fVnZ2thISLn6OJC4LyrFjx5STkxPrZQAAgC44evSorrvuuouOicuCkpqaKumzgGlpaY7MGQqFtHnzZhUXF8vr9Toyp03cnk9yf0a355PI6AZuzyeR8XI0NjYqJycn/P/4xcRlQTn/sE5aWpqjBSUlJUVpaWmuPODcnk9yf0a355PI6AZuzyeR0QkdeXoGT5IFAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsE5SZ2+wY8cO/eQnP1F1dbXq6uq0fv16TZgwIbz/Qh+hvHTpUv3oRz+SJBUWFmr79u0R+++77z5VVlZ2djmIY31nb3R0Pl+i0dKbpfzAJgVbLv1R3l1xaMm4qMwLAIjU6TMoZ86c0aBBg7RixYp299fV1UVc/uM//kMej0ff+c53IsY9+uijEeOee+65riUAAACu0+kzKCUlJSopKbngfr/fH3H9v/7rvzRmzBj169cvYntKSkqbsQAAAFIXCkpnfPjhh9q4caNefPHFNvvWrFmj8vJy9e7dWyUlJZo/f75SU1PbnScYDCoYDIavNzY2SpJCoZBCoZAjaz0/j1Pz2cbGfL5E4+x8CSbiazTE8udn433oNDLGP7fnk8joxLwd4THGdPmvucfjafMclM9bunSplixZomPHjqlbt27h7c8//7zy8vLk9/u1b98+zZkzRzfccIOqqqranScQCGjBggVttldUVCglJaWrywcAAF+i5uZmTZo0SQ0NDUpLS7vo2KgWlAEDBqioqEjLly+/6DzV1dUqKChQdXW1hgwZ0mZ/e2dQcnJydOLEiUsG7KhQKKSqqioVFRXJ6/U6MqdNbMyXH9jk6Hy+BKOnClo1b3eCgq3ReZLsvsDYqMzbETbeh04jY/xzez6JjJejsbFRGRkZHSooUXuI53e/+50OHDigtWvXXnLskCFD5PV6VVNT025B8fl88vl8bbZ7vV7HD45ozGkTm/JF65U2wVZP1Oa24Wdn030YLWSMf27PJ5Gxq/N1VNTeB2XVqlUaOnSoBg0adMmx+/fvVygUUlZWVrSWAwAA4kinz6A0NTXp4MGD4eu1tbXas2eP0tPT1adPH0mfncL55S9/qX/+539uc/s///nPWrNmje644w5lZGTonXfe0YwZMzR48GCNHDnyMqIAAAC36HRB2b17t8aMGRO+XlZWJkkqLS3VCy+8IEmqrKyUMUYPPPBAm9snJyfrtdde07PPPqumpibl5ORo3Lhxmj9/vhITE7sYAwAAuEmnC0phYaEu9bzaxx57TI899li7+3Jyctq8iywAAMDn8Vk8AADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsE9UPCwTcpu/sjTH73r5Eo6U3f/YRAZ15p9xDS8ZFcVUAEB2cQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1ul0QdmxY4fGjx+v7OxseTwebdiwIWL/5MmT5fF4Ii7Dhg2LGBMMBjV16lRlZGSoR48euuuuu/T+++9fVhAAAOAenS4oZ86c0aBBg7RixYoLjrn99ttVV1cXvrz66qsR+6dPn67169ersrJSO3fuVFNTk+688061tLR0PgEAAHCdpM7eoKSkRCUlJRcd4/P55Pf7293X0NCgVatW6Re/+IVuu+02SVJ5eblycnK0ZcsWjR07trNLAgAALtPpgtIR27ZtU2Zmpq6++mqNHj1aCxcuVGZmpiSpurpaoVBIxcXF4fHZ2dnKz8/Xrl272i0owWBQwWAwfL2xsVGSFAqFFAqFHFnz+Xmcms82NubzJRpn50swEV/dpqv5bLrPL8XG49Rpbs/o9nwSGZ2YtyM8xpgu/zX3eDxav369JkyYEN62du1aXXXVVcrNzVVtba3mzZunTz/9VNXV1fL5fKqoqNDf/d3fRRQOSSouLlZeXp6ee+65Nt8nEAhowYIFbbZXVFQoJSWlq8sHAABfoubmZk2aNEkNDQ1KS0u76FjHz6Dcd9994X/n5+eroKBAubm52rhxoyZOnHjB2xlj5PF42t03Z84clZWVha83NjYqJydHxcXFlwzYUaFQSFVVVSoqKpLX63VkTpvYmC8/sMnR+XwJRk8VtGre7gQFW9s/luJZV/PtC8TPw6Y2HqdOc3tGt+eTyHg5zj8C0hFReYjn87KyspSbm6uamhpJkt/v17lz5/Txxx/rmmuuCY+rr6/XiBEj2p3D5/PJ5/O12e71eh0/OKIxp01syhdsiU6JCLZ6oja3DTqbz5b7uzNsOk6jxe0Z3Z5PImNX5+uoqL8PysmTJ3X06FFlZWVJkoYOHSqv16uqqqrwmLq6Ou3bt++CBQUAAFxZOn0GpampSQcPHgxfr62t1Z49e5Senq709HQFAgF95zvfUVZWlg4dOqQnn3xSGRkZuvvuuyVJPXv21MMPP6wZM2aoV69eSk9P18yZMzVw4MDwq3oAAMCVrdMFZffu3RozZkz4+vnnhpSWlmrlypXau3evXnrpJZ06dUpZWVkaM2aM1q5dq9TU1PBtfvrTnyopKUn33nuvzp49q1tvvVUvvPCCEhMTHYgEAADiXacLSmFhoS72wp9Nmy79xMdu3bpp+fLlWr58eWe/PQAAuALwWTwAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA63S6oOzYsUPjx49Xdna2PB6PNmzYEN4XCoU0a9YsDRw4UD169FB2drYefPBBHTt2LGKOwsJCeTyeiMv9999/2WEAAIA7dLqgnDlzRoMGDdKKFSva7GtubtZbb72lefPm6a233tK6dev07rvv6q677moz9tFHH1VdXV348txzz3UtAQAAcJ2kzt6gpKREJSUl7e7r2bOnqqqqIrYtX75cN998s44cOaI+ffqEt6ekpMjv93f22wMAgCtApwtKZzU0NMjj8ejqq6+O2L5mzRqVl5erd+/eKikp0fz585WamtruHMFgUMFgMHy9sbFR0mcPKYVCIUfWeX4ep+azjY35fInG2fkSTMRXt+lqPpvu80ux8Th1mtszuj2fREYn5u0IjzGmy3/NPR6P1q9frwkTJrS7/5NPPtGoUaM0YMAAlZeXh7c
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"titanic['Age'].hist()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "0230f489-2426-4d7e-a690-a707342ac750",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Sex</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>female</th>\n",
" <td>0.754789</td>\n",
" <td>2.065134</td>\n",
" <td>27.915709</td>\n",
" </tr>\n",
" <tr>\n",
" <th>male</th>\n",
" <td>0.205298</td>\n",
" <td>2.335541</td>\n",
" <td>30.726645</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Pclass Age\n",
"Sex \n",
"female 0.754789 2.065134 27.915709\n",
"male 0.205298 2.335541 30.726645"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"titanic.groupby(['Sex']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "32e3ce02-e5f0-421c-add0-a00d769c4564",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>22.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>38.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>26.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>35.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>35.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Pclass Sex Age\n",
"0 0 3 0 22.0\n",
"1 1 1 1 38.0\n",
"2 1 3 1 26.0\n",
"3 1 1 1 35.0\n",
"4 0 3 0 35.0"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"titanic['Sex'].replace(['male', 'female'], [0, 1], inplace = True)\n",
"titanic.head()"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "6c09f3e9-2d6b-47b4-9686-334f36555576",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from sklearn.neighbors import KNeighborsClassifier"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "0db39046-27f6-46d2-8a1e-cff9bbee08cb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"model = KNeighborsClassifier()"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "df2c5596-8b3f-4aa4-a275-f2fec2aded01",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"Y = titanic['Survived']"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "bb50e382-b20b-4867-8135-36138a2af422",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"X = titanic.drop('Survived',axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "d4cc3886-9ac9-4069-b531-57cf9aa869c3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"0 0\n",
"1 1\n",
"2 1\n",
"3 1\n",
"4 0\n",
" ..\n",
"885 0\n",
"886 0\n",
"887 1\n",
"889 1\n",
"890 0\n",
"Name: Survived, Length: 714, dtype: int64"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Y"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "9c97a8c2-ebd9-4426-a0e3-9539b1319daa",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Pclass</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>22.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>38.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>26.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>35.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>35.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>885</th>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>39.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>886</th>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>27.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>887</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>19.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>889</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>26.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>890</th>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>32.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>714 rows × 3 columns</p>\n",
"</div>"
],
"text/plain": [
" Pclass Sex Age\n",
"0 3 0 22.0\n",
"1 1 1 38.0\n",
"2 3 1 26.0\n",
"3 1 1 35.0\n",
"4 3 0 35.0\n",
".. ... ... ...\n",
"885 3 1 39.0\n",
"886 2 0 27.0\n",
"887 1 1 19.0\n",
"889 1 0 26.0\n",
"890 3 0 32.0\n",
"\n",
"[714 rows x 3 columns]"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "87e4489f-b1d6-4763-9357-299d4aa5eded",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"0.8305322128851541"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.fit(X, Y)\n",
"model.score(X, Y)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "0ea5aae9-6238-4814-860f-3c2263834ca0",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,\n",
" 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1,\n",
" 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,\n",
" 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,\n",
" 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n",
" 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,\n",
" 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,\n",
" 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1,\n",
" 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1,\n",
" 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1,\n",
" 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,\n",
" 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,\n",
" 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,\n",
" 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0,\n",
" 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,\n",
" 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,\n",
" 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,\n",
" 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,\n",
" 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0,\n",
" 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0,\n",
" 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,\n",
" 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,\n",
" 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0,\n",
" 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0,\n",
" 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,\n",
" 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,\n",
" 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1,\n",
" 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,\n",
" 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,\n",
" 1, 0, 1, 0, 0, 0, 0, 1, 1, 0])"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.predict(X)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "5764d5e1-5973-473c-9656-7d59e91ff9ab",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def survie(model, pclass=3, Sex=0, Age=26):\n",
" X = np.array([pclass, Sex, Age]).reshape(1, 3)\n",
" print(model.predict_proba(X))"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "21c34fa6-30a6-4ae6-8a09-e090d0ab72ec",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0.6 0.4]]\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/mamba/lib/python3.10/site-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KNeighborsClassifier was fitted with feature names\n",
" warnings.warn(\n"
]
}
],
"source": [
"survie(model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "756dd72b-5055-4517-b884-3fe4ea4bdbb2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}