Ajout variables KPI targets
This commit is contained in:
parent
1a0a5a40cf
commit
7a9548f295
|
@ -1,5 +1,8 @@
|
||||||
# Business Data Challenge - Team 1
|
# Purpose of the script : Construction of training and test datasets for modelling by company
|
||||||
|
# Input : KPI construction function and clean databases in the 0_Input folder
|
||||||
|
# Output : Train and test datasets by compagnies
|
||||||
|
|
||||||
|
# Packages
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import os
|
import os
|
||||||
|
@ -9,12 +12,10 @@ import warnings
|
||||||
from datetime import date, timedelta, datetime
|
from datetime import date, timedelta, datetime
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
|
|
||||||
|
|
||||||
# Create filesystem object
|
# Create filesystem object
|
||||||
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
|
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
|
||||||
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
|
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
|
||||||
|
|
||||||
|
|
||||||
# Import KPI construction functions
|
# Import KPI construction functions
|
||||||
exec(open('0_KPI_functions.py').read())
|
exec(open('0_KPI_functions.py').read())
|
||||||
|
|
||||||
|
@ -24,50 +25,59 @@ warnings.filterwarnings('ignore')
|
||||||
|
|
||||||
def dataset_construction(min_date, end_features_date, max_date, directory_path):
|
def dataset_construction(min_date, end_features_date, max_date, directory_path):
|
||||||
|
|
||||||
# Import customerplus
|
# Import of cleaned and merged datasets
|
||||||
df_customerplus_clean_0 = display_input_databases(directory_path, file_name = "customerplus_cleaned")
|
df_customerplus_clean_0 = display_input_databases(directory_path, file_name = "customerplus_cleaned")
|
||||||
df_campaigns_information = display_input_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])
|
df_campaigns_information = display_input_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])
|
||||||
df_products_purchased_reduced = display_input_databases(directory_path, file_name = "products_purchased_reduced", datetime_col = ['purchase_date'])
|
df_products_purchased_reduced = display_input_databases(directory_path, file_name = "products_purchased_reduced", datetime_col = ['purchase_date'])
|
||||||
|
df_target_information = display_input_databases(directory_path, file_name = "target_information")
|
||||||
|
|
||||||
# if directory_path == "101":
|
# Dates in datetime format
|
||||||
# df_products_purchased_reduced_1 = display_databases(directory_path, file_name = "products_purchased_reduced_1", datetime_col = ['purchase_date'])
|
|
||||||
# df_products_purchased_reduced = pd.concat([df_products_purchased_reduced, df_products_purchased_reduced_1])
|
|
||||||
|
|
||||||
# Filtre de cohérence pour la mise en pratique de notre méthode
|
|
||||||
max_date = pd.to_datetime(max_date, utc = True, format = 'ISO8601')
|
max_date = pd.to_datetime(max_date, utc = True, format = 'ISO8601')
|
||||||
end_features_date = pd.to_datetime(end_features_date, utc = True, format = 'ISO8601')
|
end_features_date = pd.to_datetime(end_features_date, utc = True, format = 'ISO8601')
|
||||||
min_date = pd.to_datetime(min_date, utc = True, format = 'ISO8601')
|
min_date = pd.to_datetime(min_date, utc = True, format = 'ISO8601')
|
||||||
|
|
||||||
#Filtre de la base df_campaigns_information
|
# Filter for database df_campaigns_information
|
||||||
df_campaigns_information = df_campaigns_information[(df_campaigns_information['sent_at'] <= end_features_date) & (df_campaigns_information['sent_at'] >= min_date)]
|
df_campaigns_information = df_campaigns_information[(df_campaigns_information['sent_at'] <= end_features_date) & (df_campaigns_information['sent_at'] >= min_date)]
|
||||||
df_campaigns_information['opened_at'][df_campaigns_information['opened_at'] >= end_features_date] = np.datetime64('NaT')
|
df_campaigns_information['opened_at'][df_campaigns_information['opened_at'] >= end_features_date] = np.datetime64('NaT')
|
||||||
|
|
||||||
#Filtre de la base df_products_purchased_reduced
|
# Filter for database df_products_purchased_reduced
|
||||||
df_products_purchased_features = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= end_features_date) & (df_products_purchased_reduced['purchase_date'] >= min_date)]
|
df_products_purchased_features = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= end_features_date) & (df_products_purchased_reduced['purchase_date'] >= min_date)]
|
||||||
|
|
||||||
print("Data filtering : SUCCESS")
|
print("Data filtering : SUCCESS")
|
||||||
|
|
||||||
# Fusion de l'ensemble et creation des KPI
|
# Building and merging features
|
||||||
|
|
||||||
# KPI sur les campagnes publicitaires
|
# Campaigns features
|
||||||
df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_information, max_date = end_features_date)
|
df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_information, max_date = end_features_date)
|
||||||
|
|
||||||
# KPI sur le comportement d'achat
|
# Purchasing behavior features
|
||||||
df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_features)
|
df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_features)
|
||||||
|
|
||||||
# KPI sur les données socio-démographiques
|
# Socio-demographic features
|
||||||
df_customerplus_clean = customerplus_kpi_function(customerplus_clean = df_customerplus_clean_0)
|
df_customerplus_clean = customerplus_kpi_function(customerplus_clean = df_customerplus_clean_0)
|
||||||
|
|
||||||
|
# Targets features
|
||||||
|
df_targets_kpi = targets_KPI(df_target = df_target_information)
|
||||||
|
|
||||||
print("KPIs construction : SUCCESS")
|
print("KPIs construction : SUCCESS")
|
||||||
|
|
||||||
# Fusion avec KPI liés au customer
|
# Merge - campaigns features
|
||||||
df_customer = pd.merge(df_customerplus_clean, df_campaigns_kpi, on = 'customer_id', how = 'left')
|
df_customer = pd.merge(df_customerplus_clean, df_campaigns_kpi, on = 'customer_id', how = 'left')
|
||||||
|
|
||||||
# Fill NaN values
|
# Fill NaN values
|
||||||
df_customer[['nb_campaigns', 'nb_campaigns_opened']] = df_customer[['nb_campaigns', 'nb_campaigns_opened']].fillna(0)
|
df_customer[['nb_campaigns', 'nb_campaigns_opened']] = df_customer[['nb_campaigns', 'nb_campaigns_opened']].fillna(0)
|
||||||
|
|
||||||
# Fusion avec KPI liés au comportement d'achat
|
# Merge - targets features
|
||||||
df_customer_product = pd.merge(df_tickets_kpi, df_customer, on = 'customer_id', how = 'outer')
|
df_customer = pd.merge(df_customer, df_targets_kpi, on = 'customer_id', how = 'left')
|
||||||
|
|
||||||
|
# Fill NaN values
|
||||||
|
df_customer[['nb_targets', 'target_jeune', 'target_optin', 'target_optout', 'target_scolaire', 'target_entreprise', 'target_famille', 'target_newsletter', 'target_abonne']] = df_customer[['nb_targets', 'target_jeune', 'target_optin', 'target_optout', 'target_scolaire', 'target_entreprise', 'target_famille', 'target_newsletter', 'target_abonne']].fillna(0)
|
||||||
|
|
||||||
|
# We standardise the number of targets closely linked to the company's operations
|
||||||
|
df_customer['nb_targets'] = (df_customer['nb_targets'] - (df_customer['nb_targets'].mean())) / (df_customer['nb_targets'].std())
|
||||||
|
|
||||||
|
# Merge - purchasing behavior features
|
||||||
|
df_customer_product = pd.merge(df_customer, df_tickets_kpi, on = 'customer_id', how = 'outer')
|
||||||
|
|
||||||
# Fill NaN values
|
# Fill NaN values
|
||||||
df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']] = df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']].fillna(0)
|
df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']] = df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']].fillna(0)
|
||||||
|
@ -84,7 +94,7 @@ def dataset_construction(min_date, end_features_date, max_date, directory_path):
|
||||||
# 2. Construction of the explained variable
|
# 2. Construction of the explained variable
|
||||||
df_products_purchased_to_predict = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= max_date) & (df_products_purchased_reduced['purchase_date'] > end_features_date)]
|
df_products_purchased_to_predict = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= max_date) & (df_products_purchased_reduced['purchase_date'] > end_features_date)]
|
||||||
|
|
||||||
# Indicatrice d'achat
|
# Construction of the dependant variable
|
||||||
df_products_purchased_to_predict['y_has_purchased'] = 1
|
df_products_purchased_to_predict['y_has_purchased'] = 1
|
||||||
|
|
||||||
y = df_products_purchased_to_predict[['customer_id', 'y_has_purchased']].drop_duplicates()
|
y = df_products_purchased_to_predict[['customer_id', 'y_has_purchased']].drop_duplicates()
|
||||||
|
@ -103,28 +113,24 @@ def dataset_construction(min_date, end_features_date, max_date, directory_path):
|
||||||
return dataset
|
return dataset
|
||||||
|
|
||||||
## Exportation
|
## Exportation
|
||||||
|
# Sectors
|
||||||
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
|
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
|
||||||
'sport': ['5', '6', '7', '8', '9'],
|
'sport': ['5', '6', '7', '8', '9'],
|
||||||
'musique' : ['10', '11', '12', '13', '14']}
|
'musique' : ['10', '11', '12', '13', '14']}
|
||||||
|
|
||||||
|
# Choosed sector
|
||||||
type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
|
type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
|
||||||
list_of_comp = companies[type_of_comp]
|
list_of_comp = companies[type_of_comp]
|
||||||
# Dossier d'exportation
|
|
||||||
|
# Export folder
|
||||||
BUCKET_OUT = f'projet-bdc2324-team1/Generalization/{type_of_comp}'
|
BUCKET_OUT = f'projet-bdc2324-team1/Generalization/{type_of_comp}'
|
||||||
|
|
||||||
# Create test dataset and train dataset for sport companies
|
# Dates used for the construction of features and the dependant variable
|
||||||
|
|
||||||
|
|
||||||
#start_date, end_of_features, final_date = df_coverage_modelization(list_of_comp, coverage_features = 0.7)
|
|
||||||
|
|
||||||
# start_date, end_of_features, final_date = df_coverage_modelization(list_of_comp, coverage_train = 0.7)
|
|
||||||
|
|
||||||
start_date = "2021-05-01"
|
start_date = "2021-05-01"
|
||||||
end_of_features = "2022-11-01"
|
end_of_features = "2022-11-01"
|
||||||
final_date = "2023-11-01"
|
final_date = "2023-11-01"
|
||||||
|
|
||||||
|
# Anonymous customer to be deleted from the datasets
|
||||||
anonymous_customer = {'1' : '1_1', '2' : '2_12184', '3' : '3_1', '4' : '4_2', '101' : '101_1',
|
anonymous_customer = {'1' : '1_1', '2' : '2_12184', '3' : '3_1', '4' : '4_2', '101' : '101_1',
|
||||||
'5' : '5_191835', '6' : '6_591412', '7' : '7_49632', '8' : '8_1942', '9' : '9_19683',
|
'5' : '5_191835', '6' : '6_591412', '7' : '7_49632', '8' : '8_1942', '9' : '9_19683',
|
||||||
'10' : '10_19521', '11' : '11_36', '12' : '12_1706757', '13' : '13_8422', '14' : '14_6354'}
|
'10' : '10_19521', '11' : '11_36', '12' : '12_1706757', '13' : '13_8422', '14' : '14_6354'}
|
||||||
|
@ -133,33 +139,23 @@ for company in list_of_comp:
|
||||||
dataset = dataset_construction(min_date = start_date, end_features_date = end_of_features,
|
dataset = dataset_construction(min_date = start_date, end_features_date = end_of_features,
|
||||||
max_date = final_date, directory_path = company)
|
max_date = final_date, directory_path = company)
|
||||||
|
|
||||||
# On retire le client anonyme
|
# Deletion of the anonymous customer
|
||||||
dataset = dataset[dataset['customer_id'] != anonymous_customer[company]]
|
dataset = dataset[dataset['customer_id'] != anonymous_customer[company]]
|
||||||
|
|
||||||
|
# Split between train and test
|
||||||
# #train test set
|
|
||||||
# np.random.seed(42)
|
|
||||||
|
|
||||||
# split_ratio = 0.7
|
|
||||||
# split_index = int(len(dataset) * split_ratio)
|
|
||||||
# dataset = dataset.sample(frac=1).reset_index(drop=True)
|
|
||||||
# dataset_train = dataset.iloc[:split_index]
|
|
||||||
# dataset_test = dataset.iloc[split_index:]
|
|
||||||
|
|
||||||
dataset_train, dataset_test = train_test_split(dataset, test_size=0.3, random_state=42)
|
dataset_train, dataset_test = train_test_split(dataset, test_size=0.3, random_state=42)
|
||||||
|
|
||||||
# Dataset Test
|
# Dataset Test
|
||||||
# Exportation
|
# Export
|
||||||
FILE_KEY_OUT_S3 = "dataset_test" + company + ".csv"
|
FILE_KEY_OUT_S3 = "dataset_test" + company + ".csv"
|
||||||
FILE_PATH_OUT_S3 = BUCKET_OUT + "/Test_set/" + FILE_KEY_OUT_S3
|
FILE_PATH_OUT_S3 = BUCKET_OUT + "/Test_set/" + FILE_KEY_OUT_S3
|
||||||
|
|
||||||
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
||||||
dataset_test.to_csv(file_out, index = False)
|
dataset_test.to_csv(file_out, index = False)
|
||||||
|
|
||||||
print("Exportation dataset test : SUCCESS")
|
print("Export of dataset test : SUCCESS")
|
||||||
|
|
||||||
# Dataset train
|
# Dataset train
|
||||||
|
|
||||||
# Export
|
# Export
|
||||||
FILE_KEY_OUT_S3 = "dataset_train" + company + ".csv"
|
FILE_KEY_OUT_S3 = "dataset_train" + company + ".csv"
|
||||||
FILE_PATH_OUT_S3 = BUCKET_OUT + "/Train_set/" + FILE_KEY_OUT_S3
|
FILE_PATH_OUT_S3 = BUCKET_OUT + "/Train_set/" + FILE_KEY_OUT_S3
|
||||||
|
@ -167,7 +163,7 @@ for company in list_of_comp:
|
||||||
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
|
||||||
dataset_train.to_csv(file_out, index = False)
|
dataset_train.to_csv(file_out, index = False)
|
||||||
|
|
||||||
print("Exportation dataset train : SUCCESS")
|
print("Export of dataset train : SUCCESS")
|
||||||
|
|
||||||
|
|
||||||
print("FIN DE LA GENERATION DES DATASETS : SUCCESS")
|
print("End of dataset generation for ", type_of_comp," compagnies : SUCCESS")
|
||||||
|
|
|
@ -44,7 +44,6 @@ def campaigns_kpi_function(campaigns_information = None, max_date = None):
|
||||||
|
|
||||||
return campaigns_reduced
|
return campaigns_reduced
|
||||||
|
|
||||||
|
|
||||||
def tickets_kpi_function(tickets_information = None):
|
def tickets_kpi_function(tickets_information = None):
|
||||||
|
|
||||||
tickets_information_copy = tickets_information.copy()
|
tickets_information_copy = tickets_information.copy()
|
||||||
|
@ -128,3 +127,38 @@ def customerplus_kpi_function(customerplus_clean = None):
|
||||||
|
|
||||||
return customerplus_clean
|
return customerplus_clean
|
||||||
|
|
||||||
|
def concatenate_names(names):
|
||||||
|
return ', '.join(names)
|
||||||
|
|
||||||
|
def targets_KPI(df_target = None):
|
||||||
|
|
||||||
|
df_target['target_name'] = df_target['target_name'].fillna('').str.lower()
|
||||||
|
|
||||||
|
# Target name cotegory musees /
|
||||||
|
df_target['target_jeune'] = df_target['target_name'].str.contains('|'.join(['jeune', 'pass_culture', 'etudiant', '12-25 ans', 'student', 'jeunesse']), case=False).astype(int)
|
||||||
|
df_target['target_optin'] = df_target['target_name'].str.contains('|'.join(['optin' ,'opt-in']), case=False).astype(int)
|
||||||
|
df_target['target_optout'] = df_target['target_name'].str.contains('|'.join(['optout', 'unsubscribed']), case=False).astype(int)
|
||||||
|
df_target['target_scolaire'] = df_target['target_name'].str.contains('|'.join(['scolaire' , 'enseignant', 'chercheur', 'schulen', 'école']), case=False).astype(int)
|
||||||
|
df_target['target_entreprise'] = df_target['target_name'].str.contains('|'.join(['b2b', 'btob', 'cse']), case=False).astype(int)
|
||||||
|
df_target['target_famille'] = df_target['target_name'].str.contains('|'.join(['famille', 'enfants', 'family']), case=False).astype(int)
|
||||||
|
df_target['target_newsletter'] = df_target['target_name'].str.contains('|'.join(['nl', 'newsletter']), case=False).astype(int)
|
||||||
|
|
||||||
|
# Target name category for sport compagnies
|
||||||
|
df_target['target_abonne'] = ((
|
||||||
|
df_target['target_name']
|
||||||
|
.str.contains('|'.join(['abo', 'adh']), case=False)
|
||||||
|
& ~df_target['target_name'].str.contains('|'.join(['hors abo', 'anciens abo']), case=False)
|
||||||
|
).astype(int))
|
||||||
|
|
||||||
|
df_target_categorie = df_target.groupby('customer_id')[['target_jeune', 'target_optin', 'target_optout', 'target_scolaire', 'target_entreprise', 'target_famille', 'target_newsletter', 'target_abonne']].max()
|
||||||
|
|
||||||
|
target_agg = df_target.groupby('customer_id').agg(
|
||||||
|
nb_targets=('target_name', 'nunique') # Utilisation de tuples pour spécifier les noms de colonnes
|
||||||
|
# all_targets=('target_name', concatenate_names),
|
||||||
|
# all_target_types=('target_type_name', concatenate_names)
|
||||||
|
).reset_index()
|
||||||
|
|
||||||
|
target_agg = pd.merge(target_agg, df_target_categorie, how='left', on='customer_id')
|
||||||
|
|
||||||
|
return target_agg
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user