From 3bd5b65ac3dbe4469672d61c1ccc229b58f49e44 Mon Sep 17 00:00:00 2001 From: thpc-ensae Date: Thu, 4 May 2023 11:53:50 +0000 Subject: [PATCH] modification --- test.ipynb | 46 +++++++++++++++++++++++++++++++++++++--------- 1 file changed, 37 insertions(+), 9 deletions(-) diff --git a/test.ipynb b/test.ipynb index da0ea2e..9bfbc6a 100644 --- a/test.ipynb +++ b/test.ipynb @@ -2,9 +2,11 @@ "cells": [ { "cell_type": "code", - "execution_count": 18, + "execution_count": 2, "id": "c6b75e30-ce16-46c4-ab91-9ec69b3a5a9a", - "metadata": {}, + "metadata": { + "tags": [] + }, "outputs": [], "source": [ "url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data\"" @@ -12,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 3, "id": "617f1d2a-49ab-4a1b-840c-73ca28e70ae1", "metadata": { "tags": [] @@ -21,12 +23,13 @@ "source": [ "#Importation des données \n", "import pandas as pd\n", + "import seaborn as sns\n", "data = pd.io.parsers.read_csv(url)" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 4, "id": "ec96f94d-f855-42c0-b056-0520af40a8f5", "metadata": { "tags": [] @@ -175,7 +178,7 @@ "4 3.0 0 " ] }, - "execution_count": 27, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -626,11 +629,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "973dcd7c-4c13-4992-bd5a-21419c245e11", - "metadata": {}, - "outputs": [], - "source": [] + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnKklEQVR4nO3df3RU9Z3/8ddIkiEJSZb8TiTErAaphKWYWIFa+R3IFlDwW/AXDbuUAxUiKVArsrvEPTVp3ZUfCytVlwVFKG5FLLuwQvgCUYxYDFAMKKJGCJqQSCE/MDsB/Hz/6Dpfh/wOk8wn4fk4554zc+/nfu773s/N5HXuzJ1xGGOMAAAALHKDrwsAAAC4GgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdP18X0B5ff/21vvjiC4WEhMjhcPi6HAAA0ArGGNXU1Cg+Pl433ND8NZIuGVC++OILJSQk+LoMAADQDqWlperTp0+zbbpkQAkJCZH05x0MDQ31cTUAAKA1qqurlZCQ4P4/3pwuGVC+eVsnNDSUgAIAQBfTmo9n8CFZAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKzTJX8sEOju5s+fr8rKSklSVFSUVq5c6eOKAKBzEVAAC1VWVurs2bO+LgMAfKZNb/Hk5eXpjjvuUEhIiKKjo3XvvffqxIkTHm1mzJghh8PhMQ0ZMsSjjcvlUlZWliIjIxUcHKxJkybpzJkz1743AACgW2hTQCkoKNDcuXN14MAB5efn6/Lly0pPT9fFixc92o0fP15lZWXuaceOHR7Ls7OztXXrVm3evFn79+9XbW2tJkyYoCtXrlz7HgEAgC6vTW/xvPHGGx7P161bp+joaBUVFenuu+92z3c6nYqNjW20j6qqKq1du1YbNmzQmDFjJEkvv/yyEhIStHv3bo0bN66t+wAAALqZa7qLp6qqSpIUHh7uMX/fvn2Kjo5Wv379NGvWLFVUVLiXFRUV6dKlS0pPT3fPi4+PV0pKigoLCxvdjsvlUnV1tccEAAC6r3YHFGOMFixYoLvuukspKSnu+RkZGdq4caP27NmjZ555RgcPHtSoUaPkcrkkSeXl5QoICFDv3r09+ouJiVF5eXmj28rLy1NYWJh7SkhIaG/ZAACgC2j3XTzz5s3T0aNHtX//fo/506ZNcz9OSUlRWlqaEhMTtX37dk2ZMqXJ/owxcjgcjS5bvHixFixY4H5eXV1NSAEAoBtr1xWUrKwsbdu2TXv37lWfPn2abRsXF6fExESdPHlSkhQbG6v6+nqdP3/eo11FRYViYmIa7cPpdCo0NNRjAgAA3VebAooxRvPmzdNrr72mPXv2KCkpqcV1zp07p9LSUsXFxUmSUlNT5e/vr/z8fHebsrIyFRcXa9iwYW0sHwAAdEdteotn7ty52rRpk37/+98rJCTE/ZmRsLAwBQYGqra2Vjk5ObrvvvsUFxenzz77TE888YQiIyM1efJkd9uZM2dq4cKFioiIUHh4uBYtWqSBAwe67+oBuou/2Tq+Xet9+dWlbz0+2+5+JGnd5DdabgQAlmlTQFmzZo0kacSIER7z161bpxkzZqhHjx56//339dJLL+nChQuKi4vTyJEj9corrygkJMTdfvny5fLz89PUqVNVV1en0aNHa/369erRo8e17xEAAOjy2hRQjDHNLg8MDNTOnTtb7Kdnz55atWqVVq1a1ZbNAwCA6wS/ZgwAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYJ12/xYPgI7j18shyXzrMQBcXwgogIVi7uNPE8D1jbd4AACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOm0KKHl5ebrjjjsUEhKi6Oho3XvvvTpx4oRHG2OMcnJyFB8fr8DAQI0YMULHjh3zaONyuZSVlaXIyEgFBwdr0qRJOnPmzLXvDQAA6BbaFFAKCgo0d+5cHThwQPn5+bp8+bLS09N18eJFd5unn35ay5Yt0+rVq3Xw4EHFxsZq7NixqqmpcbfJzs7W1q1btXnzZu3fv1+1tbWaMGGCrly54r09AwAAXZbDGGPau3JlZaWio6NVUFCgu+++W8YYxcfHKzs7W7/4xS8k/flqSUxMjH79619r9uzZqqqqUlRUlDZs2KBp06ZJkr744gslJCRox44dGjduXIvbra6uVlhYmKqqqhQaGtre8oEO9zdbx/u6BK2b/IavSwAASW37/31Nn0GpqqqSJIWHh0uSSkpKVF5ervT0dHcbp9Op4cOHq7CwUJJUVFSkS5cuebSJj49XSkqKuw0AALi++bV3RWOMFixYoLvuukspKSmSpPLycklSTEyMR9uYmBidOnXK3SYgIEC9e/du0Oab9a/mcrnkcrncz6urq9tbNgAA6ALafQVl3rx5Onr0qH772982WOZwODyeG2MazLtac23y8vIUFhbmnhISEtpbNgAA6ALaFVCysrK0bds27d27V3369HHPj42NlaQGV0IqKircV1ViY2NVX1+v8+fPN9nmaosXL1ZVVZV7Ki0tbU/ZAACgi2hTQDHGaN68eXrttde0Z88eJSUleSxPSkpSbGys8vPz3fPq6+tVUFCgYcOGSZJSU1Pl7+/v0aasrEzFxcXuNldzOp0KDQ31mAAAQPfVps+gzJ07V5s2bdLvf/97hYSEuK+UhIWFKTAwUA6HQ9nZ2crNzVVycrKSk5OVm5uroKAgPfjgg+62M2fO1MKFCxUREaHw8HAtWrRIAwcO1JgxY7y/hwAAoMtpU0BZs2aNJGnEiBEe89etW6cZM2ZIkh577DHV1dXpkUce0fnz53XnnXdq165dCgkJcbdfvny5/Pz8NHXqVNXV1Wn06NFav369evTocW17AwAAuoVr+h4UX+F7UNBV8D0oAPD/ddr3oAAAAHQEAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsI6frwsAgOvd/PnzVVlZKUmKiorSypUrfVwR4HttvoLy5ptvauLEiYqPj5fD4dDrr7/usXzGjBlyOBwe05AhQzzauFwuZWVlKTIyUsHBwZo0aZLOnDlzTTsCAF1VZWWlzp49q7Nnz7qDCnC9a3NAuXjxogYNGqTVq1c32Wb8+PEqKytzTzt27PBYnp2dra1bt2rz5s3av3+/amtrNWHCBF25cqXtewAAALqdNr/Fk5GRoYyMjGbbOJ1OxcbGNrqsqqpKa9eu1YYNGzRmzBhJ0ssvv6yEhATt3r1b48aNa2tJAACgm+mQD8nu27dP0dHR6tevn2bNmqWKigr3sqKiIl26dEnp6enuefHx8UpJSVFhYWGj/blcLlVXV3tMAACg+/J6QMnIyNDGjRu1Z88ePfPMMzp48KBGjRoll8slSSovL1dAQIB69+7tsV5MTIzKy8sb7TMvL09hYWHuKSEhwdtlAwAAi3j9Lp5p06a5H6ekpCgtLU2JiYnavn27pkyZ0uR6xhg5HI5Gly1evFgLFixwP6+uriakALDOva/+33atV/vV/7gfV3z1P+3uR5Je/z+j270uYJMO/x6UuLg4JSYm6uTJk5Kk2NhY1dfX6/z58x7tKioqFBMT02gfTqdToaGhHhMAAOi+OjygnDt3TqWlpYqLi5Mkpaamyt/fX/n5+e42ZWVlKi4u1rBhwzq6HAAA0AW0+S2e2tpaffzxx+7nJSUlOnLkiMLDwxUeHq6cnBzdd999iouL02effaYnnnhCkZGRmjx5siQpLCxMM2fO1MKFCxUREaHw8HAtWrRIAwcOdN/VAwAArm9tDijvvfeeRo4c6X7+zWdDMjMztWbNGr3//vt66aWXdOHCBcXFxWnkyJF65ZVXFBIS4l5n+fLl8vPz09SpU1VXV6fRo0dr/fr16tGjhxd2CQC6lhuCQ/T1tx4DaEdAGTFihIwxTS7fuXNni3307NlTq1at0qpVq9q6eQDodoIm/9jXJQDW4ccCAQCAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKzj5+sCgM42f/58VVZWSpKioqK0cuVKH1cEALgaAQXXncrKSp09e9bXZQAAmsFbPAAAwDoEFAAAYB0CCgAAsA6fQUGX9NyGce1et6b28rcen72mvmZP39nudQEATeMKCgAAsA4BBQAAWIeAAgAArMNnUHDdCQpu/DEAwB4EFFx3Rv01pz0A2I63eAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOm0OKG+++aYmTpyo+Ph4ORwOvf766x7LjTHKyclRfHy8AgMDNWLECB07dsyjjcvlUlZWliIjIxUcHKxJkybpzJkz17QjAACg+2hzQLl48aIGDRqk1atXN7r86aef1rJly7R69WodPHhQsbGxGjt2rGpqatxtsrOztXXrVm3evFn79+9XbW2tJkyYoCtXrrR/TwAAQLfh19YVMjIylJGR0egyY4xWrFihJUuWaMqUKZKkF198UTExMdq0aZNmz56tqqoqrV27Vhs2bNCYMWMkSS+//LISEhK0e/dujRs37hp2BwAAdAde/QxKSUmJysvLlZ6e7p7ndDo1fPhwFRYWSpKKiop06dIljzbx8fFKSUlxt7may+VSdXW1xwQAALovrwaU8vJySVJMTIzH/JiYGPey8vJyBQQEqHfv3k22uVpeXp7CwsLcU0JCgjfLBgAAlumQu3gcDofHc2NMg3lXa67N4sWLVVVV5Z5KS0u9VisAALCPVwNKbGysJDW4ElJRUeG+qhIbG6v6+nqdP3++yTZXczqdCg0N9ZgAAED35dWAkpSUpNjYWOXn57vn1dfXq6CgQMOGDZMkpaamyt/f36NNWVmZiouL3W0AAMD1rc138dTW1urjjz92Py8pKdGRI0cUHh6uvn37Kjs7W7m5uUpOTlZycrJyc3MVFBSkBx98UJIUFhammTNnauHChYqIiFB4eLgWLVqkgQMHuu/qAQAA17c2B5T33ntPI0eOdD9fsGCBJCkzM1Pr16/XY489prq6Oj3yyCM6f/687rzzTu3atUshISHudZYvXy4/Pz9NnTpVdXV1Gj16tNavX68ePXp4YZcAAEBX1+aAMmLECBljmlzucDiUk5OjnJycJtv07NlTq1at0qpVq9q6eQAAcB3gt3gAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFjHz9cF2GD+/PmqrKyUJEVFRWnlypU+rggAgOsbAUVSZWWlzp496+syAADA/+ItHgAAYJ1ucwWlcs3L7V73Ss1Fj8fX0lfUTx9u97oAAODPuIICAACs4/WAkpOTI4fD4THFxsa6lxtjlJOTo/j4eAUGBmrEiBE6duyYt8sAAABdWIdcQRkwYIDKysrc0/vvv+9e9vTTT2vZsmVavXq1Dh48qNjYWI0dO1Y1NTUdUUqrRAQGKTKolyKDeikiMMhndQAAgD/rkM+g+Pn5eVw1+YYxRitWrNCSJUs0ZcoUSdKLL76omJgYbdq0SbNnz+6Iclr05Mgf+mS7AACgcR1yBeXkyZOKj49XUlKS7r//fn366aeSpJKSEpWXlys9Pd3d1ul0avjw4SosLOyIUgAAQBfk9Ssod955p1566SX169dPZ8+e1S9/+UsNGzZMx44dU3l5uSQpJibGY52YmBidOnWqyT5dLpdcLpf7eXV1tbfLBgAAFvF6QMnIyHA/HjhwoIYOHaqbb75ZL774ooYMGSJJcjgcHusYYxrM+7a8vDw9+eST3i4VAABYqsNvMw4ODtbAgQN18uRJ9+dSvrmS8o2KiooGV1W+bfHixaqqqnJPpaWlHVozAADwrQ4PKC6XSx988IHi4uKUlJSk2NhY5efnu5fX19eroKBAw4YNa7IPp9Op0NBQjwkAAHRfXn+LZ9GiRZo4caL69u2riooK/fKXv1R1dbUyMzPlcDiUnZ2t3NxcJScnKzk5Wbm5uQoKCtKDDz7o7VIAAEAX5fWAcubMGT3wwAP68ssvFRUVpSFDhujAgQNKTEyUJD322GOqq6vTI488ovPnz+vOO+/Url27FBIS4u1SAABAF+X1gLJ58+ZmlzscDuXk5CgnJ8fbmwYAAN0Ev8UDAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOv4+XLjzz77rP7pn/5JZWVlGjBggFasWKEf/OAHviwJknau/Wtfl6BxM3f4ugQAgA/57ArKK6+8ouzsbC1ZskSHDx/WD37wA2VkZOj06dO+KgkAAFjCZ1dQli1bppkzZ+onP/mJJGnFihXauXOn1qxZo7y8PF+VBQBAq3y2otzXJeim7Fhfl9BhfBJQ6uvrVVRUpMcff9xjfnp6ugoLCxu0d7lccrlc7udVVVWSpOrqave8mrq6Dqq2bZzfqqkxpb+Z3kmVNC1hzoZml1+su9RJlTStuoXjWFd3uZMqaV5LddZ/5fs6W6qxK/jR66/4ugRJ0u/undbs8ktfXeykSprWHcY7f8s5X5cgSRp7X0Szy2v+p6aTKmladXVQs8sr1vyhkyppWvRPv+d+/M35aYxpeUXjA59//rmRZN5++22P+U899ZTp169fg/ZLly41kpiYmJiYmJi6wVRaWtpiVvDph2QdDofHc2NMg3mStHjxYi1YsMD9/Ouvv9af/vQnRURENNq+Paqrq5WQkKDS0lKFhoZ6pU9v6wo1Sl2jTmr0nq5QJzV6T1eokxq9x9t1GmNUU1Oj+Pj4Ftv6JKBERkaqR48eKi/3fP+uoqJCMTExDdo7nU45nU6PeX/xF3/RIbWFhoZafbJIXaNGqWvUSY3e0xXqpEbv6Qp1UqP3eLPOsLCwVrXzyV08AQEBSk1NVX5+vsf8/Px8DRs2zBclAQAAi/jsLZ4FCxZo+vTpSktL09ChQ/X888/r9OnTmjNnjq9KAgAAlvBZQJk2bZrOnTunf/zHf1RZWZlSUlK0Y8cOJSYm+qQep9OppUuXNngrySZdoUapa9RJjd7TFeqkRu/pCnVSo/f4sk6HMa251wcAAKDz8Fs8AADAOgQUAABgHQIKAACwDgEFAABYp9sGlM8//1wPP/ywIiIiFBQUpO9+97sqKipyL8/JyVH//v0VHBys3r17a8yYMXr33Xdb7HfLli267bbb5HQ6ddttt2nr1q1eq/nNN9/UxIkTFR8fL4fDoddff73FdQoKCpSamqqePXvqL//yL/Wb3/ymS9Uyf/58paamyul06rvf/a7Xa5s9e7YcDodWrFjhMX/EiBFyOBwe0/3339/itp999lklJSWpZ8+eSk1N1VtvvdWgTV5enu644w6FhIQoOjpa9957r06cOOHRpjXn3+zZs3XzzTcrMDBQUVFRuueee/Thhx96pcardcZ4//GPf9QDDzyghIQEBQYG6jvf+Y5WrlzZ4nZa0prj7Y36m9PS8ZsxY0aD823IkCEebVwul7KyshQZGang4GBNmjRJZ86caXHb7Rlvb/bXUa9BTWnPeO/fv1/f//73FRERocDAQPXv31/Lly/vsBrXrFmjv/qrv3J/udnQoUP13//9382u09nHsTW8fW61mVd+XMcyf/rTn0xiYqKZMWOGeffdd01JSYnZvXu3+fjjj91tNm7caPLz880nn3xiiouLzcyZM01oaKipqKhost/CwkLTo0cPk5ubaz744AOTm5tr/Pz8zIEDB7xS944dO8ySJUvMli1bjCSzdevWZtt/+umnJigoyMyfP98cP37cvPDCC8bf39+8+uqrXaaWrKwss3r1ajN9+nQzaNAgr9a2detWM2jQIBMfH2+WL1/usWz48OFm1qxZpqyszD1duHCh2e1u3rzZ+Pv7mxdeeMEcP37czJ8/3wQHB5tTp055tBs3bpxZt26dKS4uNkeOHDE//OEPTd++fU1tba27TWvOv+eee84UFBSYkpISU1RUZCZOnGgSEhLM5cuXr7nGq3XGeK9du9ZkZWWZffv2mU8++cRs2LDBBAYGmlWrVjW7rZa05nh7o/7mtHT8MjMzzfjx4z3Ot3Pnznm0mTNnjrnxxhtNfn6+OXTokBk5cqQZNGhQh4y3t/rryNegprRnvA8dOmQ2bdpkiouLTUlJidmwYYMJCgoyzz33XIfUuG3bNrN9+3Zz4sQJc+LECfPEE08Yf39/U1xc3Gh7XxzHlnj73GqPbhlQfvGLX5i77rqrTetUVVUZSWb37t1Ntpk6daoZP368x7xx48aZ+++/v111Nqc1/yQee+wx079/f495s2fPNkOGDOlytSxdurTVAaU1tZ05c8bceOONpri42CQmJjYaUObPn9+mbX3ve98zc+bM8ZjXv39/8/jjjze7XkVFhZFkCgoKmmzTmvPvj3/8o5HkEbS9VeO3dea598gjj5iRI0e2aZ2WtOZ4d+TfTlMB5Z577mlynQsXLhh/f3+zefNm97zPP//c3HDDDeaNN95ocj1vjPe19NdZr0HNac14N2by5Mnm4Ycf7qCqGurdu7f5t3/7t0aX2XAcr+btc6s9uuVbPNu2bVNaWpp+9KMfKTo6WoMHD9YLL7zQZPv6+no9//zzCgsL06BBg5ps98477yg9Pd1j3rhx41RYWOi12tuiqXree+89Xbp06bqt5euvv9b06dP185//XAMGDGiy3caNGxUZGakBAwZo0aJFqqlp+qfT6+vrVVRU1GAf09PTWxz/qqoqSVJ4eHiTfbd0/l28eFHr1q1TUlKSEhISvF5jW3lrvKuqqpo8Lu3V0vGWfHO+7tu3T9HR0erXr59mzZqliooK97KioiJdunTJo6b4+HilpKQ0OXbeHu/29GfD331rxvtqhw8fVmFhoYYPH95RZblduXJFmzdv1sWLFzV06NBG29hwHL+tM19LmtMtA8qnn36qNWvWKDk5WTt37tScOXP06KOP6qWXXvJo91//9V/q1auXevbsqeXLlys/P1+RkZFN9lteXt7gxwxjYmIa/OhhZ2mqnsuXL+vLL7+8bmv59a9/LT8/Pz366KNNtnnooYf029/+Vvv27dPf//3fa8uWLZoyZUqT7b/88ktduXKlzeNvjNGCBQt01113KSUlxWNZa86/Z599Vr169VKvXr30xhtvKD8/XwEBAV6tsT28Md7vvPOO/uM//kOzZ8/2Wl3NHe9v6+zzNSMjQxs3btSePXv0zDPP6ODBgxo1apRcLpe7noCAAPXu3btBTU2NnbfHuz39+frvvrXj/Y0+ffrI6XQqLS1Nc+fO1U9+8pMOq+39999Xr1695HQ6NWfOHG3dulW33XZbo219fRyv1pmvJc3x2Vfdd6Svv/5aaWlpys3NlSQNHjxYx44d05o1a/TjH//Y3W7kyJE6cuSIvvzyS73wwguaOnWq3n33XUVHRzfZt8Ph8HhujGkwrzM1Vk9j86+XWoqKirRy5UodOnSo2e3OmjXL/TglJUXJyclKS0vToUOHdPvttze5XlvHf968eTp69Kj279/fYFlrzr+HHnpIY8eOVVlZmf75n/9ZU6dO1dtvv62ePXt6rcb2upbxPnbsmO655x79wz/8g8aOHeu1mpo73lfrzPN12rRp7scpKSlKS0tTYmKitm/f3mwwbs3YeXu829qfL//u2zLekvTWW2+ptrZWBw4c0OOPP65bbrlFDzzwQIfUduutt+rIkSO6cOGCtmzZoszMTBUUFDQZUmx4/byar//fdcsrKHFxcQ1Ogu985zs6ffq0x7zg4GDdcsstGjJkiNauXSs/Pz+tXbu2yX5jY2MbpMeKiooGKbOzNFWPn5+fIiIirsta3nrrLVVUVKhv377y8/OTn5+fTp06pYULF+qmm25qcr3bb79d/v7+OnnyZKPLIyMj1aNHjzaNf1ZWlrZt26a9e/eqT58+DZa35vwLCwtTcnKy7r77br366qv68MMPm7xzrD01tte1jPfx48c1atQozZo1S3/3d3/ntZpaOt7f5uvzNS4uTomJie7zLTY2VvX19Tp//nyDmpoaO2+Pd3v68+VxbMt4fyMpKUkDBw7UrFmz9LOf/Uw5OTkdVl9AQIBuueUWpaWlKS8vT4MGDWryrjVfn49X68zXkuZ0y4Dy/e9/v8FtZx999FGLP0RojHFfcm3M0KFDlZ+f7zFv165dGjZsWPuLvQZN1ZOWliZ/f//rspbp06fr6NGjOnLkiHuKj4/Xz3/+c+3cubPJ9Y4dO6ZLly4pLi6u0eUBAQFKTU1tsI/5+fkNxt8Yo3nz5um1117Tnj17lJSU1KraWzr/WmrTlhqvVXvH+9ixYxo5cqQyMzP11FNPeaWW9hxvX5+v586dU2lpqft8S01Nlb+/v0dNZWVlKi4ubnLsvD3e7enPF8exvX9fjfXT0t+bNzW3PV+fj1frzNeSZnXax3E70R/+8Afj5+dnnnrqKXPy5EmzceNGExQUZF5++WVjjDG1tbVm8eLF5p133jGfffaZKSoqMjNnzjROp9PjNrDp06d7fGL57bffNj169DC/+tWvzAcffGB+9atfefU245qaGnP48GFz+PBhI8ksW7bMHD582H1b1+OPP26mT5/ubv/NrWk/+9nPzPHjx83atWu9dmtaR9Ty2muvmVtvvdVjOydPnjSHDx82s2fPNv369XNv0+Vytbu2q119F8/HH39snnzySXPw4EFTUlJitm/fbvr3728GDx7scUvnqFGjPG6B/ea2u7Vr15rjx4+b7OxsExwcbD777DOP7f30pz81YWFhZt++fR63lX711VfGmNadf5988onJzc017733njl16pQpLCw099xzjwkPDzdnz5695hrbeky9Md7FxcUmKirKPPTQQx7Hpblb+1ujpePd3vrbornjV1NTYxYuXGgKCwtNSUmJ2bt3rxk6dKi58cYbTXV1tbuPOXPmmD59+pjdu3ebQ4cOmVGjRjW4zdhb492UlvrrzNegprRnvFevXm22bdtmPvroI/PRRx+Zf//3fzehoaFmyZIlHVLj4sWLzZtvvmlKSkrM0aNHzRNPPGFuuOEGs2vXrkbr88VxbIm3z6326JYBxRhj/vM//9OkpKQYp9Np+vfvb55//nn3srq6OjN58mQTHx9vAgICTFxcnJk0aZL5wx/+4NHH8OHDTWZmpse83/3ud+bWW281/v7+pn///mbLli1eq3nv3r1GUoPpmxoyMzPN8OHDPdbZt2+fGTx4sAkICDA33XSTWbNmjbW1rFu3zlydiYcPH97odkpKStpd29WuDiinT582d999twkPDzcBAQHm5ptvNo8++miD76VITEw0S5cu9Zj3r//6ryYxMdEEBASY22+/vdFbGxurTZJZt26dMaZ159/nn39uMjIyTHR0tPH39zd9+vQxDz74oPnwww+9UuPVOmO8ly5d2ug2EhMTW6yvOS0d7/bW3xbNHb+vvvrKpKenm6ioKOPv72/69u1rMjMzzenTpz36qKurM/PmzTPh4eEmMDDQTJgwoUEbb413c5rrrzNfg5rSnvH+l3/5FzNgwAATFBRkQkNDzeDBg82zzz5rrly50iE1/u3f/q37GEZFRZnRo0e7w0lj9RnT+cexNbx9brWVw5j//SQOAACAJbrlZ1AAAEDXRkABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHX+HxaCW2rZq6t6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.barplot(data)" + ] }, { "cell_type": "code",