koto/test.ipynb
2023-05-02 13:53:53 +00:00

979 lines
51 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "935dd393-0cdb-470f-b5e7-cf2af42855fd",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"url = \"https://pixees.fr/informatiquelycee/n_site/asset/titanic.csv\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a4ff45d8-079a-4a2e-a220-87760831d4ba",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#Importation des données \n",
"import pandas as pd\n",
"data = pd.io.parsers.read_csv(url)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "3f9f39d2-aced-4bba-acf7-b00505f93a21",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>PassengerId</th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Name</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" <th>SibSp</th>\n",
" <th>Parch</th>\n",
" <th>Ticket</th>\n",
" <th>Fare</th>\n",
" <th>Cabin</th>\n",
" <th>Embarked</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>Braund, Mr. Owen Harris</td>\n",
" <td>male</td>\n",
" <td>22.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>A/5 21171</td>\n",
" <td>7.2500</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
" <td>female</td>\n",
" <td>38.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>PC 17599</td>\n",
" <td>71.2833</td>\n",
" <td>C85</td>\n",
" <td>C</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>Heikkinen, Miss. Laina</td>\n",
" <td>female</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>STON/O2. 3101282</td>\n",
" <td>7.9250</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
" <td>female</td>\n",
" <td>35.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>113803</td>\n",
" <td>53.1000</td>\n",
" <td>C123</td>\n",
" <td>S</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>Allen, Mr. William Henry</td>\n",
" <td>male</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>373450</td>\n",
" <td>8.0500</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" PassengerId Survived Pclass \\\n",
"0 1 0 3 \n",
"1 2 1 1 \n",
"2 3 1 3 \n",
"3 4 1 1 \n",
"4 5 0 3 \n",
"\n",
" Name Sex Age SibSp \\\n",
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
"4 Allen, Mr. William Henry male 35.0 0 \n",
"\n",
" Parch Ticket Fare Cabin Embarked \n",
"0 0 A/5 21171 7.2500 NaN S \n",
"1 0 PC 17599 71.2833 C85 C \n",
"2 0 STON/O2. 3101282 7.9250 NaN S \n",
"3 0 113803 53.1000 C123 S \n",
"4 0 373450 8.0500 NaN S "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f4b6f349-e8d5-406b-84f0-ee876df95e1f",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>PassengerId</th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Name</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" <th>SibSp</th>\n",
" <th>Parch</th>\n",
" <th>Ticket</th>\n",
" <th>Fare</th>\n",
" <th>Cabin</th>\n",
" <th>Embarked</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>886</th>\n",
" <td>887</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>Montvila, Rev. Juozas</td>\n",
" <td>male</td>\n",
" <td>27.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>211536</td>\n",
" <td>13.00</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" </tr>\n",
" <tr>\n",
" <th>887</th>\n",
" <td>888</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Graham, Miss. Margaret Edith</td>\n",
" <td>female</td>\n",
" <td>19.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>112053</td>\n",
" <td>30.00</td>\n",
" <td>B42</td>\n",
" <td>S</td>\n",
" </tr>\n",
" <tr>\n",
" <th>888</th>\n",
" <td>889</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>Johnston, Miss. Catherine Helen \"Carrie\"</td>\n",
" <td>female</td>\n",
" <td>NaN</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>W./C. 6607</td>\n",
" <td>23.45</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" </tr>\n",
" <tr>\n",
" <th>889</th>\n",
" <td>890</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Behr, Mr. Karl Howell</td>\n",
" <td>male</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>111369</td>\n",
" <td>30.00</td>\n",
" <td>C148</td>\n",
" <td>C</td>\n",
" </tr>\n",
" <tr>\n",
" <th>890</th>\n",
" <td>891</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>Dooley, Mr. Patrick</td>\n",
" <td>male</td>\n",
" <td>32.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>370376</td>\n",
" <td>7.75</td>\n",
" <td>NaN</td>\n",
" <td>Q</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" PassengerId Survived Pclass Name \\\n",
"886 887 0 2 Montvila, Rev. Juozas \n",
"887 888 1 1 Graham, Miss. Margaret Edith \n",
"888 889 0 3 Johnston, Miss. Catherine Helen \"Carrie\" \n",
"889 890 1 1 Behr, Mr. Karl Howell \n",
"890 891 0 3 Dooley, Mr. Patrick \n",
"\n",
" Sex Age SibSp Parch Ticket Fare Cabin Embarked \n",
"886 male 27.0 0 0 211536 13.00 NaN S \n",
"887 female 19.0 0 0 112053 30.00 B42 S \n",
"888 female NaN 1 2 W./C. 6607 23.45 NaN S \n",
"889 male 26.0 0 0 111369 30.00 C148 C \n",
"890 male 32.0 0 0 370376 7.75 NaN Q "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.tail()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "86cc0139-bc42-49eb-9261-946db3ce517e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"data = data.drop(['Name', 'PassengerId', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "84dcd03a-9f74-467d-92f8-720fd5dc57a2",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>male</td>\n",
" <td>22.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>female</td>\n",
" <td>38.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>female</td>\n",
" <td>26.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>female</td>\n",
" <td>35.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>male</td>\n",
" <td>35.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Pclass Sex Age\n",
"0 0 3 male 22.0\n",
"1 1 1 female 38.0\n",
"2 1 3 female 26.0\n",
"3 1 1 female 35.0\n",
"4 0 3 male 35.0"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8fa36ab8-f947-46b2-9b26-5c608058fd48",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"data = data.dropna(axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "b4eeb852-30d2-43b6-82f6-23d1c5db4139",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(714, 4)\n"
]
}
],
"source": [
"print(data.shape)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "3a91513f-f8e5-4ef3-b0d8-967f98539a50",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>714.000000</td>\n",
" <td>714.000000</td>\n",
" <td>714.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>0.406162</td>\n",
" <td>2.236695</td>\n",
" <td>29.699118</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.491460</td>\n",
" <td>0.838250</td>\n",
" <td>14.526497</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>0.420000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>20.125000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>0.000000</td>\n",
" <td>2.000000</td>\n",
" <td>28.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>1.000000</td>\n",
" <td>3.000000</td>\n",
" <td>38.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>1.000000</td>\n",
" <td>3.000000</td>\n",
" <td>80.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Pclass Age\n",
"count 714.000000 714.000000 714.000000\n",
"mean 0.406162 2.236695 29.699118\n",
"std 0.491460 0.838250 14.526497\n",
"min 0.000000 1.000000 0.420000\n",
"25% 0.000000 1.000000 20.125000\n",
"50% 0.000000 2.000000 28.000000\n",
"75% 1.000000 3.000000 38.000000\n",
"max 1.000000 3.000000 80.000000"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.describe()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "5e52ca0e-69fe-47eb-b4f9-0ae4f1d38a27",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"3 355\n",
"1 186\n",
"2 173\n",
"Name: Pclass, dtype: int64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Pclass'].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "61a70d41-bea2-4872-8372-7a999a8e73ac",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: >"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGYCAYAAABoLxltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAf9klEQVR4nO3df2zU9eHH8dfZ0gNq76QU7kc4ahOqm7aQWAzQqBQoxWZQBCJMEgeRGeVHk6YwtBCzumirLF/QwEa2hYDAsPyhVTMQKQHqmo4FujEp/sJYYgk9O1m5a7G7Yvl8/1j2yY4CetBy77bPR/JJvM/7fZ97f+K5Pve5Xw7LsiwBAAAY5I54LwAAAOBqBAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4yTGewE348qVKzp//rxSUlLkcDjivRwAAPADWJal9vZ2+f1+3XHHja+R9MtAOX/+vAKBQLyXAQAAbkJzc7PGjBlzwzn9MlBSUlIk/ecEXS5XnFcDAAB+iHA4rEAgYP8dv5F+GSj/fVnH5XIRKAAA9DM/5O0ZvEkWAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGSYz3Aga6u5/fF+8lDAhnX/lJvJcAALiNYrqCsnXrVo0fP14ul0sul0tTpkzR+++/b48vXbpUDocjaps8eXLUMSKRiIqLi5WWlqbk5GQVFRXp3LlzvXM2AABgQIgpUMaMGaNXXnlFJ06c0IkTJzR9+nTNnTtXp0+ftuc8+uijamlpsbf9+/dHHaOkpETV1dWqqqpSXV2dOjo6NHv2bHV3d/fOGQEAgH4vppd45syZE3X75Zdf1tatW3Xs2DHdf//9kiSn0ymv13vN+4dCIW3btk27du1Sfn6+JGn37t0KBAI6dOiQZs2adTPnAAAABpibfpNsd3e3qqqqdOnSJU2ZMsXef/ToUY0ePVr33HOPnn76abW2ttpjDQ0Nunz5sgoKCux9fr9fWVlZqq+vv+5jRSIRhcPhqA0AAAxcMQfKqVOndOedd8rpdOrZZ59VdXW17rvvPklSYWGh/vjHP+rw4cP6v//7Px0/flzTp09XJBKRJAWDQSUlJWnEiBFRx/R4PAoGg9d9zMrKSrndbnsLBAKxLhsAAPQjMX+K595779XJkyd18eJFvfXWW1qyZIlqa2t13333adGiRfa8rKwsTZw4Uenp6dq3b5/mz59/3WNaliWHw3Hd8bKyMpWWltq3w+EwkQIAwAAWc6AkJSVp3LhxkqSJEyfq+PHjev311/W73/2ux1yfz6f09HSdOXNGkuT1etXV1aW2traoqyitra3Kzc297mM6nU45nc5YlwoAAPqpW/6iNsuy7JdwrnbhwgU1NzfL5/NJknJycjRkyBDV1NTYc1paWtTY2HjDQAEAAINLTFdQ1q1bp8LCQgUCAbW3t6uqqkpHjx7VgQMH1NHRofLyci1YsEA+n09nz57VunXrlJaWpnnz5kmS3G63li1bptWrV2vkyJFKTU3VmjVrlJ2dbX+qBwAAIKZA+frrr/Xkk0+qpaVFbrdb48eP14EDBzRz5kx1dnbq1KlT2rlzpy5evCifz6dp06Zp7969SklJsY+xadMmJSYmauHChers7NSMGTO0Y8cOJSQk9PrJAQCA/slhWZYV70XEKhwOy+12KxQKyeVyxXs5N8RX3fcOvuoeAPq/WP5+82OBAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACME1OgbN26VePHj5fL5ZLL5dKUKVP0/vvv2+OWZam8vFx+v1/Dhg1TXl6eTp8+HXWMSCSi4uJipaWlKTk5WUVFRTp37lzvnA0AABgQYgqUMWPG6JVXXtGJEyd04sQJTZ8+XXPnzrUjZMOGDdq4caO2bNmi48ePy+v1aubMmWpvb7ePUVJSourqalVVVamurk4dHR2aPXu2uru7e/fMAABAv+WwLMu6lQOkpqbq17/+tZ566in5/X6VlJToueeek/SfqyUej0evvvqqnnnmGYVCIY0aNUq7du3SokWLJEnnz59XIBDQ/v37NWvWrB/0mOFwWG63W6FQSC6X61aW3+fufn5fvJcwIJx95SfxXgIA4BbF8vf7pt+D0t3draqqKl26dElTpkxRU1OTgsGgCgoK7DlOp1NTp05VfX29JKmhoUGXL1+OmuP3+5WVlWXPuZZIJKJwOBy1AQCAgSvmQDl16pTuvPNOOZ1OPfvss6qurtZ9992nYDAoSfJ4PFHzPR6PPRYMBpWUlKQRI0Zcd861VFZWyu1221sgEIh12QAAoB+JOVDuvfdenTx5UseOHdPy5cu1ZMkSffzxx/a4w+GImm9ZVo99V/u+OWVlZQqFQvbW3Nwc67IBAEA/EnOgJCUlady4cZo4caIqKys1YcIEvf766/J6vZLU40pIa2urfVXF6/Wqq6tLbW1t151zLU6n0/7k0H83AAAwcN3y96BYlqVIJKKMjAx5vV7V1NTYY11dXaqtrVVubq4kKScnR0OGDIma09LSosbGRnsOAABAYiyT161bp8LCQgUCAbW3t6uqqkpHjx7VgQMH5HA4VFJSooqKCmVmZiozM1MVFRUaPny4Fi9eLElyu91atmyZVq9erZEjRyo1NVVr1qxRdna28vPz++QEAQBA/xNToHz99dd68skn1dLSIrfbrfHjx+vAgQOaOXOmJGnt2rXq7OzUihUr1NbWpkmTJungwYNKSUmxj7Fp0yYlJiZq4cKF6uzs1IwZM7Rjxw4lJCT07pkBAIB+65a/ByUe+B6UwYfvQQGA/u+2fA8KAABAXyFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcWIKlMrKSj344INKSUnR6NGj9dhjj+mzzz6LmrN06VI5HI6obfLkyVFzIpGIiouLlZaWpuTkZBUVFencuXO3fjYAAGBAiClQamtrtXLlSh07dkw1NTX67rvvVFBQoEuXLkXNe/TRR9XS0mJv+/fvjxovKSlRdXW1qqqqVFdXp46ODs2ePVvd3d23fkYAAKDfS4xl8oEDB6Jub9++XaNHj1ZDQ4MeeeQRe7/T6ZTX673mMUKhkLZt26Zdu3YpPz9fkrR7924FAgEdOnRIs2bNivUcAADAAHNL70EJhUKSpNTU1Kj9R48e1ejRo3XPPffo6aefVmtrqz3W0NCgy5cvq6CgwN7n9/uVlZWl+vr6W1kOAAAYIGK6gvK/LMtSaWmpHnroIWVlZdn7CwsL9fjjjys9PV1NTU164YUXNH36dDU0NMjpdCoYDCopKUkjRoyIOp7H41EwGLzmY0UiEUUiEft2OBy+2WUDAIB+4KYDZdWqVfroo49UV1cXtX/RokX2P2dlZWnixIlKT0/Xvn37NH/+/Osez7IsORyOa45VVlbqxRdfvNmlAgCAfuamXuIpLi7We++9pyNHjmjMmDE3nOvz+ZSenq4zZ85Ikrxer7q6utTW1hY1r7W1VR6P55rHKCsrUygUsrfm5uabWTYAAOgnYgoUy7K0atUqvf322zp8+LAyMjK+9z4XLlxQc3OzfD6fJCknJ0dDhgxRTU2NPaelpUWNjY3Kzc295jGcTqdcLlfUBgAABq6YXuJZuXKl9uzZo3fffVcpKSn2e0bcbreGDRumjo4OlZeXa8GCBfL5fDp79qzWrVuntLQ0zZs3z567bNkyrV69WiNHjlRqaqrWrFmj7Oxs+1M9AABgcIspULZu3SpJysvLi9q/fft2LV26VAkJCTp16pR27typixcvyufzadq0adq7d69SUlLs+Zs2bVJiYqIWLlyozs5OzZgxQzt27FBCQsKtnxEAAOj3HJZlWfFeRKzC4bDcbrdCoZDxL/fc/fy+eC9hQDj7yk/ivQQAwC2K5e83v8UDAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4MQVKZWWlHnzwQaWkpGj06NF67LHH9Nlnn0XNsSxL5eXl8vv9GjZsmPLy8nT69OmoOZFIRMXFxUpLS1NycrKKiop07ty5Wz8bAAAwIMQUKLW1tVq5cqWOHTummpoafffddyooKNClS5fsORs2bNDGjRu1ZcsWHT9+XF6vVzNnzlR7e7s9p6SkRNXV1aqqqlJdXZ06Ojo0e/ZsdXd3996ZAQCAfsthWZZ1s3f+5z//qdGjR6u2tlaPPPKILMuS3+9XSUmJnnvuOUn/uVri8Xj06quv6plnnlEoFNKoUaO0a9cuLVq0SJJ0/vx5BQIB7d+/X7Nmzfrexw2Hw3K73QqFQnK5XDe7/Nvi7uf3xXsJA8LZV34S7yUAAG5RLH+/b+k9KKFQSJKUmpoqSWpqalIwGFRBQYE9x+l0aurUqaqvr5ckNTQ06PLly1Fz/H6/srKy7DlXi0QiCofDURsAABi4bjpQLMtSaWmpHnroIWVlZUmSgsGgJMnj8UTN9Xg89lgwGFRSUpJGjBhx3TlXq6yslNvttrdAIHCzywYAAP3ATQfKqlWr9NFHH+nNN9/sMeZwOKJuW5bVY9/VbjSnrKxMoVDI3pqbm2922QAAoB+4qUApLi7We++9pyNHjmjMmDH2fq/XK0k9roS0trbaV1W8Xq+6urrU1tZ23TlXczqdcrlcURsAABi4YgoUy7K0atUqvf322zp8+LAyMjKixjMyMuT1elVTU2Pv6+rqUm1trXJzcyVJOTk5GjJkSNSclpYWNTY22nMAAMDglhjL5JUrV2rPnj169913lZKSYl8pcbvdGjZsmBwOh0pKSlRRUaHMzExlZmaqoqJCw4cP1+LFi+25y5Yt0+rVqzVy5EilpqZqzZo1ys7OVn5+fu+fIQAA6HdiCpStW7dKkvLy8qL2b9++XUuXLpUkrV27Vp2dnVqxYoXa2to0adIkHTx4UCkpKfb8TZs2KTExUQsXLlRnZ6dmzJihHTt2KCEh4dbOBgAADAi39D0o8cL3oAw+fA8KAPR/t+17UAAAAPoCgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA48T0RW0A+j++m6f38P08QN/hCgoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4/FggACCu+AHL3jOQfsCSKygAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgxB8qHH36oOXPmyO/3y+Fw6J133okaX7p0qRwOR9Q2efLkqDmRSETFxcVKS0tTcnKyioqKdO7cuVs6EQAAMHDEHCiXLl3ShAkTtGXLluvOefTRR9XS0mJv+/fvjxovKSlRdXW1qqqqVFdXp46ODs2ePVvd3d2xnwEAABhwEmO9Q2FhoQoLC284x+l0yuv1XnMsFApp27Zt2rVrl/Lz8yVJu3fvViAQ0KFDhzRr1qxYlwQAAAaYPnkPytGjRzV69Gjdc889evrpp9Xa2mqPNTQ06PLlyyooKLD3+f1+ZWVlqb6+vi+WAwAA+pmYr6B8n8LCQj3++ONKT09XU1OTXnjhBU2fPl0NDQ1yOp0KBoNKSkrSiBEjou7n8XgUDAavecxIJKJIJGLfDofDvb1sAABgkF4PlEWLFtn/nJWVpYkTJyo9PV379u3T/Pnzr3s/y7LkcDiuOVZZWakXX3yxt5cKAAAM1ecfM/b5fEpPT9eZM2ckSV6vV11dXWpra4ua19raKo/Hc81jlJWVKRQK2Vtzc3NfLxsAAMRRnwfKhQsX1NzcLJ/PJ0nKycnRkCFDVFNTY89paWlRY2OjcnNzr3kMp9Mpl8sVtQEAgIEr5pd4Ojo69MUXX9i3m5qadPLkSaWmpio1NVXl5eVasGCBfD6fzp49q3Xr1iktLU3z5s2TJLndbi1btkyrV6/WyJEjlZqaqjVr1ig7O9v+VA8AABjcYg6UEydOaNq0afbt0tJSSdKSJUu0detWnTp1Sjt37tTFixfl8/k0bdo07d27VykpKfZ9Nm3apMTERC1cuFCdnZ2aMWOGduzYoYSEhF44JQAA0N/FHCh5eXmyLOu64x988MH3HmPo0KHavHmzNm/eHOvDAwCAQYDf4gEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYJyYA+XDDz/UnDlz5Pf75XA49M4770SNW5al8vJy+f1+DRs2THl5eTp9+nTUnEgkouLiYqWlpSk5OVlFRUU6d+7cLZ0IAAAYOGIOlEuXLmnChAnasmXLNcc3bNigjRs3asuWLTp+/Li8Xq9mzpyp9vZ2e05JSYmqq6tVVVWluro6dXR0aPbs2eru7r75MwEAAANGYqx3KCwsVGFh4TXHLMvSa6+9pvXr12v+/PmSpDfeeEMej0d79uzRM888o1AopG3btmnXrl3Kz8+XJO3evVuBQECHDh3SrFmzbuF0AADAQNCr70FpampSMBhUQUGBvc/pdGrq1Kmqr6+XJDU0NOjy5ctRc/x+v7Kysuw5V4tEIgqHw1EbAAAYuHo1UILBoCTJ4/FE7fd4PPZYMBhUUlKSRowYcd05V6usrJTb7ba3QCDQm8sGAACG6ZNP8TgcjqjblmX12He1G80pKytTKBSyt+bm5l5bKwAAME+vBorX65WkHldCWltb7asqXq9XXV1damtru+6cqzmdTrlcrqgNAAAMXL0aKBkZGfJ6vaqpqbH3dXV1qba2Vrm5uZKknJwcDRkyJGpOS0uLGhsb7TkAAGBwi/lTPB0dHfriiy/s201NTTp58qRSU1M1duxYlZSUqKKiQpmZmcrMzFRFRYWGDx+uxYsXS5LcbreWLVum1atXa+TIkUpNTdWaNWuUnZ1tf6oHAAAMbjEHyokTJzRt2jT7dmlpqSRpyZIl2rFjh9auXavOzk6tWLFCbW1tmjRpkg4ePKiUlBT7Pps2bVJiYqIWLlyozs5OzZgxQzt27FBCQkIvnBIAAOjvYg6UvLw8WZZ13XGHw6Hy8nKVl5dfd87QoUO1efNmbd68OdaHBwAAgwC/xQMAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDi9Hijl5eVyOBxRm9frtccty1J5ebn8fr+GDRumvLw8nT59ureXAQAA+rE+uYJy//33q6Wlxd5OnTplj23YsEEbN27Uli1bdPz4cXm9Xs2cOVPt7e19sRQAANAP9UmgJCYmyuv12tuoUaMk/efqyWuvvab169dr/vz5ysrK0htvvKFvv/1We/bs6YulAACAfqhPAuXMmTPy+/3KyMjQT3/6U3355ZeSpKamJgWDQRUUFNhznU6npk6dqvr6+useLxKJKBwOR20AAGDg6vVAmTRpknbu3KkPPvhAf/jDHxQMBpWbm6sLFy4oGAxKkjweT9R9PB6PPXYtlZWVcrvd9hYIBHp72QAAwCC9HiiFhYVasGCBsrOzlZ+fr3379kmS3njjDXuOw+GIuo9lWT32/a+ysjKFQiF7a25u7u1lAwAAg/T5x4yTk5OVnZ2tM2fO2J/mufpqSWtra4+rKv/L6XTK5XJFbQAAYODq80CJRCL65JNP5PP5lJGRIa/Xq5qaGnu8q6tLtbW1ys3N7eulAACAfiKxtw+4Zs0azZkzR2PHjlVra6teeuklhcNhLVmyRA6HQyUlJaqoqFBmZqYyMzNVUVGh4cOHa/Hixb29FAAA0E/1eqCcO3dOTzzxhL755huNGjVKkydP1rFjx5Seni5JWrt2rTo7O7VixQq1tbVp0qRJOnjwoFJSUnp7KQAAoJ/q9UCpqqq64bjD4VB5ebnKy8t7+6EBAMAAwW/xAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOHENlN/+9rfKyMjQ0KFDlZOToz//+c/xXA4AADBE3AJl7969Kikp0fr16/X3v/9dDz/8sAoLC/XVV1/Fa0kAAMAQcQuUjRs3atmyZfr5z3+uH//4x3rttdcUCAS0devWeC0JAAAYIjEeD9rV1aWGhgY9//zzUfsLCgpUX1/fY34kElEkErFvh0IhSVI4HO7bhfaCK5Fv472EAaE//LvuL3hO9h6el72D52TvMf05+d/1WZb1vXPjEijffPONuru75fF4ovZ7PB4Fg8Ee8ysrK/Xiiy/22B8IBPpsjTCL+7V4rwDoieclTNNfnpPt7e1yu903nBOXQPkvh8MRdduyrB77JKmsrEylpaX27StXruhf//qXRo4cec35+OHC4bACgYCam5vlcrnivRyA5ySMxPOyd1iWpfb2dvn9/u+dG5dASUtLU0JCQo+rJa2trT2uqkiS0+mU0+mM2nfXXXf15RIHHZfLxX90MArPSZiI5+Wt+74rJ/8VlzfJJiUlKScnRzU1NVH7a2pqlJubG48lAQAAg8TtJZ7S0lI9+eSTmjhxoqZMmaLf//73+uqrr/Tss8/Ga0kAAMAQcQuURYsW6cKFC/rVr36llpYWZWVlaf/+/UpPT4/XkgYlp9OpX/7ylz1eQgPiheckTMTz8vZzWD/ksz4AAAC3Eb/FAwAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECiDzCeffKLt27fr008/lSR9+umnWr58uZ566ikdPnw4zqsDempubtZTTz0V72VgkOns7FRdXZ0+/vjjHmP//ve/tXPnzjisanDhe1AGkQMHDmju3Lm688479e2336q6ulo/+9nPNGHCBFmWpdraWn3wwQeaPn16vJcK2P7xj3/ogQceUHd3d7yXgkHi888/V0FBgb766is5HA49/PDDevPNN+Xz+SRJX3/9tfx+P8/JPkagDCK5ubmaPn26XnrpJVVVVWnFihVavny5Xn75ZUnS+vXrdfz4cR08eDDOK8Vg8t57791w/Msvv9Tq1av5Y4DbZt68efruu++0fft2Xbx4UaWlpWpsbNTRo0c1duxYAuU2IVAGEbfbrYaGBo0bN05XrlyR0+nUX//6Vz3wwAOSpMbGRuXn5/f4lWmgL91xxx1yOBy60f8UORwO/hjgtvF4PDp06JCys7PtfStXrtSf/vQnHTlyRMnJyQTKbcB7UAapO+64Q0OHDtVdd91l70tJSVEoFIrfojAo+Xw+vfXWW7py5co1t7/97W/xXiIGmc7OTiUmRv9U3W9+8xsVFRVp6tSp+vzzz+O0ssGFQBlE7r77bn3xxRf27b/85S8aO3asfbu5udl+jRW4XXJycm4YId93dQXobT/60Y904sSJHvs3b96suXPnqqioKA6rGnwIlEFk+fLlUZcks7Kyov5fwvvvv88bZHHb/eIXv1Bubu51x8eNG6cjR47cxhVhsJs3b57efPPNa45t2bJFTzzxBNF8G/AeFAAAYByuoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACM8/9ei83267IbaAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data['Pclass'].value_counts().plot.bar()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f77de794-b854-4697-811a-c404b14eb680",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: >"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApbElEQVR4nO3de3SU5YHH8d8kmQwEEzTEMMkaQlBcWkMpkCq3llBNMCIepOuNbQ3rtVvKwgYqIMthqHI59KzFhS1rXRa1ISdsj8DaYgtBuZSlbiXKFrCLoYaLEswBJSEEhzF59g8PU8cESMI7zjMv3885c8K87zNPnl/mTfidd24eY4wRAACARRJivQAAAIAvoqAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKyTFOsFdEVra6uOHTum1NRUeTyeWC8HAAB0gDFGp0+fVnZ2thISLn6OJC4LyrFjx5STkxPrZQAAgC44evSorrvuuouOicuCkpqaKumzgGlpaY7MGQqFtHnzZhUXF8vr9Toyp03cnk9yf0a355PI6AZuzyeR8XI0NjYqJycn/P/4xcRlQTn/sE5aWpqjBSUlJUVpaWmuPODcnk9yf0a355PI6AZuzyeR0QkdeXoGT5IFAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsE5SZ2+wY8cO/eQnP1F1dbXq6uq0fv16TZgwIbz/Qh+hvHTpUv3oRz+SJBUWFmr79u0R+++77z5VVlZ2djmIY31nb3R0Pl+i0dKbpfzAJgVbLv1R3l1xaMm4qMwLAIjU6TMoZ86c0aBBg7RixYp299fV1UVc/uM//kMej0ff+c53IsY9+uijEeOee+65riUAAACu0+kzKCUlJSopKbngfr/fH3H9v/7rvzRmzBj169cvYntKSkqbsQAAAFIXCkpnfPjhh9q4caNefPHFNvvWrFmj8vJy9e7dWyUlJZo/f75SU1PbnScYDCoYDIavNzY2SpJCoZBCoZAjaz0/j1Pz2cbGfL5E4+x8CSbiazTE8udn433oNDLGP7fnk8joxLwd4THGdPmvucfjafMclM9bunSplixZomPHjqlbt27h7c8//7zy8vLk9/u1b98+zZkzRzfccIOqqqranScQCGjBggVttldUVCglJaWrywcAAF+i5uZmTZo0SQ0NDUpLS7vo2KgWlAEDBqioqEjLly+/6DzV1dUqKChQdXW1hgwZ0mZ/e2dQcnJydOLEiUsG7KhQKKSqqioVFRXJ6/U6MqdNbMyXH9jk6Hy+BKOnClo1b3eCgq3ReZLsvsDYqMzbETbeh04jY/xzez6JjJejsbFRGRkZHSooUXuI53e/+50OHDigtWvXXnLskCFD5PV6VVNT025B8fl88vl8bbZ7vV7HD45ozGkTm/JF65U2wVZP1Oa24Wdn030YLWSMf27PJ5Gxq/N1VNTeB2XVqlUaOnSoBg0adMmx+/fvVygUUlZWVrSWAwAA4kinz6A0NTXp4MGD4eu1tbXas2eP0tPT1adPH0mfncL55S9/qX/+539uc/s///nPWrNmje644w5lZGTonXfe0YwZMzR48GCNHDnyMqIAAAC36HRB2b17t8aMGRO+XlZWJkkqLS3VCy+8IEmqrKyUMUYPPPBAm9snJyfrtdde07PPPqumpibl5ORo3Lhxmj9/vhITE7sYAwAAuEmnC0phYaEu9bzaxx57TI899li7+3Jyctq8iywAAMDn8Vk8AADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsE9UPCwTcpu/sjTH73r5Eo6U3f/YRAZ15p9xDS8ZFcVUAEB2cQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1ul0QdmxY4fGjx+v7OxseTwebdiwIWL/5MmT5fF4Ii7Dhg2LGBMMBjV16lRlZGSoR48euuuuu/T+++9fVhAAAOAenS4oZ86c0aBBg7RixYoLjrn99ttVV1cXvrz66qsR+6dPn67169ersrJSO3fuVFNTk+688061tLR0PgEAAHCdpM7eoKSkRCUlJRcd4/P55Pf7293X0NCgVatW6Re/+IVuu+02SVJ5eblycnK0ZcsWjR07trNLAgAALtPpgtIR27ZtU2Zmpq6++mqNHj1aCxcuVGZmpiSpurpaoVBIxcXF4fHZ2dnKz8/Xrl272i0owWBQwWAwfL2xsVGSFAqFFAqFHFnz+Xmcms82NubzJRpn50swEV/dpqv5bLrPL8XG49Rpbs/o9nwSGZ2YtyM8xpgu/zX3eDxav369JkyYEN62du1aXXXVVcrNzVVtba3mzZunTz/9VNXV1fL5fKqoqNDf/d3fRRQOSSouLlZeXp6ee+65Nt8nEAhowYIFbbZXVFQoJSWlq8sHAABfoubmZk2aNEkNDQ1KS0u76FjHz6Dcd9994X/n5+eroKBAubm52rhxoyZOnHjB2xlj5PF42t03Z84clZWVha83NjYqJydHxcXFlwzYUaFQSFVVVSoqKpLX63VkTpvYmC8/sMnR+XwJRk8VtGre7gQFW9s/luJZV/PtC8TPw6Y2HqdOc3tGt+eTyHg5zj8C0hFReYjn87KyspSbm6uamhpJkt/v17lz5/Txxx/rmmuuCY+rr6/XiBEj2p3D5/PJ5/O12e71eh0/OKIxp01syhdsiU6JCLZ6oja3DTqbz5b7uzNsOk6jxe0Z3Z5PImNX5+uoqL8PysmTJ3X06FFlZWVJkoYOHSqv16uqqqrwmLq6Ou3bt++CBQUAAFxZOn0GpampSQcPHgxfr62t1Z49e5Senq709HQFAgF95zvfUVZWlg4dOqQnn3xSGRkZuvvuuyVJPXv21MMPP6wZM2aoV69eSk9P18yZMzVw4MDwq3oAAMCVrdMFZffu3RozZkz4+vnnhpSWlmrlypXau3evXnrpJZ06dUpZWVkaM2aM1q5dq9TU1PBtfvrTnyopKUn33nuvzp49q1tvvVUvvPCCEhMTHYgEAADiXacLSmFhoS72wp9Nmy79xMdu3bpp+fLlWr58eWe/PQAAuALwWTwAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA63S6oOzYsUPjx49Xdna2PB6PNmzYEN4XCoU0a9YsDRw4UD169FB2drYefPBBHTt2LGKOwsJCeTyeiMv9999/2WEAAIA7dLqgnDlzRoMGDdKKFSva7GtubtZbb72lefPm6a233tK6dev07rvv6q677moz9tFHH1VdXV348txzz3UtAQAAcJ2kzt6gpKREJSUl7e7r2bOnqqqqIrYtX75cN998s44cOaI+ffqEt6ekpMjv93f22wMAgCtApwtKZzU0NMjj8ejqq6+O2L5mzRqVl5erd+/eKikp0fz585WamtruHMFgUMFgMHy9sbFR0mcPKYVCIUfWeX4ep+azjY35fInG2fkSTMRXt+lqPpvu80ux8Th1mtszuj2fREYn5u0IjzGmy3/NPR6P1q9frwkTJrS7/5NPPtGoUaM0YMAAlZeXh7c///zzysvLk9/v1759+zRnzhzdcMMNbc6+nBcIBLRgwYI22ysqKpSSktLV5QMAgC9Rc3OzJk2apIaGBqWlpV10bNQKSigU0j333KMjR45o27ZtF11IdXW1CgoKVF1drSFDhrTZ394ZlJycHJ04ceKSATsqFAqpqqpKRUVF8nq9jsxpExvz5Qc2OTqfL8HoqYJWzdudoGCrx9G5bdDVfPsCY6O4KmfZeJw6ze0Z3Z5PIuPlaGxsVEZGRocKSlQe4gmFQrr33ntVW1ur119//ZKLGDJkiLxer2pqatotKD6fTz6fr812r9fr+MERjTltYlO+YEt0SkSw1RO1uW3Q2Xy23N+dYdNxGi1uz+j2fBIZuzpfRzleUM6Xk5qaGm3dulW9evW65G3279+vUCikrKwsp5cDAADiUKcLSlNTkw4ePBi+Xltbqz179ig9PV3Z2dn6m7/5G7311lv69a9/rZaWFh0/flySlJ6eruTkZP35z3/WmjVrdMcddygjI0PvvPOOZsyYocGDB2vkyJHOJQMAAHGr0wVl9+7dGjNmTPh6WVmZJKm0tFSBQECvvPKKJOnrX/96xO22bt2qwsJCJScn67XXXtOzzz6rpqYm5eTkaNy4cZo/f74SExMvIwoAAHCLTheUwsJCXex5tZd6zm1OTo62b9/e2W8LAACuIHwWDwAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOlH5LB4A9ug7e2Osl9BhvkSjpTfHehUAbMAZFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA63S6oOzYsUPjx49Xdna2PB6PNmzYELHfGKNAIKDs7Gx1795dhYWF2r9/f8SYYDCoqVOnKiMjQz169NBdd92l999//7KCAAAA9+h0QTlz5owGDRqkFStWtLt/6dKleuaZZ7RixQq9+eab8vv9Kioq0unTp8Njpk+frvXr16uyslI7d+5UU1OT7rzzTrW0tHQ9CQAAcI2kzt6gpKREJSUl7e4zxmjZsmWaO3euJk6cKEl68cUX1bt3b1VUVOjxxx9XQ0ODVq1apV/84he67bbbJEnl5eXKycnRli1bNHbs2MuIAwAA3KDTBeViamtrdfz4cRUXF4e3+Xw+jR49Wrt27dLjjz+u6upqhUKhiDHZ2dnKz8/Xrl272i0owWBQwWAwfL2xsVGSFAqFFAqFHFn7+Xmcms82NubzJRpn50swEV/dxu35pL9ks+k4dZqNv4tOcns+iYxOzNsRjhaU48ePS5J69+4dsb137946fPhweExycrKuueaaNmPO3/6LFi9erAULFrTZvnnzZqWkpDix9LCqqipH57ONTfmW3hydeZ8qaI3OxJZwez7JruM0Wtye0e35JDJ2RXNzc4fHOlpQzvN4PBHXjTFttn3RxcbMmTNHZWVl4euNjY3KyclRcXGx0tLSLn/B+qzVVVVVqaioSF6v15E5bWJjvvzAJkfn8yUYPVXQqnm7ExRsvfjxFo/cnk/6S0abjlOn2fi76CS355PIeDnOPwLSEY4WFL/fL+mzsyRZWVnh7fX19eGzKn6/X+fOndPHH38ccRalvr5eI0aMaHden88nn8/XZrvX63X84IjGnDaxKV+wJTr/yQZbPVGb2wZuzyfZdZxGi9szuj2fRMauztdRjr4PSl5envx+f8QpoXPnzmn79u3h8jF06FB5vd6IMXV1ddq3b98FCwoAALiydPoMSlNTkw4ePBi+Xltbqz179ig9PV19+vTR9OnTtWjRIvXv31/9+/fXokWLlJKSokmTJkmSevbsqYcfflgzZsxQr169lJ6erpkzZ2rgwIHhV/UAAIArW6cLyu7duzVmzJjw9fPPDSktLdULL7ygJ554QmfPntUPfvADffzxx7rlllu0efNmpaamhm/z05/+VElJSbr33nt19uxZ3XrrrXrhhReUmJjoQCQAABDvOl1QCgsLZcyFX+bo8XgUCAQUCAQuOKZbt25avny5li9f3tlvDwAArgB8Fg8AALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOo4XlL59+8rj8bS5TJkyRZI0efLkNvuGDRvm9DIAAEAcS3J6wjfffFMtLS3h6/v27VNRUZHuueee8Lbbb79dq1evDl9PTk52ehkAACCOOV5Qrr322ojrS5Ys0fXXX6/Ro0eHt/l8Pvn9fqe/NQAAcAnHC8rnnTt3TuXl5SorK5PH4wlv37ZtmzIzM3X11Vdr9OjRWrhwoTIzMy84TzAYVDAYDF9vbGyUJIVCIYVCIUfWen4ep+azjY35fInG2fkSTMRXt3F7Pukv2Ww6Tp1m4++ik9yeTyKjE/N2hMcYE7W/dv/5n/+pSZMm6ciRI8rOzpYkrV27VldddZVyc3NVW1urefPm6dNPP1V1dbV8Pl+78wQCAS1YsKDN9oqKCqWkpERr+QAAwEHNzc2aNGmSGhoalJaWdtGxUS0oY8eOVXJysn71q19dcExdXZ1yc3NVWVmpiRMntjumvTMoOTk5OnHixCUDdlQoFFJVVZWKiork9XodmdMmNubLD2xydD5fgtFTBa2atztBwVbPpW8QZ9yeT/pLRpuOU6fZ+LvoJLfnk8h4ORobG5WRkdGhghK1h3gOHz6sLVu2aN26dRcdl5WVpdzcXNXU1FxwjM/na/fsitfrdfzgiMacNrEpX7AlOv/JBls9UZvbBm7PJ9l1nEaL2zO6PZ9Exq7O11FRex+U1atXKzMzU+PGjbvouJMnT+ro0aPKysqK1lIAAECciUpBaW1t1erVq1VaWqqkpL+cpGlqatLMmTP1+9//XocOHdK2bds0fvx4ZWRk6O67747GUgAAQByKykM8W7Zs0ZEjR/TQQw9FbE9MTNTevXv10ksv6dSpU8rKytKYMWO0du1apaamRmMpAAAgDkWloBQXF6u95952795dmzY5+8RIAADgPnwWDwAAsA4FBQAAWIeCAgAArBPVt7oHgK7ID2yKu/d6ObTk4m+pAKBzOIMCAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALBOUqwXYKO+szfGegmddmjJuFgvAQAAx3AGBQAAWIeCAgAArENBAQAA1nG8oAQCAXk8noiL3+8P7zfGKBAIKDs7W927d1dhYaH279/v9DIAAEAci8oZlJtuukl1dXXhy969e8P7li5dqmeeeUYrVqzQm2++Kb/fr6KiIp0+fToaSwEAAHEoKgUlKSlJfr8/fLn22mslfXb2ZNmyZZo7d64mTpyo/Px8vfjii2publZFRUU0lgIAAOJQVF5mXFNTo+zsbPl8Pt1yyy1atGiR+vXrp9raWh0/flzFxcXhsT6fT6NHj9auXbv0+OOPtztfMBhUMBgMX29sbJQkhUIhhUIhR9Z8fp5QKCRfonFkzi/TpX4On89nC6d/zr4EE/HVbdyeT4rvjB393bLxd9FJbs8nkdGJeTvCY4xx9C/Bb37zGzU3N+vGG2/Uhx9+qKefflr/93//p/379+vAgQMaOXKkPvjgA2VnZ4dv89hjj+nw4cPatGlTu3MGAgEtWLCgzfaKigqlpKQ4uXwAABAlzc3NmjRpkhoaGpSWlnbRsY4XlC86c+aMrr/+ej3xxBMaNmyYRo4cqWPHjikrKys85tFHH9XRo0f129/+tt052juDkpOToxMnTlwyYEeFQiFVVVWpqKhIgxe+7sicX6Z9gbEX3f/5fF6v90ta1cXlB9ovpF3lSzB6qqBV83YnKNjqcXRuG7g9nxTfGS/1O3iejb+LTnJ7PomMl6OxsVEZGRkdKihRfyfZHj16aODAgaqpqdGECRMkScePH48oKPX19erdu/cF5/D5fPL5fG22e71exw8Or9erYEt8/WGU1OGfQzR+Zl0VrZ9zsNUTl/dhR7k9nxSfGTv7e2XT72I0uD2fRMauztdRUX8flGAwqD/96U/KyspSXl6e/H6/qqqqwvvPnTun7du3a8SIEdFeCgAAiBOOn0GZOXOmxo8frz59+qi+vl5PP/20GhsbVVpaKo/Ho+nTp2vRokXq37+/+vfvr0WLFiklJUWTJk1yeikAACBOOV5Q3n//fT3wwAM6ceKErr32Wg0bNkxvvPGGcnNzJUlPPPGEzp49qx/84Af6+OOPdcstt2jz5s1KTU11eikAACBOOV5QKisrL7rf4/EoEAgoEAg4/a0BAIBL8Fk8AADAOlF/FQ++HH1nb7zofl+i0dKbP3tpb7y9OgIAcOXhDAoAALAOZ1AAwAGXOot5nm1nMw8tGRfrJQDt4gwKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFjH8YKyePFifeMb31BqaqoyMzM1YcIEHThwIGLM5MmT5fF4Ii7Dhg1zeikAACBOOV5Qtm/frilTpuiNN95QVVWVPv30UxUXF+vMmTMR426//XbV1dWFL6+++qrTSwEAAHEqyekJf/vb30ZcX716tTIzM1VdXa1vfetb4e0+n09+v9/pbw8AAFwg6s9BaWhokCSlp6dHbN+2bZsyMzN144036tFHH1V9fX20lwIAAOKE42dQPs8Yo7KyMo0aNUr5+fnh7SUlJbrnnnuUm5ur2tpazZs3T9/+9rdVXV0tn8/XZp5gMKhgMBi+3tjYKEkKhUIKhUKOrPX8PKFQSL5E48icNvElmIivbuT2jG7PJ5ExFpz6G/rF+Zye1yZkvPx5O8JjjInab8mUKVO0ceNG7dy5U9ddd90Fx9XV1Sk3N1eVlZWaOHFim/2BQEALFixos72iokIpKSmOrhkAAERHc3OzJk2apIaGBqWlpV10bNQKytSpU7Vhwwbt2LFDeXl5lxzfv39/PfLII5o1a1abfe2dQcnJydGJEycuGbCjQqGQqqqqVFRUpMELX3dkTpv4EoyeKmjVvN0JCrZ6Yr2cqHB7Rrfnk8gYC/sCYx2d7/N/S71er6Nz24KMXdfY2KiMjIwOFRTHH+Ixxmjq1Klav369tm3b1qFycvLkSR09elRZWVnt7vf5fO0+9OP1eh0/OLxer4Itsf+jES3BVo+r80nuz+j2fBIZv0z95212dD5fotHSm6XBC1+PWr5DS8ZFZd7Oisb/QbZxOmNn5nL8SbJTpkxReXm5KioqlJqaquPHj+v48eM6e/asJKmpqUkzZ87U73//ex06dEjbtm3T+PHjlZGRobvvvtvp5QAAgDjk+BmUlStXSpIKCwsjtq9evVqTJ09WYmKi9u7dq5deekmnTp1SVlaWxowZo7Vr1yo1NdXp5QAAgDgUlYd4LqZ79+7atGmT098WAAC4CJ/FAwAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwDgUFAABYh4ICAACsQ0EBAADWoaAAAADrUFAAAIB1KCgAAMA6FBQAAGAdCgoAALAOBQUAAFiHggIAAKxDQQEAANahoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArJMU6wUAANAZfWdvjOn39yUaLb1Zyg9sUrDF06HbHFoyLsqrch/OoAAAAOtQUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgHQoKAACwTkw/zfhnP/uZfvKTn6iurk433XSTli1bpm9+85uxXBIAAI6L9Scwd9b5T2yOpZidQVm7dq2mT5+uuXPn6u2339Y3v/lNlZSU6MiRI7FaEgAAsETMCsozzzyjhx9+WI888oi+8pWvaNmyZcrJydHKlStjtSQAAGCJmDzEc+7cOVVXV2v27NkR24uLi7Vr164244PBoILBYPh6Q0ODJOmjjz5SKBRyZE2hUEjNzc06efKkkj4948icNklqNWpublVSKEEtrZ5YLycq3J7R7fkkMrqB2/NJV1bGkydPyuv1Ojbv6dOnJUnGmEsPNjHwwQcfGEnmv//7vyO2L1y40Nx4441txs+fP99I4sKFCxcuXLi44HL06NFLdoWYPknW44lsnsaYNtskac6cOSorKwtfb21t1UcffaRevXq1O74rGhsblZOTo6NHjyotLc2ROW3i9nyS+zO6PZ9ERjdwez6JjJfDGKPTp08rOzv7kmNjUlAyMjKUmJio48ePR2yvr69X796924z3+Xzy+XwR266++uqorC0tLc21B5zk/nyS+zO6PZ9ERjdwez6JjF3Vs2fPDo2LyZNkk5OTNXToUFVVVUVsr6qq0ogRI2KxJAAAYJGYPcRTVlam733veyooKNDw4cP185//XEeOHNH3v//9WC0JAABYImYF5b777tPJkyf14x//WHV1dcrPz9err76q3NzcmKzH5/Np/vz5bR5Kcgu355Pcn9Ht+SQyuoHb80lk/LJ4jOnIa30AAAC+PHwWDwAAsA4FBQAAWIeCAgAArENBAQAA1qGgSPrZz36mvLw8devWTUOHDtXvfve7WC+py3bs2KHx48crOztbHo9HGzZsiNhvjFEgEFB2dra6d++uwsJC7d+/PzaL7YLFixfrG9/4hlJTU5WZmakJEybowIEDEWPiPePKlSv1ta99LfwGScOHD9dvfvOb8P54z/dFixcvlsfj0fTp08Pb4j1jIBCQx+OJuPj9/vD+eM933gcffKDvfve76tWrl1JSUvT1r39d1dXV4f3xnLNv375t7kOPx6MpU6ZIiu9s53366af6p3/6J+Xl5al79+7q16+ffvzjH6u1tTU8JqY5L+tDdVygsrLSeL1e8/zzz5t33nnHTJs2zfTo0cMcPnw41kvrkldffdXMnTvXvPzyy0aSWb9+fcT+JUuWmNTUVPPyyy+bvXv3mvvuu89kZWWZxsbG2Cy4k8aOHWtWr15t9u3bZ/bs2WPGjRtn+vTpY5qamsJj4j3jK6+8YjZu3GgOHDhgDhw4YJ588knj9XrNvn37jDHxn+/z/vCHP5i+ffuar33ta2batGnh7fGecf78+eamm24ydXV14Ut9fX14f7znM8aYjz76yOTm5prJkyeb//mf/zG1tbVmy5Yt5uDBg+Ex8Zyzvr4+4v6rqqoykszWrVuNMfGd7bynn37a9OrVy/z61782tbW15pe//KW56qqrzLJly8JjYpnzii8oN998s/n+978fsW3AgAFm9uzZMVqRc75YUFpbW43f7zdLliwJb/vkk09Mz549zb/927/FYIWXr76+3kgy27dvN8a4M6MxxlxzzTXm3//9312V7/Tp06Z///6mqqrKjB49OlxQ3JBx/vz5ZtCgQe3uc0M+Y4yZNWuWGTVq1AX3uyXnedOmTTPXX3+9aW1tdU22cePGmYceeihi28SJE813v/tdY0zs78Mr+iGec+fOqbq6WsXFxRHbi4uLtWvXrhitKnpqa2t1/PjxiLw+n0+jR4+O27wNDQ2SpPT0dEnuy9jS0qLKykqdOXNGw4cPd1W+KVOmaNy4cbrtttsitrslY01NjbKzs5WXl6f7779f7733niT35HvllVdUUFCge+65R5mZmRo8eLCef/758H635JQ++7+ivLxcDz30kDwej2uyjRo1Sq+99preffddSdL//u//aufOnbrjjjskxf4+jOmnGcfaiRMn1NLS0uYDCnv37t3mgwzd4Hym9vIePnw4Fku6LMYYlZWVadSoUcrPz5fknox79+7V8OHD9cknn+iqq67S+vXr9dWvfjX8RyHe81VWVuqtt97Sm2++2WafG+7DW265RS+99JJuvPFGffjhh3r66ac1YsQI7d+/3xX5JOm9997TypUrVVZWpieffFJ/+MMf9A//8A/y+Xx68MEHXZNTkjZs2KBTp05p8uTJktxxjErSrFmz1NDQoAEDBigxMVEtLS1auHChHnjgAUmxz3lFF5TzPB5PxHVjTJttbuKWvD/84Q/1xz/+UTt37myzL94z/vVf/7X27NmjU6dO6eWXX1Zpaam2b98e3h/P+Y4ePapp06Zp8+bN6tat2wXHxXPGkpKS8L8HDhyo4cOH6/rrr9eLL76oYcOGSYrvfJLU2tqqgoICLVq0SJI0ePBg7d+/XytXrtSDDz4YHhfvOSVp1apVKikpUXZ2dsT2eM+2du1alZeXq6KiQjfddJP27Nmj6dOnKzs7W6WlpeFxscp5RT/Ek5GRocTExDZnS+rr69s0Rjc4/yoCN+SdOnWqXnnlFW3dulXXXXddeLtbMiYnJ+uGG25QQUGBFi9erEGDBunZZ591Rb7q6mrV19dr6NChSkpKUlJSkrZv365/+Zd/UVJSUjhHPGf8oh49emjgwIGqqalxxX0oSVlZWfrqV78ase0rX/mKjhw5Isk9v4uHDx/Wli1b9Mgjj4S3uSXbj370I82ePVv333+/Bg4cqO9973v6x3/8Ry1evFhS7HNe0QUlOTlZQ4cOVVVVVcT2qqoqjRgxIkarip68vDz5/f6IvOfOndP27dvjJq8xRj/84Q+1bt06vf7668rLy4vY74aM7THGKBgMuiLfrbfeqr1792rPnj3hS0FBgf72b/9We/bsUb9+/eI+4xcFg0H96U9/UlZWlivuQ0kaOXJkm5f4v/vuu+EPfHVLztWrVyszM1Pjxo0Lb3NLtubmZiUkRNaAxMTE8MuMY54z6k/Dtdz5lxmvWrXKvPPOO2b69OmmR48e5tChQ7FeWpecPn3avP322+btt982kswzzzxj3n777fDLppcsWWJ69uxp1q1bZ/bu3WseeOCBuHpp3N///d+bnj17mm3btkW8BLC5uTk8Jt4zzpkzx+zYscPU1taaP/7xj+bJJ580CQkJZvPmzcaY+M/Xns+/iseY+M84Y8YMs23bNvPee++ZN954w9x5550mNTU1/Hcl3vMZ89lLxJOSkszChQtNTU2NWbNmjUlJSTHl5eXhMfGes6WlxfTp08fMmjWrzb54z2aMMaWlpeav/uqvwi8zXrduncnIyDBPPPFEeEwsc17xBcUYY/71X//V5ObmmuTkZDNkyJDwS1bj0datW42kNpfS0lJjzGcvG5s/f77x+/3G5/OZb33rW2bv3r2xXXQntJdNklm9enV4TLxnfOihh8LH47XXXmtuvfXWcDkxJv7zteeLBSXeM55/rwiv12uys7PNxIkTzf79+8P74z3feb/61a9Mfn6+8fl8ZsCAAebnP/95xP54z7lp0yYjyRw4cKDNvnjPZowxjY2NZtq0aaZPnz6mW7dupl+/fmbu3LkmGAyGx8Qyp8cYY6J/ngYAAKDjrujnoAAAADtRUAAAgHUoKAAAwDoUFAAAYB0KCgAAsA4FBQAAWIeCAgAArENBAQAA1qGgAAAA61BQAACAdSgoAADAOhQUAABgnf8Hldxx5Uzl9WwAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data['Age'].hist()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "124a3f8b-2884-40b9-ab56-3a3366c499ee",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Sex</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>female</th>\n",
" <td>0.754789</td>\n",
" <td>2.065134</td>\n",
" <td>27.915709</td>\n",
" </tr>\n",
" <tr>\n",
" <th>male</th>\n",
" <td>0.205298</td>\n",
" <td>2.335541</td>\n",
" <td>30.726645</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Pclass Age\n",
"Sex \n",
"female 0.754789 2.065134 27.915709\n",
"male 0.205298 2.335541 30.726645"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby(['Sex']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "895a8e68-0e8d-4580-bfd0-be8f287d6342",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Sex</th>\n",
" <th>Pclass</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">female</th>\n",
" <th>1</th>\n",
" <td>0.964706</td>\n",
" <td>34.611765</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.918919</td>\n",
" <td>28.722973</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.460784</td>\n",
" <td>21.750000</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">male</th>\n",
" <th>1</th>\n",
" <td>0.396040</td>\n",
" <td>41.281386</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.151515</td>\n",
" <td>30.740707</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.150198</td>\n",
" <td>26.507589</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Age\n",
"Sex Pclass \n",
"female 1 0.964706 34.611765\n",
" 2 0.918919 28.722973\n",
" 3 0.460784 21.750000\n",
"male 1 0.396040 41.281386\n",
" 2 0.151515 30.740707\n",
" 3 0.150198 26.507589"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby(['Sex', 'Pclass']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "af916e1f-1acc-419d-bb9c-aae85976e218",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Sex</th>\n",
" <th>Pclass</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">female</th>\n",
" <th>1</th>\n",
" <td>0.034454</td>\n",
" <td>185.287955</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.075528</td>\n",
" <td>165.706451</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.250922</td>\n",
" <td>162.051980</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">male</th>\n",
" <th>1</th>\n",
" <td>0.241584</td>\n",
" <td>229.206594</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.129870</td>\n",
" <td>218.859292</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.128145</td>\n",
" <td>147.853777</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Age\n",
"Sex Pclass \n",
"female 1 0.034454 185.287955\n",
" 2 0.075528 165.706451\n",
" 3 0.250922 162.051980\n",
"male 1 0.241584 229.206594\n",
" 2 0.129870 218.859292\n",
" 3 0.128145 147.853777"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby(['Sex', 'Pclass']).var()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "42a4b1ae-7a0f-4f43-9ebb-df2f6929e241",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/onyxia\n"
]
}
],
"source": [
"cd"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}