2023-05-04 13:42:53 +02:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-05-04 13:53:50 +02:00
|
|
|
"execution_count": 2,
|
2023-05-04 13:42:53 +02:00
|
|
|
"id": "c6b75e30-ce16-46c4-ab91-9ec69b3a5a9a",
|
2023-05-04 13:53:50 +02:00
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
2023-05-04 13:42:53 +02:00
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data\""
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-05-04 13:53:50 +02:00
|
|
|
"execution_count": 3,
|
2023-05-04 13:42:53 +02:00
|
|
|
"id": "617f1d2a-49ab-4a1b-840c-73ca28e70ae1",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"#Importation des données \n",
|
|
|
|
"import pandas as pd\n",
|
2023-05-04 13:53:50 +02:00
|
|
|
"import seaborn as sns\n",
|
2023-05-04 13:42:53 +02:00
|
|
|
"data = pd.io.parsers.read_csv(url)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-05-04 13:53:50 +02:00
|
|
|
"execution_count": 4,
|
2023-05-04 13:42:53 +02:00
|
|
|
"id": "ec96f94d-f855-42c0-b056-0520af40a8f5",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/html": [
|
|
|
|
"<div>\n",
|
|
|
|
"<style scoped>\n",
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
" }\n",
|
|
|
|
"\n",
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
" }\n",
|
|
|
|
"\n",
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
" text-align: right;\n",
|
|
|
|
" }\n",
|
|
|
|
"</style>\n",
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
" <thead>\n",
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
" <th></th>\n",
|
|
|
|
" <th>63.0</th>\n",
|
|
|
|
" <th>1.0</th>\n",
|
|
|
|
" <th>1.0.1</th>\n",
|
|
|
|
" <th>145.0</th>\n",
|
|
|
|
" <th>233.0</th>\n",
|
|
|
|
" <th>1.0.2</th>\n",
|
|
|
|
" <th>2.0</th>\n",
|
|
|
|
" <th>150.0</th>\n",
|
|
|
|
" <th>0.0</th>\n",
|
|
|
|
" <th>2.3</th>\n",
|
|
|
|
" <th>3.0</th>\n",
|
|
|
|
" <th>0.0.1</th>\n",
|
|
|
|
" <th>6.0</th>\n",
|
|
|
|
" <th>0</th>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" </thead>\n",
|
|
|
|
" <tbody>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>0</th>\n",
|
|
|
|
" <td>67.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>4.0</td>\n",
|
|
|
|
" <td>160.0</td>\n",
|
|
|
|
" <td>286.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>108.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>1.5</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>3.0</td>\n",
|
|
|
|
" <td>3.0</td>\n",
|
|
|
|
" <td>2</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>1</th>\n",
|
|
|
|
" <td>67.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>4.0</td>\n",
|
|
|
|
" <td>120.0</td>\n",
|
|
|
|
" <td>229.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>129.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>2.6</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>7.0</td>\n",
|
|
|
|
" <td>1</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>2</th>\n",
|
|
|
|
" <td>37.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>3.0</td>\n",
|
|
|
|
" <td>130.0</td>\n",
|
|
|
|
" <td>250.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>187.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>3.5</td>\n",
|
|
|
|
" <td>3.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>3.0</td>\n",
|
|
|
|
" <td>0</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>3</th>\n",
|
|
|
|
" <td>41.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>130.0</td>\n",
|
|
|
|
" <td>204.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>172.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>1.4</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>3.0</td>\n",
|
|
|
|
" <td>0</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>4</th>\n",
|
|
|
|
" <td>56.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>120.0</td>\n",
|
|
|
|
" <td>236.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>178.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>0.8</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>3.0</td>\n",
|
|
|
|
" <td>0</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" </tbody>\n",
|
|
|
|
"</table>\n",
|
|
|
|
"</div>"
|
|
|
|
],
|
|
|
|
"text/plain": [
|
|
|
|
" 63.0 1.0 1.0.1 145.0 233.0 1.0.2 2.0 150.0 0.0 2.3 3.0 0.0.1 \\\n",
|
|
|
|
"0 67.0 1.0 4.0 160.0 286.0 0.0 2.0 108.0 1.0 1.5 2.0 3.0 \n",
|
|
|
|
"1 67.0 1.0 4.0 120.0 229.0 0.0 2.0 129.0 1.0 2.6 2.0 2.0 \n",
|
|
|
|
"2 37.0 1.0 3.0 130.0 250.0 0.0 0.0 187.0 0.0 3.5 3.0 0.0 \n",
|
|
|
|
"3 41.0 0.0 2.0 130.0 204.0 0.0 2.0 172.0 0.0 1.4 1.0 0.0 \n",
|
|
|
|
"4 56.0 1.0 2.0 120.0 236.0 0.0 0.0 178.0 0.0 0.8 1.0 0.0 \n",
|
|
|
|
"\n",
|
|
|
|
" 6.0 0 \n",
|
|
|
|
"0 3.0 2 \n",
|
|
|
|
"1 7.0 1 \n",
|
|
|
|
"2 3.0 0 \n",
|
|
|
|
"3 3.0 0 \n",
|
|
|
|
"4 3.0 0 "
|
|
|
|
]
|
|
|
|
},
|
2023-05-04 13:53:50 +02:00
|
|
|
"execution_count": 4,
|
2023-05-04 13:42:53 +02:00
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"data.head()"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 21,
|
|
|
|
"id": "0a9b659c-28c2-4463-8be8-204b6b45e5da",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], dtype='int64')"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 21,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"data.columns"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 22,
|
|
|
|
"id": "a540a17a-deae-4d8d-affd-f987f9379cbe",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/html": [
|
|
|
|
"<div>\n",
|
|
|
|
"<style scoped>\n",
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
" }\n",
|
|
|
|
"\n",
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
" }\n",
|
|
|
|
"\n",
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
" text-align: right;\n",
|
|
|
|
" }\n",
|
|
|
|
"</style>\n",
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
" <thead>\n",
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
" <th></th>\n",
|
|
|
|
" <th>0</th>\n",
|
|
|
|
" <th>1</th>\n",
|
|
|
|
" <th>2</th>\n",
|
|
|
|
" <th>3</th>\n",
|
|
|
|
" <th>4</th>\n",
|
|
|
|
" <th>5</th>\n",
|
|
|
|
" <th>6</th>\n",
|
|
|
|
" <th>7</th>\n",
|
|
|
|
" <th>8</th>\n",
|
|
|
|
" <th>9</th>\n",
|
|
|
|
" <th>10</th>\n",
|
|
|
|
" <th>11</th>\n",
|
|
|
|
" <th>12</th>\n",
|
|
|
|
" <th>13</th>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" </thead>\n",
|
|
|
|
" <tbody>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>298</th>\n",
|
|
|
|
" <td>45.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>110.0</td>\n",
|
|
|
|
" <td>264.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>132.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>1.2</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>7.0</td>\n",
|
|
|
|
" <td>1</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>299</th>\n",
|
|
|
|
" <td>68.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>4.0</td>\n",
|
|
|
|
" <td>144.0</td>\n",
|
|
|
|
" <td>193.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>141.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>3.4</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>7.0</td>\n",
|
|
|
|
" <td>2</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>300</th>\n",
|
|
|
|
" <td>57.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>4.0</td>\n",
|
|
|
|
" <td>130.0</td>\n",
|
|
|
|
" <td>131.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>115.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>1.2</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>7.0</td>\n",
|
|
|
|
" <td>3</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>301</th>\n",
|
|
|
|
" <td>57.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>130.0</td>\n",
|
|
|
|
" <td>236.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>174.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>3.0</td>\n",
|
|
|
|
" <td>1</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>302</th>\n",
|
|
|
|
" <td>38.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>3.0</td>\n",
|
|
|
|
" <td>138.0</td>\n",
|
|
|
|
" <td>175.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>173.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
" <td>?</td>\n",
|
|
|
|
" <td>3.0</td>\n",
|
|
|
|
" <td>0</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" </tbody>\n",
|
|
|
|
"</table>\n",
|
|
|
|
"</div>"
|
|
|
|
],
|
|
|
|
"text/plain": [
|
|
|
|
" 0 1 2 3 4 5 6 7 8 9 10 11 12 \\\n",
|
|
|
|
"298 45.0 1.0 1.0 110.0 264.0 0.0 0.0 132.0 0.0 1.2 2.0 0.0 7.0 \n",
|
|
|
|
"299 68.0 1.0 4.0 144.0 193.0 1.0 0.0 141.0 0.0 3.4 2.0 2.0 7.0 \n",
|
|
|
|
"300 57.0 1.0 4.0 130.0 131.0 0.0 0.0 115.0 1.0 1.2 2.0 1.0 7.0 \n",
|
|
|
|
"301 57.0 0.0 2.0 130.0 236.0 0.0 2.0 174.0 0.0 0.0 2.0 1.0 3.0 \n",
|
|
|
|
"302 38.0 1.0 3.0 138.0 175.0 0.0 0.0 173.0 0.0 0.0 1.0 ? 3.0 \n",
|
|
|
|
"\n",
|
|
|
|
" 13 \n",
|
|
|
|
"298 1 \n",
|
|
|
|
"299 2 \n",
|
|
|
|
"300 3 \n",
|
|
|
|
"301 1 \n",
|
|
|
|
"302 0 "
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 22,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"data.tail()"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 23,
|
|
|
|
"id": "e8d814ee-52a0-40d4-bb25-9d3eff3629be",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/html": [
|
|
|
|
"<div>\n",
|
|
|
|
"<style scoped>\n",
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
" }\n",
|
|
|
|
"\n",
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
" }\n",
|
|
|
|
"\n",
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
" text-align: right;\n",
|
|
|
|
" }\n",
|
|
|
|
"</style>\n",
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
" <thead>\n",
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
" <th></th>\n",
|
|
|
|
" <th>0</th>\n",
|
|
|
|
" <th>1</th>\n",
|
|
|
|
" <th>2</th>\n",
|
|
|
|
" <th>3</th>\n",
|
|
|
|
" <th>4</th>\n",
|
|
|
|
" <th>5</th>\n",
|
|
|
|
" <th>6</th>\n",
|
|
|
|
" <th>7</th>\n",
|
|
|
|
" <th>8</th>\n",
|
|
|
|
" <th>9</th>\n",
|
|
|
|
" <th>10</th>\n",
|
|
|
|
" <th>13</th>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" </thead>\n",
|
|
|
|
" <tbody>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>count</th>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" <td>303.000000</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>mean</th>\n",
|
|
|
|
" <td>54.438944</td>\n",
|
|
|
|
" <td>0.679868</td>\n",
|
|
|
|
" <td>3.158416</td>\n",
|
|
|
|
" <td>131.689769</td>\n",
|
|
|
|
" <td>246.693069</td>\n",
|
|
|
|
" <td>0.148515</td>\n",
|
|
|
|
" <td>0.990099</td>\n",
|
|
|
|
" <td>149.607261</td>\n",
|
|
|
|
" <td>0.326733</td>\n",
|
|
|
|
" <td>1.039604</td>\n",
|
|
|
|
" <td>1.600660</td>\n",
|
|
|
|
" <td>0.937294</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>std</th>\n",
|
|
|
|
" <td>9.038662</td>\n",
|
|
|
|
" <td>0.467299</td>\n",
|
|
|
|
" <td>0.960126</td>\n",
|
|
|
|
" <td>17.599748</td>\n",
|
|
|
|
" <td>51.776918</td>\n",
|
|
|
|
" <td>0.356198</td>\n",
|
|
|
|
" <td>0.994971</td>\n",
|
|
|
|
" <td>22.875003</td>\n",
|
|
|
|
" <td>0.469794</td>\n",
|
|
|
|
" <td>1.161075</td>\n",
|
|
|
|
" <td>0.616226</td>\n",
|
|
|
|
" <td>1.228536</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>min</th>\n",
|
|
|
|
" <td>29.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>1.000000</td>\n",
|
|
|
|
" <td>94.000000</td>\n",
|
|
|
|
" <td>126.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>71.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>1.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>25%</th>\n",
|
|
|
|
" <td>48.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>3.000000</td>\n",
|
|
|
|
" <td>120.000000</td>\n",
|
|
|
|
" <td>211.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>133.500000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>1.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>50%</th>\n",
|
|
|
|
" <td>56.000000</td>\n",
|
|
|
|
" <td>1.000000</td>\n",
|
|
|
|
" <td>3.000000</td>\n",
|
|
|
|
" <td>130.000000</td>\n",
|
|
|
|
" <td>241.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>1.000000</td>\n",
|
|
|
|
" <td>153.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>0.800000</td>\n",
|
|
|
|
" <td>2.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>75%</th>\n",
|
|
|
|
" <td>61.000000</td>\n",
|
|
|
|
" <td>1.000000</td>\n",
|
|
|
|
" <td>4.000000</td>\n",
|
|
|
|
" <td>140.000000</td>\n",
|
|
|
|
" <td>275.000000</td>\n",
|
|
|
|
" <td>0.000000</td>\n",
|
|
|
|
" <td>2.000000</td>\n",
|
|
|
|
" <td>166.000000</td>\n",
|
|
|
|
" <td>1.000000</td>\n",
|
|
|
|
" <td>1.600000</td>\n",
|
|
|
|
" <td>2.000000</td>\n",
|
|
|
|
" <td>2.000000</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" <tr>\n",
|
|
|
|
" <th>max</th>\n",
|
|
|
|
" <td>77.000000</td>\n",
|
|
|
|
" <td>1.000000</td>\n",
|
|
|
|
" <td>4.000000</td>\n",
|
|
|
|
" <td>200.000000</td>\n",
|
|
|
|
" <td>564.000000</td>\n",
|
|
|
|
" <td>1.000000</td>\n",
|
|
|
|
" <td>2.000000</td>\n",
|
|
|
|
" <td>202.000000</td>\n",
|
|
|
|
" <td>1.000000</td>\n",
|
|
|
|
" <td>6.200000</td>\n",
|
|
|
|
" <td>3.000000</td>\n",
|
|
|
|
" <td>4.000000</td>\n",
|
|
|
|
" </tr>\n",
|
|
|
|
" </tbody>\n",
|
|
|
|
"</table>\n",
|
|
|
|
"</div>"
|
|
|
|
],
|
|
|
|
"text/plain": [
|
|
|
|
" 0 1 2 3 4 5 \\\n",
|
|
|
|
"count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 \n",
|
|
|
|
"mean 54.438944 0.679868 3.158416 131.689769 246.693069 0.148515 \n",
|
|
|
|
"std 9.038662 0.467299 0.960126 17.599748 51.776918 0.356198 \n",
|
|
|
|
"min 29.000000 0.000000 1.000000 94.000000 126.000000 0.000000 \n",
|
|
|
|
"25% 48.000000 0.000000 3.000000 120.000000 211.000000 0.000000 \n",
|
|
|
|
"50% 56.000000 1.000000 3.000000 130.000000 241.000000 0.000000 \n",
|
|
|
|
"75% 61.000000 1.000000 4.000000 140.000000 275.000000 0.000000 \n",
|
|
|
|
"max 77.000000 1.000000 4.000000 200.000000 564.000000 1.000000 \n",
|
|
|
|
"\n",
|
|
|
|
" 6 7 8 9 10 13 \n",
|
|
|
|
"count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 \n",
|
|
|
|
"mean 0.990099 149.607261 0.326733 1.039604 1.600660 0.937294 \n",
|
|
|
|
"std 0.994971 22.875003 0.469794 1.161075 0.616226 1.228536 \n",
|
|
|
|
"min 0.000000 71.000000 0.000000 0.000000 1.000000 0.000000 \n",
|
|
|
|
"25% 0.000000 133.500000 0.000000 0.000000 1.000000 0.000000 \n",
|
|
|
|
"50% 1.000000 153.000000 0.000000 0.800000 2.000000 0.000000 \n",
|
|
|
|
"75% 2.000000 166.000000 1.000000 1.600000 2.000000 2.000000 \n",
|
|
|
|
"max 2.000000 202.000000 1.000000 6.200000 3.000000 4.000000 "
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 23,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"data.describe()"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 24,
|
|
|
|
"id": "de75f7d4-dad0-451d-bdf8-5b2f32b7d34a",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"1.0 206\n",
|
|
|
|
"0.0 97\n",
|
|
|
|
"Name: 1, dtype: int64"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 24,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"data[1].value_counts()"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 25,
|
|
|
|
"id": "42f3cfc7-0daa-4c34-9c8d-9a9e37901735",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"<Axes: >"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 25,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGlCAYAAADQyw0eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgYklEQVR4nO3df2xV9f3H8ddZS69A2qul9P4Il9JtdVkoMikOLCgtQqEiBHEDxGwQWaMDWbrSKJ1ZqMtGnQs/jEyCTn4JDLJEkA0mFpECQZICQwE3V7RIGb12MLi3rd1tLff7x8L97tqCu3Av99P2+UhO4jnnc2/fN7HlmXNPe61gMBgUAACAQb4W7wEAAAC+jEABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYJzEeA9wI65cuaLz588rOTlZlmXFexwAAPA/CAaDamxslNvt1te+dv1rJF0yUM6fPy+PxxPvMQAAwA2oq6vTgAEDrrumSwZKcnKypP+8wJSUlDhPAwAA/hd+v18ejyf07/j1dMlAufq2TkpKCoECAEAX87/cnsFNsgAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAME5ivAdAZAYt2hnvEXALnXl+UrxHAIC44AoKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADBORIFSUVGhe+65R8nJyUpPT9fUqVP10Ucfha0JBoMqLy+X2+1W7969lZeXp1OnToWtCQQCWrBggdLS0tS3b19NmTJF586du/lXAwAAuoWIAqWqqkrz58/X4cOHVVlZqS+++EIFBQVqbm4OrXnhhRe0bNkyrVy5UtXV1XI6nRo/frwaGxtDa4qLi7Vt2zZt2bJFBw8eVFNTkx566CG1t7dH75UBAIAuywoGg8EbffA///lPpaenq6qqSvfff7+CwaDcbreKi4v1zDPPSPrP1RKHw6Ff//rXeuKJJ+Tz+dS/f3+9/vrrmjFjhiTp/Pnz8ng82rVrlyZMmPCVX9fv98tut8vn8yklJeVGx++S+DsoPQt/BwVAdxLJv983dQ+Kz+eTJKWmpkqSamtr5fV6VVBQEFpjs9k0ZswYHTp0SJJ09OhRtbW1ha1xu93Kzs4OrfmyQCAgv98ftgEAgO7rhgMlGAyqpKREo0ePVnZ2tiTJ6/VKkhwOR9hah8MROuf1epWUlKQ77rjjmmu+rKKiQna7PbR5PJ4bHRsAAHQBNxwoTz31lD744AP9/ve/73DOsqyw/WAw2OHYl11vTVlZmXw+X2irq6u70bEBAEAXcEOBsmDBAu3YsUPvvvuuBgwYEDrudDolqcOVkIaGhtBVFafTqdbWVl26dOmaa77MZrMpJSUlbAMAAN1XRIESDAb11FNP6Y033tDevXuVmZkZdj4zM1NOp1OVlZWhY62traqqqlJubq4kKScnR7169QpbU19fr5MnT4bWAACAni2iTzOeP3++Nm/erDfffFPJycmhKyV2u129e/eWZVkqLi7WkiVLlJWVpaysLC1ZskR9+vTRrFmzQmvnzp2rhQsXql+/fkpNTVVpaamGDBmicePGRf8VAgCALieiQFm1apUkKS8vL+z42rVrNWfOHEnS008/rZaWFs2bN0+XLl3SiBEj9Pbbbys5OTm0fvny5UpMTNT06dPV0tKiBx54QOvWrVNCQsLNvRoAANAt3NTfQYkX/g4Kegr+DgqA7uSW/R0UAACAWCBQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABgn4kDZv3+/Jk+eLLfbLcuytH379rDzlmV1uv3mN78JrcnLy+twfubMmTf9YgAAQPcQcaA0Nzdr6NChWrlyZafn6+vrw7Y1a9bIsiw98sgjYeuKiorC1q1evfrGXgEAAOh2EiN9QGFhoQoLC6953ul0hu2/+eabys/P19e//vWw43369OmwFgAAQIrxPSifffaZdu7cqblz53Y4t2nTJqWlpWnw4MEqLS1VY2PjNZ8nEAjI7/eHbQAAoPuK+ApKJNavX6/k5GRNmzYt7Phjjz2mzMxMOZ1OnTx5UmVlZXr//fdVWVnZ6fNUVFToueeei+WoAADAIDENlDVr1uixxx7TbbfdFna8qKgo9N/Z2dnKysrS8OHDdezYMQ0bNqzD85SVlamkpCS07/f75fF4Yjc4AACIq5gFyoEDB/TRRx9p69atX7l22LBh6tWrl2pqajoNFJvNJpvNFosxAQCAgWJ2D8prr72mnJwcDR069CvXnjp1Sm1tbXK5XLEaBwAAdCERX0FpamrS6dOnQ/u1tbU6fvy4UlNTNXDgQEn/eQvmD3/4g5YuXdrh8R9//LE2bdqkBx98UGlpafrwww+1cOFC3X333Ro1atRNvBQAANBdRBwoR44cUX5+fmj/6r0hs2fP1rp16yRJW7ZsUTAY1KOPPtrh8UlJSXrnnXf04osvqqmpSR6PR5MmTdLixYuVkJBwgy8DAAB0J1YwGAzGe4hI+f1+2e12+Xw+paSkxHucW2rQop3xHgG30JnnJ8V7BACImkj+/eazeAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGiThQ9u/fr8mTJ8vtdsuyLG3fvj3s/Jw5c2RZVtg2cuTIsDWBQEALFixQWlqa+vbtqylTpujcuXM39UIAAED3EXGgNDc3a+jQoVq5cuU110ycOFH19fWhbdeuXWHni4uLtW3bNm3ZskUHDx5UU1OTHnroIbW3t0f+CgAAQLeTGOkDCgsLVVhYeN01NptNTqez03M+n0+vvfaaXn/9dY0bN06StHHjRnk8Hu3Zs0cTJkyIdCQAANDNxOQelH379ik9PV133nmnioqK1NDQEDp39OhRtbW1qaCgIHTM7XYrOztbhw4d6vT5AoGA/H5/2AYAALqvqAdKYWGhNm3apL1792rp0qWqrq7W2LFjFQgEJEler1dJSUm64447wh7ncDjk9Xo7fc6KigrZ7fbQ5vF4oj02AAAwSMRv8XyVGTNmhP47Oztbw4cPV0ZGhnbu3Klp06Zd83HBYFCWZXV6rqysTCUlJaF9v99PpAAA0I3F/NeMXS6XMjIyVFNTI0lyOp1qbW3VpUuXwtY1NDTI4XB0+hw2m00pKSlhGwAA6L5iHigXL15UXV2dXC6XJCknJ0e9evVSZWVlaE19fb1Onjyp3NzcWI8DAAC6gIjf4mlqatLp06dD+7W1tTp+/LhSU1OVmpqq8vJyPfLII3K5XDpz5ox+9rOfKS0tTQ8//LAkyW63a+7cuVq4cKH69eun1NRUlZaWasiQIaHf6gEAAD1bxIFy5MgR5efnh/av3hsye/ZsrVq1SidOnNCGDRt0+fJluVwu5efna+vWrUpOTg49Zvny5UpMTNT06dPV0tKiBx54QOvWrVNCQkIUXhIAAOjqrGAwGIz3EJHy+/2y2+3y+Xw97n6UQYt2xnsE3EJnnp8U7xEAIGoi+febz+IBAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAA
|
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"data[1].value_counts().plot.bar()"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-05-04 13:53:50 +02:00
|
|
|
"execution_count": 7,
|
2023-05-04 13:42:53 +02:00
|
|
|
"id": "973dcd7c-4c13-4992-bd5a-21419c245e11",
|
2023-05-04 13:53:50 +02:00
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"<Axes: >"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 7,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnKklEQVR4nO3df3RU9Z3/8ddIkiEJSZb8TiTErAaphKWYWIFa+R3IFlDwW/AXDbuUAxUiKVArsrvEPTVp3ZUfCytVlwVFKG5FLLuwQvgCUYxYDFAMKKJGCJqQSCE/MDsB/Hz/6Dpfh/wOk8wn4fk4554zc+/nfu773s/N5HXuzJ1xGGOMAAAALHKDrwsAAAC4GgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdP18X0B5ff/21vvjiC4WEhMjhcPi6HAAA0ArGGNXU1Cg+Pl433ND8NZIuGVC++OILJSQk+LoMAADQDqWlperTp0+zbbpkQAkJCZH05x0MDQ31cTUAAKA1qqurlZCQ4P4/3pwuGVC+eVsnNDSUgAIAQBfTmo9n8CFZAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKzTJX8sEOju5s+fr8rKSklSVFSUVq5c6eOKAKBzEVAAC1VWVurs2bO+LgMAfKZNb/Hk5eXpjjvuUEhIiKKjo3XvvffqxIkTHm1mzJghh8PhMQ0ZMsSjjcvlUlZWliIjIxUcHKxJkybpzJkz1743AACgW2hTQCkoKNDcuXN14MAB5efn6/Lly0pPT9fFixc92o0fP15lZWXuaceOHR7Ls7OztXXrVm3evFn79+9XbW2tJkyYoCtXrlz7HgEAgC6vTW/xvPHGGx7P161bp+joaBUVFenuu+92z3c6nYqNjW20j6qqKq1du1YbNmzQmDFjJEkvv/yyEhIStHv3bo0bN66t+wAAALqZa7qLp6qqSpIUHh7uMX/fvn2Kjo5Wv379NGvWLFVUVLiXFRUV6dKlS0pPT3fPi4+PV0pKigoLCxvdjsvlUnV1tccEAAC6r3YHFGOMFixYoLvuukspKSnu+RkZGdq4caP27NmjZ555RgcPHtSoUaPkcrkkSeXl5QoICFDv3r09+ouJiVF5eXmj28rLy1NYWJh7SkhIaG/ZAACgC2j3XTzz5s3T0aNHtX//fo/506ZNcz9OSUlRWlqaEhMTtX37dk2ZMqXJ/owxcjgcjS5bvHixFixY4H5eXV1NSAEAoBtr1xWUrKwsbdu2TXv37lWfPn2abRsXF6fExESdPHlSkhQbG6v6+nqdP3/eo11FRYViYmIa7cPpdCo0NNRjAgAA3VebAooxRvPmzdNrr72mPXv2KCkpqcV1zp07p9LSUsXFxUmSUlNT5e/vr/z8fHebsrIyFRcXa9iwYW0sHwAAdEdteotn7ty52rRpk37/+98rJCTE/ZmRsLAwBQYGqra2Vjk5ObrvvvsUFxenzz77TE888YQiIyM1efJkd9uZM2dq4cKFioiIUHh4uBYtWqSBAwe67+oBuou/2Tq+Xet9+dWlbz0+2+5+JGnd5DdabgQAlmlTQFmzZo0kacSIER7z161bpxkzZqhHjx56//339dJLL+nChQuKi4vTyJEj9corrygkJMTdfvny5fLz89PUqVNVV1en0aNHa/369erRo8e17xEAAOjy2hRQjDHNLg8MDNTOnTtb7Kdnz55atWqVVq1a1ZbNAwCA6wS/ZgwAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYJ12/xYPgI7j18shyXzrMQBcXwgogIVi7uNPE8D1jbd4AACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOm0KKHl5ebrjjjsUEhKi6Oho3XvvvTpx4oRHG2OMcnJyFB8fr8DAQI0YMULHjh3zaONyuZSVlaXIyEgFBwdr0qRJOnPmzLXvDQAA6BbaFFAKCgo0d+5cHThwQPn5+bp8+bLS09N18eJFd5unn35ay5Yt0+rVq3Xw4EHFxsZq7NixqqmpcbfJzs7W1q1btXnzZu3fv1+1tbWaMGGCrly54r09AwAAXZbDGGPau3JlZaWio6NVUFCgu+++W8YYxcfHKzs7W7/4xS8k/flqSUxMjH79619r9uzZqqqqUlRUlDZs2KBp06ZJkr744gslJCRox44dGjduXIvbra6uVlhYmKqqqhQaGtre8oEO9zdbx/u6BK2b/IavSwAASW37/31Nn0GpqqqSJIWHh0uSSkpKVF5ervT0dHcbp9Op4cOHq7CwUJJUVFSkS5cuebSJj49XSkqKuw0AALi++bV3RWOMFixYoLvuukspKSmSpPLycklSTEyMR9uYmBidOnXK3SYgIEC9e/du0Oab9a/mcrnkcrncz6urq9tbNgAA6ALafQVl3rx5Onr0qH772982WOZwODyeG2MazLtac23y8vIUFhbmnhISEtpbNgAA6ALaFVCysrK0bds27d27V3369HHPj42NlaQGV0IqKircV1ViY2NVX1+v8+fPN9nmaosXL1ZVVZV7Ki0tbU/ZAACgi2hTQDHGaN68eXrttde0Z88eJSUleSxPSkpSbGys8vPz3fPq6+tVUFCgYcOGSZJSU1Pl7+/v0aasrEzFxcXuNldzOp0KDQ31mAAAQPfVps+gzJ07V5s2bdLvf/97hYSEuK+UhIWFKTAwUA6HQ9nZ2crNzVVycrKSk5OVm5uroKAgPfjgg+62M2fO1MKFCxUREaHw8HAtWrRIAwcO1JgxY7y/hwAAoMtpU0BZs2aNJGnEiBEe89etW6cZM2ZIkh577DHV1dXpkUce0fnz53XnnXdq165dCgkJcbdfvny5/Pz8NHXqVNXV1Wn06NFav369evTocW17AwAAuoVr+h4UX+F7UNBV8D0oAPD/ddr3oAAAAHQEAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsI6frwsAgOvd/PnzVVlZKUmKiorSypUrfVwR4HttvoLy5ptvauLEiYqPj5fD4dDrr7/usXzGjBlyOBwe05AhQzzauFwuZWVlKTIyUsHBwZo0aZLOnDlzTTsCAF1VZWWlzp49q7Nnz7qDCnC9a3NAuXjxogYNGqTVq1c32Wb8+PEqKytzTzt27PBYnp2dra1bt2rz5s3av3+/amtrNWHCBF25cqXtewAAALqdNr/Fk5GRoYyMjGbbOJ1OxcbGNrqsqqpKa9eu1YYNGzRmzBhJ0ssvv6yEhATt3r1
|
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"sns.barplot(data)"
|
|
|
|
]
|
2023-05-04 13:42:53 +02:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"id": "b13946d0-7731-459d-b1bd-e2a89752df0e",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": []
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
|
|
|
"display_name": "Python 3 (ipykernel)",
|
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 3
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
"name": "python",
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
"version": "3.10.9"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 5
|
|
|
|
}
|