Compare commits

...

45 Commits

Author SHA1 Message Date
4ed6bd809d Suppression des notebooks exploratoires et brouillons 2024-04-09 20:20:57 +00:00
9ca22fb9e7 changed names 2024-04-04 18:48:46 +00:00
6da3467108 fixed tipos 2024-04-04 18:46:38 +00:00
473f8100b0 added packages versions 2024-04-04 14:57:39 +00:00
68b68ed3da added functions documentation 2024-04-04 14:29:16 +00:00
f5b6075431 adjust font size 2024-04-04 11:46:15 +00:00
1ebb83e3c4 fix mailing consent 2024-04-04 08:58:48 +00:00
e54e6c3b10 add type of variables 2024-04-04 08:58:34 +00:00
df4c28bdd8 add function description 2024-04-04 08:39:43 +00:00
09f4bd3fe4 push coefficient 2024-04-04 06:50:49 +00:00
b9aa0d7578 fix tipo 2024-04-03 19:30:04 +00:00
5fa57cb4b9 final changes (I hope so) 2024-04-03 19:28:52 +00:00
0f5c9cb70f test 2024-04-03 19:25:43 +00:00
7bf011e2ed est 2024-04-03 19:24:59 +00:00
f4b430dbc1 test 2024-04-03 19:22:34 +00:00
7d7683b0a9 test 2024-04-03 19:21:06 +00:00
d14174dc07 test 2024-04-03 19:16:29 +00:00
c5aca36640 some changes 2024-04-03 19:15:52 +00:00
a3caa64c95 completed readme 2024-04-03 19:12:06 +00:00
15f950d87f test some changes 2024-04-03 18:37:19 +00:00
acf7621d9a fixed forecasting issues 2024-04-03 10:36:47 +00:00
14953b031a Add better dpi 2024-04-02 21:27:28 +00:00
ea3dcbb015 Amélioration graphique lazy + meilleur cadrage + enlever titre 2024-04-02 21:12:07 +00:00
091693c889 added printing options for business KPIs tables 2024-04-02 12:09:01 +00:00
197703a857 final changes for spider chart 2024-04-02 11:59:06 +00:00
41decc7acd last minor adjustment for spider chart 2024-04-02 11:47:26 +00:00
a21805db9b minor change : adjusted size of spider chart 2024-04-02 11:36:34 +00:00
21bf0c8408 use cv logit instead of benchmark for the segmentation 2024-04-02 11:26:06 +00:00
4e74483a69 augmentation résolution des graphiques 2024-04-01 10:19:59 +00:00
c96e1b5f0c logit cv au lieu de benchmark 2024-04-01 01:18:53 +00:00
52b39e03be final changes for spider charts 2024-03-31 21:59:52 +00:00
b9a3d05a2f tests to prepare changes in code 06 2024-03-31 17:57:10 +00:00
1a62d2b60a Changement path 2024-03-31 17:16:46 +00:00
e5c99f09ab Changement dossier 2024-03-31 17:03:49 +00:00
1577cc3291 Correction path 2024-03-31 17:02:33 +00:00
ad1e9034f7 Changement nom et path 2024-03-31 16:54:46 +00:00
8e61e9d2a4 Ajout description marketing personae 2024-03-31 16:35:58 +00:00
7341752be0 Changement nom fichier 2024-03-31 16:35:21 +00:00
35638f2a2d Passage à demande input à boucle sur activite 2024-03-31 16:34:55 +00:00
0a7900c07f take new databases as input 2024-03-30 11:00:49 +00:00
78aab14164 added age importation 2024-03-29 12:43:36 +00:00
8485bd755e Merge pull request 'generalization' (#16) from generalization into main
Reviewed-on: #16
2024-03-29 11:15:55 +01:00
354f6847b6 standard model 2024-03-29 10:15:28 +00:00
d6e2b2c57a fix path 2024-03-29 10:14:14 +00:00
42b4414a16 Changement architecture p1 2024-03-28 21:18:08 +00:00
48 changed files with 1037 additions and 87712 deletions

View File

@ -1,74 +0,0 @@
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import warnings
# Ignore warning
warnings.filterwarnings('ignore')
exec(open('0_KPI_functions.py').read())
exec(open('utils_stat_desc.py').read())
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
'sport': ['5', '6', '7', '8', '9'],
'musique' : ['10', '11', '12', '13', '14']}
type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
list_of_comp = companies[type_of_activity]
# Load files
customer, campaigns_kpi, campaigns_brut, tickets, products, targets = load_files(list_of_comp)
# Identify anonymous customer for each company and remove them from our datasets
outlier_list = outlier_detection(tickets, list_of_comp)
# Identify valid customer (customer who bought tickets after starting date or received mails after starting date)
customer_valid_list = valid_customer_detection(products, campaigns_brut)
databases = [customer, campaigns_kpi, campaigns_brut, tickets, products]
for dataset in databases:
dataset['customer_id'] = dataset['customer_id'].apply(lambda x: remove_elements(x, outlier_list))# remove outlier
dataset = dataset[dataset['customer_id'].isin(customer_valid_list)] # keep only valid customer
#print(f'shape of {dataset} : ', dataset.shape)
# Identify customer who bought during the period of y
customer_target_period = identify_purchase_during_target_periode(products)
customer['has_purchased_target_period'] = np.where(customer['customer_id'].isin(customer_target_period), 1, 0)
# Generate graph and automatically saved them in the bucket
compute_nb_clients(customer, type_of_activity)
#maximum_price_paid(customer, type_of_activity)
target_proportion(customer, type_of_activity)
mailing_consent(customer, type_of_activity)
mailing_consent_by_target(customer)
gender_bar(customer, type_of_activity)
country_bar(customer, type_of_activity)
lazy_customer_plot(campaigns_kpi, type_of_activity)
campaigns_effectiveness(customer, type_of_activity)
sale_dynamics(products, campaigns_brut, type_of_activity)
tickets_internet(tickets, type_of_activity)
already_bought_online(tickets, type_of_activity)
box_plot_price_tickets(tickets, type_of_activity)
target_description(targets, type_of_activity)

View File

@ -1,40 +0,0 @@
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import pickle
import warnings
exec(open('utils_segmentation.py').read())
warnings.filterwarnings('ignore')
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# choose the type of companies for which you want to run the pipeline
type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
# load test set
dataset_test = load_test_file(type_of_activity)
# Load Model
model = load_model(type_of_activity, 'LogisticRegression_Benchmark')
# Processing
X_test = dataset_test[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max',
'time_between_purchase', 'nb_tickets_internet', 'is_email_true', 'opt_in', #'is_partner',
'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened']]
y_test = dataset_test[['y_has_purchased']]
# Prediction
y_pred_prob = model.predict_proba(X_test)[:, 1]
# Add probability to dataset_test
dataset_test['Probability_to_buy'] = y_pred_prob
print('probability added to dataset_test')
print(dataset_test.head())

View File

@ -1,99 +0,0 @@
### importations ###
### not necesary ?? As we exec the utils .py file associated
"""
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import pickle
import warnings
import matplotlib.pyplot as plt
"""
### --- beginning of the code --- ###
### hyperparameters of the code ###
###################################
# choose the type of companies for which you want to run the pipeline
type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
# choose the model we use for the segmentation
model_name = "LogisticRegression_Benchmark"
###################################
# execute file including functions we need
exec(open('utils_segmentation_V2TP.py').read())
warnings.filterwarnings('ignore')
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# load test set
dataset_test = load_test_file(type_of_activity)
# Load Model
model = load_model(type_of_activity, model_name)
### Preprocessing of data
X_test = dataset_test[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max',
'time_between_purchase', 'nb_tickets_internet', 'is_email_true', 'opt_in', #'is_partner',
'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened', 'country_fr']]
y_test = dataset_test[['y_has_purchased']]
X_test_segment = X_test
# add y_has_purchased to X_test
X_test_segment["has_purchased"] = y_test
# Add prediction and probability to dataset_test
y_pred = model.predict(X_test)
X_test_segment["has_purchased_estim"] = y_pred
y_pred_prob = model.predict_proba(X_test)[:, 1]
X_test_segment['score'] = y_pred_prob
X_test_segment["segment"] = np.where(X_test_segment['score']<0.25, '1',
np.where(X_test_segment['score']<0.5, '2',
np.where(X_test_segment['score']<0.75, '3', '4')))
### 1. business KPIs
business_var = ["nb_tickets", "nb_purchases", "total_amount", "nb_campaigns"]
X_test_business_fig = df_business_fig(X_test_segment, "segment", business_var)
# save histogram to Minio
hist_segment_business_KPIs(X_test_business_fig, "segment", "size", "nb_tickets",
"nb_purchases", "total_amount", "nb_campaigns")
save_file_s3_mp(File_name = "segments_business_KPI_", type_of_activity = type_of_activity)
### 2. description of marketing personae (spider chart)
# table summarizing variables relative to marketing personae
X_test_segment_mp = df_segment_mp(X_test_segment, "segment", "gender_female",
"gender_male", "gender_other", "country_fr")
# table relative to purchasing behaviour
X_test_segment_pb = df_segment_pb(X_test_segment, "segment", "nb_tickets_internet", "nb_tickets",
"nb_campaigns_opened", "nb_campaigns", "opt_in")
# concatenation of tables to prepare the plot
X_test_segment_caract = pd.concat([X_test_segment_pb, X_test_segment_mp[['share_known_gender', 'share_of_women', 'country_fr']]], axis=1)
# visualization and save the graphic to the MinIo
categories = list(X_test_segment_caract.drop("segment", axis=1).columns)
radar_mp_plot_all(df=X_test_segment_caract, categories=categories)
save_file_s3_mp(File_name = "spider_chart_all_", type_of_activity = type_of_activity)

File diff suppressed because one or more lines are too long

View File

@ -13,7 +13,7 @@ S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL}) fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import cleaning and merge functions # Import cleaning and merge functions
exec(open('0_Cleaning_and_merge_functions.py').read()) exec(open('utils_cleaning_and_merge.py').read())
# Output folder # Output folder
BUCKET_OUT = "projet-bdc2324-team1" BUCKET_OUT = "projet-bdc2324-team1"
@ -51,9 +51,6 @@ for tenant_id in ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12",
## Exportation ## Exportation
export_dataset(df = df1_campaigns_information, output_name = "0_Input/Company_"+ tenant_id +"/campaigns_information.csv") export_dataset(df = df1_campaigns_information, output_name = "0_Input/Company_"+ tenant_id +"/campaigns_information.csv")
# Exportation
export_dataset(df = df1_campaigns_information, output_name = "1_Temp/Company 1 - Campaigns dataset clean.csv")
if tenant_id == "101": if tenant_id == "101":
# Cleaning product area # Cleaning product area
products_purchased_reduced, products_purchased_reduced_1 = uniform_product_df(directory_path = tenant_id) products_purchased_reduced, products_purchased_reduced_1 = uniform_product_df(directory_path = tenant_id)

View File

@ -17,7 +17,7 @@ S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL}) fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import KPI construction functions # Import KPI construction functions
exec(open('0_KPI_functions.py').read()) exec(open('utils_features_construction.py').read())
# Ignore warning # Ignore warning
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
@ -130,7 +130,7 @@ type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee
list_of_comp = companies[type_of_comp] list_of_comp = companies[type_of_comp]
# Export folder # Export folder
BUCKET_OUT = f'projet-bdc2324-team1/Generalization_v2/{type_of_comp}' BUCKET_OUT = f'projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}'
# Dates used for the construction of features and the dependant variable # Dates used for the construction of features and the dependant variable
start_date = "2021-05-01" start_date = "2021-05-01"

File diff suppressed because one or more lines are too long

View File

@ -14,14 +14,14 @@ fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# Import KPI construction functions # Import KPI construction functions
exec(open('0_KPI_functions.py').read()) exec(open('utils_features_construction.py').read())
# Ignore warning # Ignore warning
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
# functions # functions
def generate_test_set(type_of_comp): def generate_test_set(type_of_comp):
file_path_list = fs.ls(f"projet-bdc2324-team1/Generalization_v2/{type_of_comp}/Test_set") file_path_list = fs.ls(f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}/Test_set")
test_set = pd.DataFrame() test_set = pd.DataFrame()
for file in file_path_list: for file in file_path_list:
print(file) print(file)
@ -32,7 +32,7 @@ def generate_test_set(type_of_comp):
def generate_train_set(type_of_comp): def generate_train_set(type_of_comp):
file_path_list = fs.ls(f"projet-bdc2324-team1/Generalization_v2/{type_of_comp}/Train_set") file_path_list = fs.ls(f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}/Train_set")
train_set = pd.DataFrame() train_set = pd.DataFrame()
for file in file_path_list: for file in file_path_list:
print(file) print(file)
@ -43,7 +43,7 @@ def generate_train_set(type_of_comp):
type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?') type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
BUCKET_OUT = f'projet-bdc2324-team1/Generalization_v2/{type_of_comp}/' BUCKET_OUT = f'projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_comp}/'
# create test and train datasets # create test and train datasets
test_set = generate_test_set(type_of_comp) test_set = generate_test_set(type_of_comp)

View File

@ -0,0 +1,82 @@
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import warnings
from datetime import date, timedelta, datetime
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
# Ignore warning
warnings.filterwarnings('ignore')
exec(open('utils_features_construction.py').read())
exec(open('utils_stat_desc.py').read())
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
'sport': ['5', '6', '7', '8', '9'],
'musique' : ['10', '11', '12', '13', '14']}
# type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
for type_of_activity in ['musee', 'sport', 'musique'] :
list_of_comp = companies[type_of_activity]
# Load files
customer, campaigns_kpi, campaigns_brut, tickets, products, targets = load_files(list_of_comp)
# Identify anonymous customer for each company and remove them from our datasets
outlier_list = outlier_detection(tickets, list_of_comp)
# Identify valid customer (customer who bought tickets after starting date or received mails after starting date)
customer_valid_list = valid_customer_detection(products, campaigns_brut)
databases = [customer, campaigns_kpi, campaigns_brut, tickets, products]
for dataset in databases:
dataset['customer_id'] = dataset['customer_id'].apply(lambda x: remove_elements(x, outlier_list))# remove outlier
dataset = dataset[dataset['customer_id'].isin(customer_valid_list)] # keep only valid customer
#print(f'shape of {dataset} : ', dataset.shape)
# Identify customer who bought during the period of y
customer_target_period = identify_purchase_during_target_periode(products)
customer['has_purchased_target_period'] = np.where(customer['customer_id'].isin(customer_target_period), 1, 0)
# Generate graph and automatically saved them in the bucket
compute_nb_clients(customer, type_of_activity)
#maximum_price_paid(customer, type_of_activity)
target_proportion(customer, type_of_activity)
mailing_consent(customer, type_of_activity)
mailing_consent_by_target(customer, type_of_activity)
gender_bar(customer, type_of_activity)
country_bar(customer, type_of_activity)
lazy_customer_plot(campaigns_kpi, type_of_activity)
campaigns_effectiveness(customer, type_of_activity)
sale_dynamics(products, campaigns_brut, type_of_activity)
tickets_internet(tickets, type_of_activity)
already_bought_online(tickets, type_of_activity)
box_plot_price_tickets(tickets, type_of_activity)
target_description(targets, type_of_activity)

View File

@ -35,7 +35,7 @@ warnings.filterwarnings("ignore", category=DataConversionWarning)
# choose the type of companies for which you want to run the pipeline # choose the type of companies for which you want to run the pipeline
type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?') type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
# choose the type of model # choose the type of model
type_of_model = input('Choisissez le type de model : basique ? premium ?') type_of_model = input('Choisissez le type de model : standard ? premium ?')
# load train and test set # load train and test set
# Create filesystem object # Create filesystem object

View File

@ -0,0 +1,86 @@
# Packages
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import pickle
import warnings
import matplotlib.pyplot as plt
from tabulate import tabulate
###################################
# choose the model we use for the segmentation
# model_name = "LogisticRegression_Benchmark"
model_name = "LogisticRegression_cv"
###################################
# execute file including functions we need
exec(open('utils_segmentation.py').read())
warnings.filterwarnings('ignore')
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# choose the type of companies for which you want to run the pipeline
# type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
for type_of_activity in ['musee', 'sport', 'musique'] :
# load test set
dataset_test = load_test_file(type_of_activity)
# Load Model
model = load_model(type_of_activity, model_name)
### Preprocessing of data
X_test = dataset_test.drop(columns = 'y_has_purchased')
y_test = dataset_test[['y_has_purchased']]
X_test_segment = X_test
# add y_has_purchased to X_test
X_test_segment["has_purchased"] = y_test
# Add prediction and probability to dataset_test
y_pred = model.predict(X_test)
X_test_segment["has_purchased_estim"] = y_pred
y_pred_prob = model.predict_proba(X_test)[:, 1]
X_test_segment['score'] = y_pred_prob
X_test_segment["segment"] = np.where(X_test_segment['score']<0.25, '1',
np.where(X_test_segment['score']<0.5, '2',
np.where(X_test_segment['score']<0.75, '3', '4')))
### 1. business KPIs
business_var = ["nb_tickets", "nb_purchases", "total_amount", "nb_campaigns"]
X_test_business_fig = df_business_fig(X_test_segment, "segment", business_var)
print(f"business figures for {type_of_activity} companies :\n")
print(X_test_business_fig)
print("\n")
# save histogram to Minio
hist_segment_business_KPIs(X_test_business_fig, "segment", "size", "nb_tickets",
"nb_purchases", "total_amount", "nb_campaigns", type_of_activity)
save_file_s3_mp(File_name = "segments_business_KPI_", type_of_activity = type_of_activity)
### 2. description of marketing personae
## A. Spider chart
radar_mp_plot_all(df = X_test_segment, type_of_activity = type_of_activity)
save_file_s3_mp(File_name = "spider_chart_all_", type_of_activity = type_of_activity)
## B. Latex table
known_sociodemo_caracteristics(df = X_test_segment, type_of_activity = type_of_activity)

View File

@ -19,15 +19,16 @@ S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL}) fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
# importation of functions defined # importation of functions defined
exec(open('utils_CA_segment.py').read()) exec(open('utils_sales_forecast.py').read())
# from utils_CA_segment import * # from utils_CA_segment import *
# define type of activity # define type of activity
type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?') type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
PATH = f"projet-bdc2324-team1/Output_expected_CA/{type_of_activity}/" PATH = f"projet-bdc2324-team1/2_Output/2_3_Sales_Forecast/{type_of_activity}/"
# type of model for the score # type of model for the score
type_of_model = "LogisticRegression_cv" type_of_model = "LogisticRegression_cv"
# type_of_model = "LogisticRegression_Benchmark"
# load train and test sets # load train and test sets
dataset_train, dataset_test = load_train_test(type_of_activity) dataset_train, dataset_test = load_train_test(type_of_activity)
@ -68,6 +69,10 @@ save_file_s3_ca("hist_score_adjusted_", type_of_activity)
X_test_table_adjusted_scores = (100 * X_test_segment.groupby("quartile")[["score","score_adjusted", "has_purchased"]].mean()).round(2).reset_index() X_test_table_adjusted_scores = (100 * X_test_segment.groupby("quartile")[["score","score_adjusted", "has_purchased"]].mean()).round(2).reset_index()
X_test_table_adjusted_scores = X_test_table_adjusted_scores.rename(columns = {col : f"{col} (%)" for col in X_test_table_adjusted_scores.columns if col in ["score","score_adjusted", "has_purchased"]}) X_test_table_adjusted_scores = X_test_table_adjusted_scores.rename(columns = {col : f"{col} (%)" for col in X_test_table_adjusted_scores.columns if col in ["score","score_adjusted", "has_purchased"]})
print("Table of scores :\n")
print(X_test_table_adjusted_scores)
print("\n")
# save table # save table
file_name = "table_adjusted_score_" file_name = "table_adjusted_score_"
FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".csv" FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".csv"
@ -81,14 +86,24 @@ X_test_segment = project_tickets_CA (X_test_segment, "nb_purchases", "nb_tickets
### 3. table summarizing projections (nb tickets, revenue) ### 3. table summarizing projections (nb tickets, revenue)
"""
X_test_expected_CA = round(summary_expected_CA(df=X_test_segment, segment="quartile", X_test_expected_CA = round(summary_expected_CA(df=X_test_segment, segment="quartile",
nb_tickets_expected="nb_tickets_expected", total_amount_expected="total_amount_expected", nb_tickets_expected="nb_tickets_expected", total_amount_expected="total_amount_expected",
total_amount="total_amount", pace_purchase="pace_purchase"),2) total_amount="total_amount", pace_purchase="pace_purchase"),2)
"""
X_test_expected_CA = round(summary_expected_CA(df=X_test_segment, segment="quartile",
nb_tickets_expected="nb_tickets_expected", total_amount_expected="total_amount_expected",
total_amount="total_amount_corrected", pace_purchase="pace_purchase"),2)
# rename columns # rename columns
mapping_dict = {col: col.replace("perct", "(%)").replace("_", " ") for col in X_test_expected_CA.columns} mapping_dict = {col: col.replace("perct", "(%)").replace("_", " ") for col in X_test_expected_CA.columns}
X_test_expected_CA = X_test_expected_CA.rename(columns=mapping_dict) X_test_expected_CA = X_test_expected_CA.rename(columns=mapping_dict)
print("Summary of forecast :\n")
print(X_test_expected_CA)
print("\n")
# save table # save table
file_name = "table_expected_CA_" file_name = "table_expected_CA_"
FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".csv" FILE_PATH_OUT_S3 = PATH + file_name + type_of_activity + ".csv"

File diff suppressed because one or more lines are too long

View File

@ -1,68 +0,0 @@
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import warnings
# Ignore warning
warnings.filterwarnings('ignore')
exec(open('../0_KPI_functions.py').read())
exec(open('plot.py').read())
# Create filesystem object
S3_ENDPOINT_URL = "https://" + os.environ["AWS_S3_ENDPOINT"]
fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})
companies = {'musee' : ['1', '2', '3', '4'], # , '101'
'sport': ['5'],
'musique' : ['10', '11', '12', '13', '14']}
type_of_activity = input('Choisissez le type de compagnie : sport ? musique ? musee ?')
list_of_comp = companies[type_of_activity]
# Load files
customer, campaigns_kpi, campaigns_brut, tickets, products = load_files(list_of_comp)
# Identify anonymous customer for each company and remove them from our datasets
outlier_list = outlier_detection(tickets, list_of_comp)
# Identify valid customer (customer who bought tickets after starting date or received mails after starting date)
customer_valid_list = valid_customer_detection(products, campaigns_brut)
databases = [customer, campaigns_kpi, campaigns_brut, tickets, products]
for dataset in databases:
dataset['customer_id'] = dataset['customer_id'].apply(lambda x: remove_elements(x, outlier_list))# remove outlier
dataset = dataset[dataset['customer_id'].isin(customer_valid_list)] # keep only valid customer
#print(f'shape of {dataset} : ', dataset.shape)
# Identify customer who bought during the period of y
customer_target_period = identify_purchase_during_target_periode(products)
customer['has_purchased_target_period'] = np.where(customer['customer_id'].isin(customer_target_period), 1, 0)
# Generate graph and automatically saved them in the bucket
compute_nb_clients(customer, type_of_activity)
maximum_price_paid(customer, type_of_activity)
mailing_consent(customer, type_of_activity)
mailing_consent_by_target(customer)
gender_bar(customer, type_of_activity)
country_bar(customer, type_of_activity)
lazy_customer_plot(campaigns_kpi, type_of_activity)
#campaigns_effectiveness(customer, type_of_activity)
sale_dynamics(products, campaigns_brut, type_of_activity)
tickets_internet(tickets, type_of_activity)
box_plot_price_tickets(tickets, type_of_activity)

View File

@ -1,328 +0,0 @@
import pandas as pd
import os
import s3fs
import io
import warnings
from datetime import date, timedelta, datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
def load_files(nb_compagnie):
customer = pd.DataFrame()
campaigns_brut = pd.DataFrame()
campaigns_kpi = pd.DataFrame()
products = pd.DataFrame()
tickets = pd.DataFrame()
# début de la boucle permettant de générer des datasets agrégés pour les 5 compagnies de spectacle
for directory_path in nb_compagnie:
df_customerplus_clean_0 = display_databases(directory_path, file_name = "customerplus_cleaned")
df_campaigns_brut = display_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])
df_products_purchased_reduced = display_databases(directory_path, file_name = "products_purchased_reduced", datetime_col = ['purchase_date'])
df_target_information = display_databases(directory_path, file_name = "target_information")
df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_brut)
df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_reduced)
df_customerplus_clean = customerplus_kpi_function(customerplus_clean = df_customerplus_clean_0)
# creation de la colonne Number compagnie, qui permettra d'agréger les résultats
df_tickets_kpi["number_company"]=int(directory_path)
df_campaigns_brut["number_company"]=int(directory_path)
df_campaigns_kpi["number_company"]=int(directory_path)
df_customerplus_clean["number_company"]=int(directory_path)
df_target_information["number_company"]=int(directory_path)
# Traitement des index
df_tickets_kpi["customer_id"]= directory_path + '_' + df_tickets_kpi['customer_id'].astype('str')
df_campaigns_brut["customer_id"]= directory_path + '_' + df_campaigns_brut['customer_id'].astype('str')
df_campaigns_kpi["customer_id"]= directory_path + '_' + df_campaigns_kpi['customer_id'].astype('str')
df_customerplus_clean["customer_id"]= directory_path + '_' + df_customerplus_clean['customer_id'].astype('str')
df_products_purchased_reduced["customer_id"]= directory_path + '_' + df_products_purchased_reduced['customer_id'].astype('str')
# Concaténation
customer = pd.concat([customer, df_customerplus_clean], ignore_index=True)
campaigns_kpi = pd.concat([campaigns_kpi, df_campaigns_kpi], ignore_index=True)
campaigns_brut = pd.concat([campaigns_brut, df_campaigns_brut], ignore_index=True)
tickets = pd.concat([tickets, df_tickets_kpi], ignore_index=True)
products = pd.concat([products, df_products_purchased_reduced], ignore_index=True)
return customer, campaigns_kpi, campaigns_brut, tickets, products
def save_file_s3(File_name, type_of_activity):
image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png')
image_buffer.seek(0)
FILE_PATH = f"projet-bdc2324-team1/stat_desc/{type_of_activity}/"
FILE_PATH_OUT_S3 = FILE_PATH + File_name + type_of_activity + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read())
plt.close()
def outlier_detection(tickets, company_list, show_diagram=False):
outlier_list = list()
for company in company_list:
total_amount_share = tickets[tickets['number_company']==int(company)].groupby('customer_id')['total_amount'].sum().reset_index()
total_amount_share['CA'] = total_amount_share['total_amount'].sum()
total_amount_share['share_total_amount'] = total_amount_share['total_amount']/total_amount_share['CA']
total_amount_share_index = total_amount_share.set_index('customer_id')
df_circulaire = total_amount_share_index['total_amount'].sort_values(axis = 0, ascending = False)
#print('df circulaire : ', df_circulaire.head())
top = df_circulaire[:1]
#print('top : ', top)
outlier_list.append(top.index[0])
rest = df_circulaire[1:]
rest_sum = rest.sum()
new_series = pd.concat([top, pd.Series([rest_sum], index=['Autre'])])
if show_diagram:
plt.figure(figsize=(3, 3))
plt.pie(new_series, labels=new_series.index, autopct='%1.1f%%', startangle=140, pctdistance=0.5)
plt.axis('equal')
plt.title(f'Répartition des montants totaux pour la compagnie {company}')
plt.show()
return outlier_list
def valid_customer_detection(products, campaigns_brut):
products_valid = products[products['purchase_date']>="2021-05-01"]
consumer_valid_product = products_valid['customer_id'].to_list()
campaigns_valid = campaigns_brut[campaigns_brut["sent_at"]>="2021-05-01"]
consumer_valid_campaigns = campaigns_valid['customer_id'].to_list()
consumer_valid = consumer_valid_product + consumer_valid_campaigns
return consumer_valid
def identify_purchase_during_target_periode(products):
products_target_period = products[(products['purchase_date']>="2022-11-01")
& (products['purchase_date']<="2023-11-01")]
customer_target_period = products_target_period['customer_id'].to_list()
return customer_target_period
def remove_elements(lst, elements_to_remove):
return ''.join([x for x in lst if x not in elements_to_remove])
def compute_nb_clients(customer, type_of_activity):
company_nb_clients = customer[customer["purchase_count"]>0].groupby("number_company")["customer_id"].count().reset_index()
plt.bar(company_nb_clients["number_company"], company_nb_clients["customer_id"]/1000)
plt.xlabel('Company')
plt.ylabel("Number of clients (thousands)")
plt.title(f"Number of clients for {type_of_activity}")
plt.xticks(company_nb_clients["number_company"], ["{}".format(i) for i in company_nb_clients["number_company"]])
plt.show()
save_file_s3("nb_clients_", type_of_activity)
def maximum_price_paid(customer, type_of_activity):
company_max_price = customer.groupby("number_company")["max_price"].max().reset_index()
plt.bar(company_max_price["number_company"], company_max_price["max_price"])
plt.xlabel('Company')
plt.ylabel("Maximal price of a ticket Prix")
plt.title(f"Maximal price of a ticket for {type_of_activity}")
plt.xticks(company_max_price["number_company"], ["{}".format(i) for i in company_max_price["number_company"]])
plt.show()
save_file_s3("Maximal_price_", type_of_activity)
def mailing_consent(customer, type_of_activity):
mailing_consent = customer.groupby("number_company")["opt_in"].mean().reset_index()
plt.bar(mailing_consent["number_company"], mailing_consent["opt_in"])
plt.xlabel('Company')
plt.ylabel('Consent')
plt.title(f'Consent of mailing for {type_of_activity}')
plt.xticks(mailing_consent["number_company"], ["{}".format(i) for i in mailing_consent["number_company"]])
plt.show()
save_file_s3("mailing_consent_", type_of_activity)
def mailing_consent_by_target(customer):
df_graph = customer.groupby(["number_company", "has_purchased_target_period"])["opt_in"].mean().reset_index()
# Création du barplot groupé
fig, ax = plt.subplots(figsize=(10, 6))
categories = df_graph["number_company"].unique()
bar_width = 0.35
bar_positions = np.arange(len(categories))
# Grouper les données par label et créer les barres groupées
for label in df_graph["has_purchased_target_period"].unique():
label_data = df_graph[df_graph['has_purchased_target_period'] == label]
values = [label_data[label_data['number_company'] == category]['opt_in'].values[0]*100 for category in categories]
label_printed = "purchased" if label else "no purchase"
ax.bar(bar_positions, values, bar_width, label=label_printed)
# Mise à jour des positions des barres pour le prochain groupe
bar_positions = [pos + bar_width for pos in bar_positions]
# Ajout des étiquettes, de la légende, etc.
ax.set_xlabel('Company')
ax.set_ylabel('Consent')
ax.set_title(f'Consent of mailing according to target for {type_of_activity}')
ax.set_xticks([pos + bar_width / 2 for pos in np.arange(len(categories))])
ax.set_xticklabels(categories)
ax.legend()
# Affichage du plot
plt.show()
save_file_s3("mailing_consent_target_", type_of_activity)
def gender_bar(customer, type_of_activity):
company_genders = customer.groupby("number_company")[["gender_male", "gender_female", "gender_other"]].mean().reset_index()
# Création du barplot
plt.bar(company_genders["number_company"], company_genders["gender_male"], label = "Homme")
plt.bar(company_genders["number_company"], company_genders["gender_female"],
bottom = company_genders["gender_male"], label = "Femme")
plt.bar(company_genders["number_company"], company_genders["gender_other"],
bottom = company_genders["gender_male"] + company_genders["gender_female"], label = "Inconnu")
plt.xlabel('Company')
plt.ylabel("Gender")
plt.title(f"Gender of Customer for {type_of_activity}")
plt.legend()
plt.xticks(company_genders["number_company"], ["{}".format(i) for i in company_genders["number_company"]])
plt.show()
save_file_s3("gender_bar_", type_of_activity)
def country_bar(customer, type_of_activity):
company_country_fr = customer.groupby("number_company")["country_fr"].mean().reset_index()
plt.bar(company_country_fr["number_company"], company_country_fr["country_fr"])
plt.xlabel('Company')
plt.ylabel("Share of French Customer")
plt.title(f"Share of French Customer for {type_of_activity}")
plt.xticks(company_country_fr["number_company"], ["{}".format(i) for i in company_country_fr["number_company"]])
plt.show()
save_file_s3("country_bar_", type_of_activity)
def lazy_customer_plot(campaigns_kpi, type_of_activity):
company_lazy_customers = campaigns_kpi.groupby("number_company")["nb_campaigns_opened"].mean().reset_index()
plt.bar(company_lazy_customers["number_company"], company_lazy_customers["nb_campaigns_opened"])
plt.xlabel('Company')
plt.ylabel("Share of Customers who did not open mail")
plt.title(f"Share of Customers who did not open mail for {type_of_activity}")
plt.xticks(company_lazy_customers["number_company"], ["{}".format(i) for i in company_lazy_customers["number_company"]])
plt.show()
save_file_s3("lazy_customer_", type_of_activity)
def campaigns_effectiveness(customer, type_of_activity):
campaigns_effectiveness = customer.groupby("number_company")["opt_in"].mean().reset_index()
plt.bar(campaigns_effectiveness["number_company"], campaigns_effectiveness["opt_in"])
plt.xlabel('Company')
plt.ylabel("Number of Customers (thousands)")
plt.title(f"Number of Customers of have bought or have received mails for {type_of_activity}")
plt.legend()
plt.xticks(campaigns_effectiveness["number_company"], ["{}".format(i) for i in campaigns_effectiveness["number_company"]])
plt.show()
save_file_s3("campaigns_effectiveness_", type_of_activity)
def sale_dynamics(products, campaigns_brut, type_of_activity):
purchase_min = products.groupby(['customer_id'])['purchase_date'].min().reset_index()
purchase_min.rename(columns = {'purchase_date' : 'first_purchase_event'}, inplace = True)
purchase_min['first_purchase_event'] = pd.to_datetime(purchase_min['first_purchase_event'])
purchase_min['first_purchase_month'] = pd.to_datetime(purchase_min['first_purchase_event'].dt.strftime('%Y-%m'))
# Mois du premier mails
first_mail_received = campaigns_brut.groupby('customer_id')['sent_at'].min().reset_index()
first_mail_received.rename(columns = {'sent_at' : 'first_email_reception'}, inplace = True)
first_mail_received['first_email_reception'] = pd.to_datetime(first_mail_received['first_email_reception'])
first_mail_received['first_email_month'] = pd.to_datetime(first_mail_received['first_email_reception'].dt.strftime('%Y-%m'))
# Fusion
known_customer = pd.merge(purchase_min[['customer_id', 'first_purchase_month']],
first_mail_received[['customer_id', 'first_email_month']], on = 'customer_id', how = 'outer')
# Mois à partir duquel le client est considere comme connu
known_customer['known_date'] = pd.to_datetime(known_customer[['first_email_month', 'first_purchase_month']].min(axis = 1), utc = True, format = 'ISO8601')
# Nombre de commande par mois
purchases_count = pd.merge(products[['customer_id', 'purchase_id', 'purchase_date']].drop_duplicates(), known_customer[['customer_id', 'known_date']], on = ['customer_id'], how = 'inner')
purchases_count['is_customer_known'] = purchases_count['purchase_date'] > purchases_count['known_date'] + pd.DateOffset(months=1)
purchases_count['purchase_date_month'] = pd.to_datetime(purchases_count['purchase_date'].dt.strftime('%Y-%m'))
purchases_count = purchases_count[purchases_count['customer_id'] != 1]
# Nombre de commande par mois par type de client
nb_purchases_graph = purchases_count.groupby(['purchase_date_month', 'is_customer_known'])['purchase_id'].count().reset_index()
nb_purchases_graph.rename(columns = {'purchase_id' : 'nb_purchases'}, inplace = True)
nb_purchases_graph_2 = purchases_count.groupby(['purchase_date_month', 'is_customer_known'])['customer_id'].nunique().reset_index()
nb_purchases_graph_2.rename(columns = {'customer_id' : 'nb_new_customer'}, inplace = True)
# Graphique en nombre de commande
purchases_graph = nb_purchases_graph
purchases_graph_used = purchases_graph[purchases_graph["purchase_date_month"] >= datetime(2021,3,1)]
purchases_graph_used_0 = purchases_graph_used[purchases_graph_used["is_customer_known"]==False]
purchases_graph_used_1 = purchases_graph_used[purchases_graph_used["is_customer_known"]==True]
merged_data = pd.merge(purchases_graph_used_0, purchases_graph_used_1, on="purchase_date_month", suffixes=("_new", "_old"))
plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_new"], width=12, label="Nouveau client")
plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_old"],
bottom=merged_data["nb_purchases_new"], width=12, label="Ancien client")
# commande pr afficher slt
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%b%y'))
plt.xlabel('Month')
plt.ylabel("Number of Sales")
plt.title(f"Number of Sales for {type_of_activity}")
plt.legend()
plt.show()
save_file_s3("sale_dynamics_", type_of_activity)
def tickets_internet(tickets, type_of_activity):
nb_tickets_internet = tickets.groupby("number_company")[["nb_tickets", "nb_tickets_internet"]].sum().reset_index()
nb_tickets_internet["Share_ticket_internet"] = nb_tickets_internet["nb_tickets_internet"]*100 / nb_tickets_internet["nb_tickets"]
plt.bar(nb_tickets_internet["number_company"], nb_tickets_internet["Share_ticket_internet"])
plt.xlabel('Company')
plt.ylabel("Share of Tickets Bought Online")
plt.title(f"Share of Tickets Bought Online for {type_of_activity}")
plt.xticks(nb_tickets_internet["number_company"], ["{}".format(i) for i in nb_tickets_internet["number_company"]])
plt.show()
save_file_s3("tickets_internet_", type_of_activity)
def box_plot_price_tickets(tickets, type_of_activity):
price_tickets = tickets[(tickets['total_amount'] > 0)]
sns.boxplot(data=price_tickets, y="total_amount", x="number_company", showfliers=False, showmeans=True)
plt.title(f"Box plot of price tickets for {type_of_activity}")
plt.xticks(price_tickets["number_company"], ["{}".format(i) for i in price_tickets["number_company"]])
plt.show()
save_file_s3("box_plot_price_tickets_", type_of_activity)

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@ -1,825 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "aa74dbe0-f974-4b5c-94f4-4dba9fbc64fa",
"metadata": {},
"source": [
"# Business Data Challenge - Team 1"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "94c498e7-7c50-45f9-b3f4-a1ab19b7ccc4",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "7a3b50ac-b1ff-4f3d-9938-e048fdc8e027",
"metadata": {},
"source": [
"Configuration de l'accès aux données"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0b029d42-fb02-481e-a407-7e41886198a6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['bdc2324-data/1',\n",
" 'bdc2324-data/10',\n",
" 'bdc2324-data/101',\n",
" 'bdc2324-data/11',\n",
" 'bdc2324-data/12',\n",
" 'bdc2324-data/13',\n",
" 'bdc2324-data/14',\n",
" 'bdc2324-data/2',\n",
" 'bdc2324-data/3',\n",
" 'bdc2324-data/4',\n",
" 'bdc2324-data/5',\n",
" 'bdc2324-data/6',\n",
" 'bdc2324-data/7',\n",
" 'bdc2324-data/8',\n",
" 'bdc2324-data/9']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"import s3fs\n",
"# Create filesystem object\n",
"S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n",
"fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})\n",
"\n",
"BUCKET = \"bdc2324-data\"\n",
"fs.ls(BUCKET)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "fbaf9aa7-ff70-4dbe-a969-b801c593510b",
"metadata": {},
"outputs": [],
"source": [
"# Chargement des fichiers campaign_stats.csv\n",
"FILE_PATH_S3 = 'bdc2324-data/1/1campaign_stats.csv'\n",
"\n",
"with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" campaign_stats_1 = pd.read_csv(file_in, sep=\",\")\n",
"\n",
"FILE_PATH_S3 = 'bdc2324-data/2/2campaign_stats.csv'\n",
"\n",
"with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" campaign_stats_2 = pd.read_csv(file_in, sep=\",\")\n",
"\n",
"FILE_PATH_S3 = 'bdc2324-data/3/3campaign_stats.csv'\n",
"\n",
"with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" campaign_stats_3 = pd.read_csv(file_in, sep=\",\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1e0418bc-8e97-4a04-b7f3-bda3bef7d36e",
"metadata": {},
"outputs": [],
"source": [
"# Conversion des dates 'sent_at'\n",
"campaign_stats_1['sent_at'] = pd.to_datetime(campaign_stats_1['sent_at'], format = 'ISO8601', utc = True)\n",
"campaign_stats_2['sent_at'] = pd.to_datetime(campaign_stats_2['sent_at'], format = 'ISO8601', utc = True)\n",
"campaign_stats_3['sent_at'] = pd.to_datetime(campaign_stats_3['sent_at'], format = 'ISO8601', utc = True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "cc5c20ba-e827-4e5a-97a5-7f3947e0621c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-11-09 18:10:45+00:00\n",
"2020-06-02 08:24:08+00:00\n",
"2023-10-12 01:39:48+00:00\n",
"2023-10-10 17:06:29+00:00\n",
"2023-11-01 09:20:48+00:00\n",
"2021-03-31 14:59:02+00:00\n"
]
}
],
"source": [
"# Chaque unites correspond à une période ? --> Non, les dossiers ont juste pour but de réduire la taille des fichiers\n",
"print(campaign_stats_1['sent_at'].max())\n",
"print(campaign_stats_1['sent_at'].min())\n",
"\n",
"print(campaign_stats_2['sent_at'].max())\n",
"print(campaign_stats_2['sent_at'].min())\n",
"\n",
"print(campaign_stats_3['sent_at'].max())\n",
"print(campaign_stats_3['sent_at'].min())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c75632df-b018-4bb8-a99d-83f15af94369",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 2021-03-28 16:01:09+00:00\n",
"1 2021-03-28 16:01:09+00:00\n",
"2 2021-03-28 16:00:59+00:00\n",
"3 2021-03-28 16:00:59+00:00\n",
"4 2021-03-28 16:01:06+00:00\n",
" ... \n",
"6214803 2023-10-23 09:32:33+00:00\n",
"6214804 2023-10-23 09:32:49+00:00\n",
"6214805 2023-10-23 09:33:28+00:00\n",
"6214806 2023-10-23 09:31:53+00:00\n",
"6214807 2023-10-23 09:33:54+00:00\n",
"Name: sent_at, Length: 6214808, dtype: datetime64[ns, UTC]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"campaign_stats_1['sent_at']"
]
},
{
"cell_type": "markdown",
"id": "f4c0c63e-0418-4cfe-a57d-7af57bca0c22",
"metadata": {},
"source": [
"### Customersplus.csv"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d3bf880d-1065-4d5b-9954-1830aa5081af",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_1362/4118060109.py:9: DtypeWarning: Columns (20) have mixed types. Specify dtype option on import or set low_memory=False.\n",
" customers_plus_2 = pd.read_csv(file_in, sep=\",\")\n"
]
}
],
"source": [
"FILE_PATH_S3 = 'bdc2324-data/1/1customersplus.csv'\n",
"\n",
"with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" customers_plus_1 = pd.read_csv(file_in, sep=\",\")\n",
"\n",
"FILE_PATH_S3 = 'bdc2324-data/2/2customersplus.csv'\n",
"\n",
"with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" customers_plus_2 = pd.read_csv(file_in, sep=\",\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "7368f381-db8e-4a4d-9fe2-5947eb55be58",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['id', 'lastname', 'firstname', 'birthdate', 'email', 'street_id',\n",
" 'created_at', 'updated_at', 'civility', 'is_partner', 'extra',\n",
" 'deleted_at', 'reference', 'gender', 'is_email_true', 'extra_field',\n",
" 'identifier', 'opt_in', 'structure_id', 'note', 'profession',\n",
" 'language', 'mcp_contact_id', 'need_reload', 'last_buying_date',\n",
" 'max_price', 'ticket_sum', 'average_price', 'fidelity',\n",
" 'average_purchase_delay', 'average_price_basket',\n",
" 'average_ticket_basket', 'total_price', 'preferred_category',\n",
" 'preferred_supplier', 'preferred_formula', 'purchase_count',\n",
" 'first_buying_date', 'last_visiting_date', 'zipcode', 'country', 'age',\n",
" 'tenant_id'],\n",
" dtype='object')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"customers_plus_1.columns"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08091935-b159-47fa-806c-e1444f3b227e",
"metadata": {},
"outputs": [],
"source": [
"customers_plus_1.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f8c8868-c1ac-4cee-af08-533d928f6764",
"metadata": {},
"outputs": [],
"source": [
"customers_plus_1['id'].nunique()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bf95daf2-4852-4718-b474-207a1ebd8ac4",
"metadata": {},
"outputs": [],
"source": [
"customers_plus_2['id'].nunique()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1425c385-3216-4e4f-ae8f-a121624721ba",
"metadata": {},
"outputs": [],
"source": [
"common_id = set(customers_plus_2['id']).intersection(customers_plus_1['id'])"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "92533026-e27c-4f1f-81ca-64eda32a34c0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"common_id = set(customers_plus_2['id']).intersection(customers_plus_1['id'])\n",
"# Exemple id commun = caractéristiques communes\n",
"print(customers_plus_2[customers_plus_2['id'] == list(common_id)[0]])\n",
"\n",
"print(customers_plus_1[customers_plus_1['id'] == list(common_id)[0]])"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "bf9ebc94-0ba6-443d-8e53-22477a6e79a7",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"id 0.000000\n",
"lastname 43.461341\n",
"firstname 44.995588\n",
"birthdate 96.419870\n",
"email 8.622075\n",
"street_id 0.000000\n",
"created_at 0.000000\n",
"updated_at 0.000000\n",
"civility 100.000000\n",
"is_partner 0.000000\n",
"extra 100.000000\n",
"deleted_at 100.000000\n",
"reference 100.000000\n",
"gender 0.000000\n",
"is_email_true 0.000000\n",
"extra_field 100.000000\n",
"identifier 0.000000\n",
"opt_in 0.000000\n",
"structure_id 88.072380\n",
"note 99.403421\n",
"profession 95.913503\n",
"language 99.280945\n",
"mcp_contact_id 34.876141\n",
"need_reload 0.000000\n",
"last_buying_date 51.653431\n",
"max_price 51.653431\n",
"ticket_sum 0.000000\n",
"average_price 8.639195\n",
"fidelity 0.000000\n",
"average_purchase_delay 51.653431\n",
"average_price_basket 51.653431\n",
"average_ticket_basket 51.653431\n",
"total_price 43.014236\n",
"preferred_category 100.000000\n",
"preferred_supplier 100.000000\n",
"preferred_formula 100.000000\n",
"purchase_count 0.000000\n",
"first_buying_date 51.653431\n",
"last_visiting_date 100.000000\n",
"zipcode 71.176564\n",
"country 5.459418\n",
"age 96.419870\n",
"tenant_id 0.000000\n",
"dtype: float64\n"
]
}
],
"source": [
"pd.DataFrame(customers_plus_1.isna().mean()*100)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "6d62e73f-3925-490f-9fd4-d0e838903cb2",
"metadata": {},
"outputs": [],
"source": [
"# Chargement de toutes les données\n",
"liste_base = ['customer_target_mappings', 'customersplus', 'target_types', 'tags', 'events', 'tickets', 'representations', 'purchases', 'products']\n",
"\n",
"for nom_base in liste_base:\n",
" FILE_PATH_S3 = 'bdc2324-data/11/11' + nom_base + '.csv'\n",
" with fs.open(FILE_PATH_S3, mode=\"rb\") as file_in:\n",
" globals()[nom_base] = pd.read_csv(file_in, sep=\",\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "12b24f1c-eb3e-45be-aaf3-b9273180caa3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>lastname</th>\n",
" <th>firstname</th>\n",
" <th>birthdate</th>\n",
" <th>email</th>\n",
" <th>street_id</th>\n",
" <th>created_at</th>\n",
" <th>updated_at</th>\n",
" <th>civility</th>\n",
" <th>is_partner</th>\n",
" <th>...</th>\n",
" <th>tenant_id</th>\n",
" <th>id_x</th>\n",
" <th>customer_id</th>\n",
" <th>purchase_date</th>\n",
" <th>type_of</th>\n",
" <th>is_from_subscription</th>\n",
" <th>amount</th>\n",
" <th>is_full_price</th>\n",
" <th>start_date_time</th>\n",
" <th>event_name</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>405082</td>\n",
" <td>lastname405082</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>6</td>\n",
" <td>2023-01-12 06:30:31.197484+01:00</td>\n",
" <td>2023-01-12 06:30:31.197484+01:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>992423</td>\n",
" <td>405082</td>\n",
" <td>2023-01-11 17:08:41+01:00</td>\n",
" <td>3</td>\n",
" <td>False</td>\n",
" <td>13.0</td>\n",
" <td>False</td>\n",
" <td>2023-02-06 20:00:00+01:00</td>\n",
" <td>zaide</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>405082</td>\n",
" <td>lastname405082</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>6</td>\n",
" <td>2023-01-12 06:30:31.197484+01:00</td>\n",
" <td>2023-01-12 06:30:31.197484+01:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>992423</td>\n",
" <td>405082</td>\n",
" <td>2023-01-11 17:08:41+01:00</td>\n",
" <td>3</td>\n",
" <td>False</td>\n",
" <td>13.0</td>\n",
" <td>False</td>\n",
" <td>2023-02-06 20:00:00+01:00</td>\n",
" <td>zaide</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>411168</td>\n",
" <td>lastname411168</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>6</td>\n",
" <td>2023-03-17 06:30:35.431967+01:00</td>\n",
" <td>2023-03-17 06:30:35.431967+01:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1053934</td>\n",
" <td>411168</td>\n",
" <td>2023-03-16 16:23:10+01:00</td>\n",
" <td>3</td>\n",
" <td>False</td>\n",
" <td>62.0</td>\n",
" <td>False</td>\n",
" <td>2023-03-19 16:00:00+01:00</td>\n",
" <td>luisa miller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>411168</td>\n",
" <td>lastname411168</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>6</td>\n",
" <td>2023-03-17 06:30:35.431967+01:00</td>\n",
" <td>2023-03-17 06:30:35.431967+01:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1053934</td>\n",
" <td>411168</td>\n",
" <td>2023-03-16 16:23:10+01:00</td>\n",
" <td>3</td>\n",
" <td>False</td>\n",
" <td>62.0</td>\n",
" <td>False</td>\n",
" <td>2023-03-19 16:00:00+01:00</td>\n",
" <td>luisa miller</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4380</td>\n",
" <td>lastname4380</td>\n",
" <td>firstname4380</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1</td>\n",
" <td>2021-04-22 14:51:55.432952+02:00</td>\n",
" <td>2022-04-14 11:41:33.738500+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1189141</td>\n",
" <td>4380</td>\n",
" <td>2020-11-26 13:12:53+01:00</td>\n",
" <td>3</td>\n",
" <td>False</td>\n",
" <td>51.3</td>\n",
" <td>False</td>\n",
" <td>2020-12-01 20:00:00+01:00</td>\n",
" <td>iphigenie en tauride</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>318964</th>\n",
" <td>19095</td>\n",
" <td>lastname19095</td>\n",
" <td>firstname19095</td>\n",
" <td>1979-07-16</td>\n",
" <td>email19095</td>\n",
" <td>6</td>\n",
" <td>2021-04-22 15:06:30.120537+02:00</td>\n",
" <td>2023-09-12 18:27:36.904104+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1090839</td>\n",
" <td>19095</td>\n",
" <td>2019-05-19 21:18:36+02:00</td>\n",
" <td>1</td>\n",
" <td>False</td>\n",
" <td>4.5</td>\n",
" <td>False</td>\n",
" <td>2019-05-27 20:00:00+02:00</td>\n",
" <td>entre femmes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>318965</th>\n",
" <td>19095</td>\n",
" <td>lastname19095</td>\n",
" <td>firstname19095</td>\n",
" <td>1979-07-16</td>\n",
" <td>email19095</td>\n",
" <td>6</td>\n",
" <td>2021-04-22 15:06:30.120537+02:00</td>\n",
" <td>2023-09-12 18:27:36.904104+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1090839</td>\n",
" <td>19095</td>\n",
" <td>2019-05-19 21:18:36+02:00</td>\n",
" <td>1</td>\n",
" <td>False</td>\n",
" <td>4.5</td>\n",
" <td>False</td>\n",
" <td>2019-05-27 20:00:00+02:00</td>\n",
" <td>entre femmes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>318966</th>\n",
" <td>19095</td>\n",
" <td>lastname19095</td>\n",
" <td>firstname19095</td>\n",
" <td>1979-07-16</td>\n",
" <td>email19095</td>\n",
" <td>6</td>\n",
" <td>2021-04-22 15:06:30.120537+02:00</td>\n",
" <td>2023-09-12 18:27:36.904104+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1090839</td>\n",
" <td>19095</td>\n",
" <td>2019-05-19 21:18:36+02:00</td>\n",
" <td>1</td>\n",
" <td>False</td>\n",
" <td>4.5</td>\n",
" <td>False</td>\n",
" <td>2019-05-27 20:00:00+02:00</td>\n",
" <td>entre femmes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>318967</th>\n",
" <td>19095</td>\n",
" <td>lastname19095</td>\n",
" <td>firstname19095</td>\n",
" <td>1979-07-16</td>\n",
" <td>email19095</td>\n",
" <td>6</td>\n",
" <td>2021-04-22 15:06:30.120537+02:00</td>\n",
" <td>2023-09-12 18:27:36.904104+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1244277</td>\n",
" <td>19095</td>\n",
" <td>2019-12-31 11:04:07+01:00</td>\n",
" <td>1</td>\n",
" <td>False</td>\n",
" <td>5.5</td>\n",
" <td>False</td>\n",
" <td>2020-02-03 20:00:00+01:00</td>\n",
" <td>a boire et a manger</td>\n",
" </tr>\n",
" <tr>\n",
" <th>318968</th>\n",
" <td>19095</td>\n",
" <td>lastname19095</td>\n",
" <td>firstname19095</td>\n",
" <td>1979-07-16</td>\n",
" <td>email19095</td>\n",
" <td>6</td>\n",
" <td>2021-04-22 15:06:30.120537+02:00</td>\n",
" <td>2023-09-12 18:27:36.904104+02:00</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>...</td>\n",
" <td>1556</td>\n",
" <td>1244277</td>\n",
" <td>19095</td>\n",
" <td>2019-12-31 11:04:07+01:00</td>\n",
" <td>1</td>\n",
" <td>False</td>\n",
" <td>5.5</td>\n",
" <td>False</td>\n",
" <td>2020-02-03 20:00:00+01:00</td>\n",
" <td>a boire et a manger</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>318969 rows × 52 columns</p>\n",
"</div>"
],
"text/plain": [
" id lastname firstname birthdate email \\\n",
"0 405082 lastname405082 NaN NaN NaN \n",
"1 405082 lastname405082 NaN NaN NaN \n",
"2 411168 lastname411168 NaN NaN NaN \n",
"3 411168 lastname411168 NaN NaN NaN \n",
"4 4380 lastname4380 firstname4380 NaN NaN \n",
"... ... ... ... ... ... \n",
"318964 19095 lastname19095 firstname19095 1979-07-16 email19095 \n",
"318965 19095 lastname19095 firstname19095 1979-07-16 email19095 \n",
"318966 19095 lastname19095 firstname19095 1979-07-16 email19095 \n",
"318967 19095 lastname19095 firstname19095 1979-07-16 email19095 \n",
"318968 19095 lastname19095 firstname19095 1979-07-16 email19095 \n",
"\n",
" street_id created_at \\\n",
"0 6 2023-01-12 06:30:31.197484+01:00 \n",
"1 6 2023-01-12 06:30:31.197484+01:00 \n",
"2 6 2023-03-17 06:30:35.431967+01:00 \n",
"3 6 2023-03-17 06:30:35.431967+01:00 \n",
"4 1 2021-04-22 14:51:55.432952+02:00 \n",
"... ... ... \n",
"318964 6 2021-04-22 15:06:30.120537+02:00 \n",
"318965 6 2021-04-22 15:06:30.120537+02:00 \n",
"318966 6 2021-04-22 15:06:30.120537+02:00 \n",
"318967 6 2021-04-22 15:06:30.120537+02:00 \n",
"318968 6 2021-04-22 15:06:30.120537+02:00 \n",
"\n",
" updated_at civility is_partner ... \\\n",
"0 2023-01-12 06:30:31.197484+01:00 NaN False ... \n",
"1 2023-01-12 06:30:31.197484+01:00 NaN False ... \n",
"2 2023-03-17 06:30:35.431967+01:00 NaN False ... \n",
"3 2023-03-17 06:30:35.431967+01:00 NaN False ... \n",
"4 2022-04-14 11:41:33.738500+02:00 NaN False ... \n",
"... ... ... ... ... \n",
"318964 2023-09-12 18:27:36.904104+02:00 NaN False ... \n",
"318965 2023-09-12 18:27:36.904104+02:00 NaN False ... \n",
"318966 2023-09-12 18:27:36.904104+02:00 NaN False ... \n",
"318967 2023-09-12 18:27:36.904104+02:00 NaN False ... \n",
"318968 2023-09-12 18:27:36.904104+02:00 NaN False ... \n",
"\n",
" tenant_id id_x customer_id purchase_date type_of \\\n",
"0 1556 992423 405082 2023-01-11 17:08:41+01:00 3 \n",
"1 1556 992423 405082 2023-01-11 17:08:41+01:00 3 \n",
"2 1556 1053934 411168 2023-03-16 16:23:10+01:00 3 \n",
"3 1556 1053934 411168 2023-03-16 16:23:10+01:00 3 \n",
"4 1556 1189141 4380 2020-11-26 13:12:53+01:00 3 \n",
"... ... ... ... ... ... \n",
"318964 1556 1090839 19095 2019-05-19 21:18:36+02:00 1 \n",
"318965 1556 1090839 19095 2019-05-19 21:18:36+02:00 1 \n",
"318966 1556 1090839 19095 2019-05-19 21:18:36+02:00 1 \n",
"318967 1556 1244277 19095 2019-12-31 11:04:07+01:00 1 \n",
"318968 1556 1244277 19095 2019-12-31 11:04:07+01:00 1 \n",
"\n",
" is_from_subscription amount is_full_price start_date_time \\\n",
"0 False 13.0 False 2023-02-06 20:00:00+01:00 \n",
"1 False 13.0 False 2023-02-06 20:00:00+01:00 \n",
"2 False 62.0 False 2023-03-19 16:00:00+01:00 \n",
"3 False 62.0 False 2023-03-19 16:00:00+01:00 \n",
"4 False 51.3 False 2020-12-01 20:00:00+01:00 \n",
"... ... ... ... ... \n",
"318964 False 4.5 False 2019-05-27 20:00:00+02:00 \n",
"318965 False 4.5 False 2019-05-27 20:00:00+02:00 \n",
"318966 False 4.5 False 2019-05-27 20:00:00+02:00 \n",
"318967 False 5.5 False 2020-02-03 20:00:00+01:00 \n",
"318968 False 5.5 False 2020-02-03 20:00:00+01:00 \n",
"\n",
" event_name \n",
"0 zaide \n",
"1 zaide \n",
"2 luisa miller \n",
"3 luisa miller \n",
"4 iphigenie en tauride \n",
"... ... \n",
"318964 entre femmes \n",
"318965 entre femmes \n",
"318966 entre femmes \n",
"318967 a boire et a manger \n",
"318968 a boire et a manger \n",
"\n",
"[318969 rows x 52 columns]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Jointure\n",
"merge_1 = pd.merge(purchases, tickets, left_on='id', right_on='purchase_id', how='inner')[['id_x', 'customer_id','product_id', 'purchase_date', 'type_of', 'is_from_subscription']]\n",
"merge_2 = pd.merge(products, merge_1, left_on='id', right_on='product_id', how='inner')[['id_x', 'customer_id', 'representation_id', 'purchase_date', 'type_of', 'is_from_subscription', 'amount', 'is_full_price']]\n",
"merge_3 = pd.merge(representations, merge_2, left_on='id', right_on='representation_id', how='inner')[['id_x', 'customer_id', 'event_id', 'purchase_date', 'type_of', 'is_from_subscription', 'amount', 'is_full_price', 'start_date_time']]\n",
"merge_4 = pd.merge(events, merge_3, left_on='id', right_on='event_id', how='inner')[['id_x', 'customer_id', 'purchase_date', 'type_of', 'is_from_subscription', 'amount', 'is_full_price', 'start_date_time', 'name']]\n",
"merge_4 = merge_4.rename(columns={'name': 'event_name'})\n",
"df_customer_event = pd.merge(customersplus, merge_4, left_on = 'id', right_on = 'customer_id', how = 'inner')[['id_x', 'purchase_date', 'type_of', 'is_from_subscription', 'amount', 'is_full_price', 'start_date_time', 'event_name']]\n",
"df_customer_event"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,7 +1,15 @@
# Business data challenge 2023-2024 | ENSAE Paris # Business data challenge 2023-2024 | ENSAE Paris
# Arenametrix : customer segmentation # Arenametrix : customer segmentation
## Team 1 : <p align="center">
<img src="https://dev.arenametrix.fr/assets/logo_ax-806e8204f49bcc2c5e8cd34e9748d16a6038404e37fdb2dc9d61455bb06c6461.png" width=300>
</p>
## Team 1
* Antoine JOUBREL * Antoine JOUBREL
* Alexis REVELLE * Alexis REVELLE
@ -9,25 +17,53 @@
* Thomas PIQUÉ * Thomas PIQUÉ
## Coaches : ## Coaches
* Elia LAPENTA * Elia LAPENTA
* Michael VISSER * Michael VISSER
## Support team
* Patrice MICHEL (Datastorm)
* Hassan MAISSORO (Datastorm)
* Alexandre PRINC (Arenametrix)
## Microeconomics coordinator
* Yuanzhe TANG
### Description of the problematic ### Description of the problematic
The goal of this project is to create segments of customers from 15 companies belonging to 3 different types of activities (sports companies, museum, and music companies). The goal of this project is to create segments of customers from 15 companies belonging to 3 different types of activities (sports companies, museum, and music companies).
### More detailled instructions provided by Arenamtrix
- Definition of “marketing personae” that can be match with a probability to buy a future event
- Matching between future event and people in the database (with for instance a probability to buy a future event)
- And thus, a forecast of the quantity of ticket sold by event by “marketing personae” or by a segment of the database
- BONUS : What is the best timing to send a communication to each contact in the database and each “marketing personae”
- BONUS : What should we tell to each contact in the database and each “marketing personae”to make them come back
### Our approach ### Our approach
We opted for a sector-based approach, which means that 3 segmentations have been performed (one for each type of activity). We opted for a sector-based approach, which means that 3 segmentations have been performed (one for each type of activity).
As the segments have to be linked to a probability of future purchase, we directly used the probability of purchase during the incoming year to make segments. The first step of the modelization is a pipeline that fits 3 ML models (naive bayes, random forest, and logistic regression) on the data to predict whether the customer will purchase during the year. We then use the probability of purchase estimated to split the customers into 4 segments. For each segment, we can estimate the potential number of tickets and revenue for the incoming year. As the segments have to be linked to a probability of future purchase, we directly used the probability of purchase during the incoming year to make segments. The first step of the modelization is a pipeline that fits 3 ML models (naive bayes, random forest, and logistic regression) on the data to predict whether the customer will purchase during the year. We then use the probability of purchase estimated to split the customers into 4 segments. For each segment, we can estimate the potential number of tickets and revenue for the incoming year.
### How run the code ### How run the code
- run 0_1_Input_cleaning.py to clean the raw data and generate dataframes that will be used to build datasets with insightful variables. Codes have to be run in an order following their numbers. Each of them is described below :
- run 0_2_Dataset_construction.py.
- run 0_3_General_modelization_dataset.py to generate test and train sets for the 3 types of activities. - `1_Input_cleaning.py` \
- run the script 0_4_Generate_stat_desc.py to generate graphics describing the data Clean raw data and generate dataframes that will be used to build datasets with insightful variables. Datasets are exported to location 0_Input/.
- run 0_5_Machine_Learning.py. 3 ML models will be fitted on the data, and results will be exported for all 3 types of activities - `2_Datasets_generation.py` \
- run 0_6_Segmentation.py. The test set will be fitted with the optimal parameters computed previously. That will allow to compute a propensity score (probability of a future purchase). Segmentation is performed according to the scores provided. This scripts exports graphics describing the marketing personae associated to the segments as well as their business value. Use dataframes previously created and aggregate them to create test and train set for each company. Databases are exported to location 1_Temp/1_0_Modelling_Datasets/ in a folder containing all 5 databases for a type of activity.
- run 0_7_CA_segment.py. The scores will be adjusted to better fit the overall probability of a purchase. This score adjusted is used to estimate the number of tickets sold and the revenue generated during the incoming year. - `3_Modelling_datasets.py` \
For each type of activity, the test and train sets of the 5 tenants are concatenated. Databases are exported to location 1_Temp/1_0_Modelling_Datasets/.
- `4_Descriptive_statistics.py` \
Generate graphics providing some descriptive statistics about the data at the activity level. All graphics are exported to location 2_Output/2_0_Descriptive_Statistics/.
- `5_Modelling.py` \
3 ML models will be fitted on the data, and results will be exported for all 3 types of activities. \
3 pipelines are built, one by type of model (Naive Bayes, Random Forest, Logistic Regression). For the 2 latter ML methods, cross validation was performed to ensure generalization. Graphics displaying the quality of the training are provided. Optimal parameters found are saved in a pickle file (which will be used in the 6th step to add propensity scores to the test set and then determine the segments of the customers). All these files are exported to location 2_Output/2_1_Modeling_results/
- `6_Segmentation_and_Marketing_Personae.py` \
The test set will be fitted with the optimal parameters computed previously, and a propensity score (probability of a future purchase) will be assigned to each customer of this dataset. Segmentation is performed according to the scores provided. Graphics describing the marketing personae associated to the segments as well as their business value are exported to location 2_Output/2_2_Segmentation_and_Marketing_Personae/.
- `7_Sales_Forecast.py` \
To ensure a decent recall, and because of the unbalancing of the target variable y (the global probability of purchase is between 4 and 14 %), the probabilities of purchasing are overestimated.The scores will therefore be adjusted so that their mean approximates the overall probability of a purchase. This score adjusted is used to estimate, for each customer, the number of tickets sold and the revenue generated during the incoming year. Results are aggregated at segment level. A histogram displaying the adjusted propensity scores and 2 tables summarizing the forecast outcome are exported to location 2_Output/2_3_Sales_Forecast/.

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

249
all_packages_versions.txt Normal file
View File

@ -0,0 +1,249 @@
Package Version
------------------------- ---------------
aiohttp 3.9.1
aiosignal 1.3.1
alembic 1.13.1
anyio 4.2.0
archspec 0.2.2
argon2-cffi 23.1.0
argon2-cffi-bindings 21.2.0
arrow 1.3.0
astroid 3.0.2
asttokens 2.4.1
async-lru 2.0.4
attrs 23.2.0
Babel 2.14.0
bcrypt 4.1.2
beautifulsoup4 4.12.3
bleach 6.1.0
blinker 1.7.0
bokeh 3.3.4
boltons 23.1.1
boto3 1.34.29
botocore 1.34.29
branca 0.7.0
Brotli 1.1.0
cached-property 1.5.2
cachetools 5.3.2
certifi 2023.11.17
cffi 1.16.0
charset-normalizer 3.3.2
click 8.1.7
click-plugins 1.1.1
cligj 0.7.2
cloudpickle 3.0.0
colorama 0.4.6
comm 0.2.1
conda 23.11.0
conda-libmamba-solver 23.12.0
conda-package-handling 2.2.0
conda_package_streaming 0.9.0
configparser 5.3.0
contourpy 1.2.0
cryptography 41.0.7
cycler 0.12.1
cytoolz 0.12.2
dask 2024.1.1
databricks-cli 0.18.0
debugpy 1.8.0
decorator 5.1.1
defusedxml 0.7.1
dill 0.3.8
distributed 2024.1.1
distro 1.8.0
docker 7.0.0
duckdb 0.9.2
entrypoints 0.4
exceptiongroup 1.2.0
executing 2.0.1
fastjsonschema 2.19.1
fiona 1.9.5
flake8 7.0.0
Flask 3.0.1
folium 0.15.1
fonttools 4.47.2
fqdn 1.5.1
frozenlist 1.4.1
fsspec 2023.12.2
GDAL 3.8.3
gensim 4.3.2
geopandas 0.14.2
gitdb 4.0.11
GitPython 3.1.41
google-auth 2.27.0
greenlet 3.0.3
gunicorn 21.2.0
hvac 2.1.0
idna 3.6
importlib-metadata 7.0.1
importlib-resources 6.1.1
ipykernel 6.29.0
ipython 8.20.0
ipywidgets 8.1.1
isoduration 20.11.0
isort 5.13.2
itsdangerous 2.1.2
jedi 0.19.1
Jinja2 3.1.3
jmespath 1.0.1
joblib 1.3.2
json5 0.9.14
jsonpatch 1.33
jsonpointer 2.4
jsonschema 4.21.1
jsonschema-specifications 2023.12.1
jupyter-cache 1.0.0
jupyter_client 8.6.0
jupyter_core 5.7.1
jupyter-events 0.9.0
jupyter-lsp 2.2.2
jupyter_server 2.12.5
jupyter-server-mathjax 0.2.6
jupyter_server_terminals 0.5.2
jupyterlab 4.0.11
jupyterlab_git 0.50.0
jupyterlab_pygments 0.3.0
jupyterlab_server 2.25.2
jupyterlab-widgets 3.0.9
kiwisolver 1.4.5
kubernetes 29.0.0
libmambapy 1.5.5
llvmlite 0.41.1
locket 1.0.0
lz4 4.3.3
Mako 1.3.1
mamba 1.5.5
mapclassify 2.6.1
Markdown 3.5.2
MarkupSafe 2.1.4
matplotlib 3.8.2
matplotlib-inline 0.1.6
mccabe 0.7.0
menuinst 2.0.2
mistune 3.0.2
mlflow 2.10.0
msgpack 1.0.7
multidict 6.0.4
munkres 1.1.4
mypy 1.8.0
mypy-extensions 1.0.0
nbclient 0.8.0
nbconvert 7.14.2
nbdime 4.0.1
nbformat 5.9.2
nest_asyncio 1.6.0
networkx 3.2.1
nltk 3.8.1
notebook_shim 0.2.3
numba 0.58.1
numpy 1.26.3
oauthlib 3.2.2
opencv-python-headless 4.9.0.80
overrides 7.7.0
packaging 23.2
pandas 2.2.0
pandocfilters 1.5.0
paramiko 3.4.0
parso 0.8.3
partd 1.4.1
patsy 0.5.6
pexpect 4.9.0
pickleshare 0.7.5
pillow 10.2.0
pip 23.3.2
pkgutil_resolve_name 1.3.10
platformdirs 4.1.0
plotly 5.18.0
pluggy 1.3.0
polars 0.20.6
prometheus-client 0.19.0
prometheus-flask-exporter 0.23.0
prompt-toolkit 3.0.42
protobuf 4.24.4
psutil 5.9.8
ptyprocess 0.7.0
pure-eval 0.2.2
pyarrow 14.0.2
pyarrow-hotfix 0.6
pyasn1 0.5.1
pyasn1-modules 0.3.0
pycodestyle 2.11.1
pycosat 0.6.6
pycparser 2.21
pyflakes 3.2.0
Pygments 2.17.2
PyJWT 2.8.0
pylint 3.0.3
PyNaCl 1.5.0
pyOpenSSL 23.3.0
pyparsing 3.1.1
pyproj 3.6.1
PySocks 1.7.1
python-dateutil 2.8.2
python-json-logger 2.0.7
pytz 2023.3.post1
pyu2f 0.1.5
PyYAML 6.0.1
pyzmq 25.1.2
querystring-parser 1.2.4
referencing 0.32.1
regex 2023.12.25
requests 2.31.0
requests-oauthlib 1.3.1
rfc3339-validator 0.1.4
rfc3986-validator 0.1.1
rpds-py 0.17.1
rsa 4.9
Rtree 1.2.0
ruamel.yaml 0.18.5
ruamel.yaml.clib 0.2.7
s3fs 0.4.2
s3transfer 0.10.0
scikit-learn 1.4.0
scipy 1.12.0
seaborn 0.13.2
Send2Trash 1.8.2
setuptools 68.2.2
shapely 2.0.2
six 1.16.0
smart-open 6.4.0
smmap 5.0.0
sniffio 1.3.0
sortedcontainers 2.4.0
soupsieve 2.5
SQLAlchemy 2.0.25
sqlparse 0.4.4
stack-data 0.6.2
statsmodels 0.14.1
tabulate 0.9.0
tblib 3.0.0
tenacity 8.2.3
terminado 0.18.0
threadpoolctl 3.2.0
tinycss2 1.2.1
tomli 2.0.1
tomlkit 0.12.3
toolz 0.12.1
tornado 6.3.3
tqdm 4.66.1
traitlets 5.14.1
truststore 0.8.0
types-python-dateutil 2.8.19.20240106
typing_extensions 4.9.0
typing-utils 0.1.0
tzdata 2023.4
uri-template 1.3.0
urllib3 1.26.18
wcwidth 0.2.13
webcolors 1.13
webencodings 0.5.1
websocket-client 1.7.0
Werkzeug 3.0.1
wheel 0.42.0
widgetsnbextension 4.0.9
xgboost 2.0.3
xyzservices 2023.10.1
yarl 1.9.4
zict 3.0.0
zipp 3.17.0
zstandard 0.22.0

View File

@ -1,460 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "bf34b03c-536f-4f93-93a5-e452552653aa",
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"Choisissez le type de compagnie : sport ? musique ? musee ? musique\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"File path : projet-bdc2324-team1/0_Input/Company_10/products_purchased_reduced.csv\n",
"Couverture Company 10 : 2016-03-07 - 2023-09-25\n",
"File path : projet-bdc2324-team1/0_Input/Company_11/products_purchased_reduced.csv\n",
"Couverture Company 11 : 2015-06-26 - 2023-11-08\n",
"File path : projet-bdc2324-team1/0_Input/Company_12/products_purchased_reduced.csv\n",
"Couverture Company 12 : 2016-06-14 - 2023-11-08\n",
"File path : projet-bdc2324-team1/0_Input/Company_13/products_purchased_reduced.csv\n",
"Couverture Company 13 : 2010-07-31 - 2023-11-08\n",
"File path : projet-bdc2324-team1/0_Input/Company_14/products_purchased_reduced.csv\n",
"Couverture Company 14 : 1901-01-01 - 2023-11-08\n",
"File path : projet-bdc2324-team1/0_Input/Company_10/customerplus_cleaned.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_10/campaigns_information.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_10/products_purchased_reduced.csv\n",
"Data filtering : SUCCESS\n",
"KPIs construction : SUCCESS\n",
"Explanatory variable construction : SUCCESS\n",
"Explained variable construction : SUCCESS\n",
"Exportation dataset test : SUCCESS\n",
"File path : projet-bdc2324-team1/0_Input/Company_10/customerplus_cleaned.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_10/campaigns_information.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_10/products_purchased_reduced.csv\n",
"Data filtering : SUCCESS\n",
"KPIs construction : SUCCESS\n",
"Explanatory variable construction : SUCCESS\n",
"Explained variable construction : SUCCESS\n",
"Exportation dataset train : SUCCESS\n",
"File path : projet-bdc2324-team1/0_Input/Company_11/customerplus_cleaned.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_11/campaigns_information.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_11/products_purchased_reduced.csv\n",
"Data filtering : SUCCESS\n",
"KPIs construction : SUCCESS\n",
"Explanatory variable construction : SUCCESS\n",
"Explained variable construction : SUCCESS\n",
"Exportation dataset test : SUCCESS\n",
"File path : projet-bdc2324-team1/0_Input/Company_11/customerplus_cleaned.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_11/campaigns_information.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_11/products_purchased_reduced.csv\n",
"Data filtering : SUCCESS\n",
"KPIs construction : SUCCESS\n",
"Explanatory variable construction : SUCCESS\n",
"Explained variable construction : SUCCESS\n",
"Exportation dataset train : SUCCESS\n",
"File path : projet-bdc2324-team1/0_Input/Company_12/customerplus_cleaned.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_12/campaigns_information.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_12/products_purchased_reduced.csv\n",
"Data filtering : SUCCESS\n",
"KPIs construction : SUCCESS\n",
"Explanatory variable construction : SUCCESS\n",
"Explained variable construction : SUCCESS\n",
"Exportation dataset test : SUCCESS\n",
"File path : projet-bdc2324-team1/0_Input/Company_12/customerplus_cleaned.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_12/campaigns_information.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_12/products_purchased_reduced.csv\n",
"Data filtering : SUCCESS\n",
"KPIs construction : SUCCESS\n",
"Explanatory variable construction : SUCCESS\n",
"Explained variable construction : SUCCESS\n",
"Exportation dataset train : SUCCESS\n",
"File path : projet-bdc2324-team1/0_Input/Company_13/customerplus_cleaned.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_13/campaigns_information.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_13/products_purchased_reduced.csv\n",
"Data filtering : SUCCESS\n",
"KPIs construction : SUCCESS\n",
"Explanatory variable construction : SUCCESS\n",
"Explained variable construction : SUCCESS\n",
"Exportation dataset test : SUCCESS\n",
"File path : projet-bdc2324-team1/0_Input/Company_13/customerplus_cleaned.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_13/campaigns_information.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_13/products_purchased_reduced.csv\n",
"Data filtering : SUCCESS\n",
"KPIs construction : SUCCESS\n",
"Explanatory variable construction : SUCCESS\n",
"Explained variable construction : SUCCESS\n",
"Exportation dataset train : SUCCESS\n",
"File path : projet-bdc2324-team1/0_Input/Company_14/customerplus_cleaned.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_14/campaigns_information.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_14/products_purchased_reduced.csv\n",
"Data filtering : SUCCESS\n",
"KPIs construction : SUCCESS\n",
"Explanatory variable construction : SUCCESS\n",
"Explained variable construction : SUCCESS\n",
"Exportation dataset test : SUCCESS\n",
"File path : projet-bdc2324-team1/0_Input/Company_14/customerplus_cleaned.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_14/campaigns_information.csv\n",
"File path : projet-bdc2324-team1/0_Input/Company_14/products_purchased_reduced.csv\n",
"Data filtering : SUCCESS\n",
"KPIs construction : SUCCESS\n",
"Explanatory variable construction : SUCCESS\n",
"Explained variable construction : SUCCESS\n",
"Exportation dataset train : SUCCESS\n",
"FIN DE LA GENERATION DES DATASETS : SUCCESS\n"
]
}
],
"source": [
"# Business Data Challenge - Team 1\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import s3fs\n",
"import re\n",
"import warnings\n",
"from datetime import date, timedelta, datetime\n",
"\n",
"# Create filesystem object\n",
"S3_ENDPOINT_URL = \"https://\" + os.environ[\"AWS_S3_ENDPOINT\"]\n",
"fs = s3fs.S3FileSystem(client_kwargs={'endpoint_url': S3_ENDPOINT_URL})\n",
"\n",
"\n",
"# Import KPI construction functions\n",
"exec(open('0_KPI_functions.py').read())\n",
"\n",
"# Ignore warning\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"\n",
"def display_covering_time(df, company, datecover):\n",
" \"\"\"\n",
" This function draws the time coverage of each company\n",
" \"\"\"\n",
" min_date = df['purchase_date'].min().strftime(\"%Y-%m-%d\")\n",
" max_date = df['purchase_date'].max().strftime(\"%Y-%m-%d\")\n",
" datecover[company] = [datetime.strptime(min_date, \"%Y-%m-%d\") + timedelta(days=x) for x in range((datetime.strptime(max_date, \"%Y-%m-%d\") - datetime.strptime(min_date, \"%Y-%m-%d\")).days)]\n",
" print(f'Couverture Company {company} : {min_date} - {max_date}')\n",
" return datecover\n",
"\n",
"\n",
"def compute_time_intersection(datecover):\n",
" \"\"\"\n",
" This function returns the time coverage for all companies\n",
" \"\"\"\n",
" timestamps_sets = [set(timestamps) for timestamps in datecover.values()]\n",
" intersection = set.intersection(*timestamps_sets)\n",
" intersection_list = list(intersection)\n",
" formated_dates = [dt.strftime(\"%Y-%m-%d\") for dt in intersection_list]\n",
" return sorted(formated_dates)\n",
"\n",
"\n",
"def df_coverage_modelization(sport, coverage_train = 0.7):\n",
" \"\"\"\n",
" This function returns start_date, end_of_features and final dates\n",
" that help to construct train and test datasets\n",
" \"\"\"\n",
" datecover = {}\n",
" for company in sport:\n",
" df_products_purchased_reduced = display_databases(company, file_name = \"products_purchased_reduced\",\n",
" datetime_col = ['purchase_date'])\n",
" datecover = display_covering_time(df_products_purchased_reduced, company, datecover)\n",
" #print(datecover.keys())\n",
" dt_coverage = compute_time_intersection(datecover)\n",
" start_date = dt_coverage[0]\n",
" end_of_features = dt_coverage[int(0.7 * len(dt_coverage))]\n",
" final_date = dt_coverage[-1]\n",
" return start_date, end_of_features, final_date\n",
" \n",
"\n",
"def dataset_construction(min_date, end_features_date, max_date, directory_path):\n",
" \n",
" # Import customerplus\n",
" df_customerplus_clean_0 = display_databases(directory_path, file_name = \"customerplus_cleaned\")\n",
" df_campaigns_information = display_databases(directory_path, file_name = \"campaigns_information\", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])\n",
" df_products_purchased_reduced = display_databases(directory_path, file_name = \"products_purchased_reduced\", datetime_col = ['purchase_date'])\n",
" \n",
" # Filtre de cohérence pour la mise en pratique de notre méthode\n",
" max_date = pd.to_datetime(max_date, utc = True, format = 'ISO8601') \n",
" end_features_date = pd.to_datetime(end_features_date, utc = True, format = 'ISO8601')\n",
" min_date = pd.to_datetime(min_date, utc = True, format = 'ISO8601')\n",
"\n",
" #Filtre de la base df_campaigns_information\n",
" df_campaigns_information = df_campaigns_information[(df_campaigns_information['sent_at'] <= end_features_date) & (df_campaigns_information['sent_at'] >= min_date)]\n",
" df_campaigns_information['opened_at'][df_campaigns_information['opened_at'] >= end_features_date] = np.datetime64('NaT')\n",
" \n",
" #Filtre de la base df_products_purchased_reduced\n",
" df_products_purchased_reduced = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= end_features_date) & (df_products_purchased_reduced['purchase_date'] >= min_date)]\n",
"\n",
" print(\"Data filtering : SUCCESS\")\n",
" \n",
" # Fusion de l'ensemble et creation des KPI\n",
"\n",
" # KPI sur les campagnes publicitaires\n",
" df_campaigns_kpi = campaigns_kpi_function(campaigns_information = df_campaigns_information) \n",
"\n",
" # KPI sur le comportement d'achat\n",
" df_tickets_kpi = tickets_kpi_function(tickets_information = df_products_purchased_reduced)\n",
"\n",
" # KPI sur les données socio-démographiques\n",
" df_customerplus_clean = customerplus_kpi_function(customerplus_clean = df_customerplus_clean_0)\n",
" \n",
" print(\"KPIs construction : SUCCESS\")\n",
" \n",
" # Fusion avec KPI liés au customer\n",
" df_customer = pd.merge(df_customerplus_clean, df_campaigns_kpi, on = 'customer_id', how = 'left')\n",
" \n",
" # Fill NaN values\n",
" df_customer[['nb_campaigns', 'nb_campaigns_opened']] = df_customer[['nb_campaigns', 'nb_campaigns_opened']].fillna(0)\n",
" \n",
" # Fusion avec KPI liés au comportement d'achat\n",
" df_customer_product = pd.merge(df_tickets_kpi, df_customer, on = 'customer_id', how = 'outer')\n",
" \n",
" # Fill NaN values\n",
" df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']] = df_customer_product[['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'nb_tickets_internet']].fillna(0)\n",
"\n",
" print(\"Explanatory variable construction : SUCCESS\")\n",
"\n",
" # 2. Construction of the explained variable \n",
" df_products_purchased_to_predict = df_products_purchased_reduced[(df_products_purchased_reduced['purchase_date'] <= max_date) & (df_products_purchased_reduced['purchase_date'] > end_features_date)]\n",
"\n",
" # Indicatrice d'achat\n",
" df_products_purchased_to_predict['y_has_purchased'] = 1\n",
"\n",
" y = df_products_purchased_to_predict[['customer_id', 'y_has_purchased']].drop_duplicates()\n",
"\n",
" print(\"Explained variable construction : SUCCESS\")\n",
" \n",
" # 3. Merge between explained and explanatory variables\n",
" dataset = pd.merge(df_customer_product, y, on = ['customer_id'], how = 'left')\n",
"\n",
" # 0 if there is no purchase\n",
" dataset[['y_has_purchased']].fillna(0)\n",
"\n",
" # add id_company prefix to customer_id\n",
" dataset['customer_id'] = directory_path + '_' + dataset['customer_id'].astype('str')\n",
" \n",
" return dataset\n",
"\n",
"## Exportation\n",
"\n",
"companies = {'musee' : ['1', '2', '3', '4', '101'],\n",
" 'sport': ['5', '6', '7', '8', '9'],\n",
" 'musique' : ['10', '11', '12', '13', '14']}\n",
"\n",
"type_of_comp = input('Choisissez le type de compagnie : sport ? musique ? musee ?')\n",
"list_of_comp = companies[type_of_comp] \n",
"# Dossier d'exportation\n",
"BUCKET_OUT = f'projet-bdc2324-team1/Generalization/{type_of_comp}'\n",
"\n",
"# Create test dataset and train dataset for sport companies\n",
"\n",
"start_date, end_of_features, final_date = df_coverage_modelization(list_of_comp, coverage_train = 0.7)\n",
"\n",
"for company in list_of_comp:\n",
" dataset_test = dataset_construction(min_date = start_date, end_features_date = end_of_features,\n",
" max_date = final_date, directory_path = company) \n",
"\n",
" # Exportation\n",
" FILE_KEY_OUT_S3 = \"dataset_test\" + company + \".csv\"\n",
" FILE_PATH_OUT_S3 = BUCKET_OUT + \"/Test_set/\" + FILE_KEY_OUT_S3\n",
" \n",
" with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:\n",
" dataset_test.to_csv(file_out, index = False)\n",
" \n",
" print(\"Exportation dataset test : SUCCESS\")\n",
"\n",
"# Dataset train\n",
" dataset_train = dataset_construction(min_date = start_date, end_features_date = end_of_features,\n",
" max_date = final_date, directory_path = company)\n",
" # Export\n",
" FILE_KEY_OUT_S3 = \"dataset_train\" + company + \".csv\" \n",
" FILE_PATH_OUT_S3 = BUCKET_OUT + \"/Train_test/\" + FILE_KEY_OUT_S3\n",
" \n",
" with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:\n",
" dataset_train.to_csv(file_out, index = False)\n",
" \n",
" print(\"Exportation dataset train : SUCCESS\")\n",
"\n",
"\n",
"print(\"FIN DE LA GENERATION DES DATASETS : SUCCESS\")\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3721427e-5957-4556-b278-2e7ffca892f4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'projet-bdc2324-team1/Generalization/musique/Train_test/dataset_train14.csv'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"FILE_PATH_OUT_S3"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "f8546992-f425-4d1e-ad75-ad26a8052a18",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'projet' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mprojet\u001b[49m\u001b[38;5;241m-\u001b[39mbdc2324\u001b[38;5;241m-\u001b[39mteam1\u001b[38;5;241m/\u001b[39mGeneralization\u001b[38;5;241m/\u001b[39mmusique\u001b[38;5;241m/\u001b[39mTrain_test\n",
"\u001b[0;31mNameError\u001b[0m: name 'projet' is not defined"
]
}
],
"source": [
"projet-bdc2324-team1/Generalization/musique/Train_test"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0dd34710-6da2-4438-9e1d-0ac092c1d28c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(343126, 41)"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset_train.shape"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "a3bfeeb6-2db0-4f1d-866c-8721343e97c5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"customer_id 0.000000\n",
"nb_tickets 0.000000\n",
"nb_purchases 0.000000\n",
"total_amount 0.000000\n",
"nb_suppliers 0.000000\n",
"vente_internet_max 0.000000\n",
"purchase_date_min 0.858950\n",
"purchase_date_max 0.858950\n",
"time_between_purchase 0.858950\n",
"nb_tickets_internet 0.000000\n",
"street_id 0.000000\n",
"structure_id 0.869838\n",
"mcp_contact_id 0.276677\n",
"fidelity 0.000000\n",
"tenant_id 0.000000\n",
"is_partner 0.000000\n",
"deleted_at 1.000000\n",
"gender 0.000000\n",
"is_email_true 0.000000\n",
"opt_in 0.000000\n",
"last_buying_date 0.709626\n",
"max_price 0.709626\n",
"ticket_sum 0.000000\n",
"average_price 0.709626\n",
"average_purchase_delay 0.709731\n",
"average_price_basket 0.709731\n",
"average_ticket_basket 0.709731\n",
"total_price 0.000000\n",
"purchase_count 0.000000\n",
"first_buying_date 0.709626\n",
"country 0.152090\n",
"gender_label 0.000000\n",
"gender_female 0.000000\n",
"gender_male 0.000000\n",
"gender_other 0.000000\n",
"country_fr 0.152090\n",
"has_tags 0.000000\n",
"nb_campaigns 0.000000\n",
"nb_campaigns_opened 0.000000\n",
"time_to_open 0.848079\n",
"y_has_purchased 1.000000\n",
"dtype: float64"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
" dataset_train.isna().sum()/dataset_train.shape[0]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "75f9a672-641f-49a2-a8d6-7673845506f5",
"metadata": {},
"outputs": [],
"source": [
"#Creation de la variable dependante fictive: 1 si l'individu a effectué un achat au cours de la periode de train et 0 sinon\n",
"\n",
"dataset_train_modif=dataset_train\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c121c1e2-d8e4-4b93-a882-9385581b63c9",
"metadata": {},
"outputs": [],
"source": [
"dataset_train_modif[\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@ -28,7 +28,7 @@ import warnings
def load_train_test(type_of_activity, type_of_model): def load_train_test(type_of_activity, type_of_model):
BUCKET = f"projet-bdc2324-team1/Generalization_v2/{type_of_activity}" BUCKET = f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_activity}"
File_path_train = BUCKET + "/Train_set.csv" File_path_train = BUCKET + "/Train_set.csv"
File_path_test = BUCKET + "/Test_set.csv" File_path_test = BUCKET + "/Test_set.csv"
@ -49,10 +49,13 @@ def load_train_test(type_of_activity, type_of_model):
def save_file_s3(File_name, type_of_activity, type_of_model, model): def save_file_s3(File_name, type_of_activity, type_of_model, model):
"""
save plot into s3 storage
"""
image_buffer = io.BytesIO() image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png') plt.savefig(image_buffer, format='png')
image_buffer.seek(0) image_buffer.seek(0)
FILE_PATH = f"projet-bdc2324-team1/{type_of_model}/{type_of_activity}/{model}/" FILE_PATH = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/{type_of_model}/{type_of_activity}/{model}/"
FILE_PATH_OUT_S3 = FILE_PATH + File_name + type_of_activity + '_' + model + '.png' FILE_PATH_OUT_S3 = FILE_PATH + File_name + type_of_activity + '_' + model + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file: with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read()) s3_file.write(image_buffer.read())
@ -60,17 +63,23 @@ def save_file_s3(File_name, type_of_activity, type_of_model, model):
def save_result_set_s3(result_set, File_name, type_of_activity, type_of_model, model=None, model_path=False): def save_result_set_s3(result_set, File_name, type_of_activity, type_of_model, model=None, model_path=False):
"""
save result into s3 storage
"""
if model_path: if model_path:
FILE_PATH_OUT_S3 = f"projet-bdc2324-team1/{type_of_model}/{type_of_activity}/{model}/" + File_name + '.csv' FILE_PATH_OUT_S3 = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/{type_of_model}/{type_of_activity}/{model}/" + File_name + '.csv'
else: else:
FILE_PATH_OUT_S3 = f"projet-bdc2324-team1/{type_of_model}/{type_of_activity}/" + File_name + '.csv' FILE_PATH_OUT_S3 = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/{type_of_model}/{type_of_activity}/" + File_name + '.csv'
with fs.open(FILE_PATH_OUT_S3, 'w') as file_out: with fs.open(FILE_PATH_OUT_S3, 'w') as file_out:
result_set.to_csv(file_out, index = False) result_set.to_csv(file_out, index = False)
def save_model_s3(File_name, type_of_activity, type_of_model, model, classifier): def save_model_s3(File_name, type_of_activity, type_of_model, model, classifier):
"""
save model into pickle file
"""
model_bytes = pickle.dumps(classifier) model_bytes = pickle.dumps(classifier)
FILE_PATH_OUT_S3 = f"projet-bdc2324-team1/{type_of_model}/{type_of_activity}/{model}/" + File_name + '.pkl' FILE_PATH_OUT_S3 = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/{type_of_model}/{type_of_activity}/{model}/" + File_name + '.pkl'
with fs.open(FILE_PATH_OUT_S3, 'wb') as f: with fs.open(FILE_PATH_OUT_S3, 'wb') as f:
f.write(model_bytes) f.write(model_bytes)
@ -88,6 +97,9 @@ def compute_recall_companies(dataset_test, y_pred, type_of_activity, model):
def features_target_split(dataset_train, dataset_test): def features_target_split(dataset_train, dataset_test):
"""
return train and test set
"""
features_l = ['nb_campaigns', 'taux_ouverture_mail', 'prop_purchases_internet', 'nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'time_to_open', features_l = ['nb_campaigns', 'taux_ouverture_mail', 'prop_purchases_internet', 'nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'time_to_open',
'purchases_10_2021','purchases_10_2022', 'purchases_11_2021', 'purchases_12_2021','purchases_1_2022', 'purchases_2_2022', 'purchases_3_2022', 'purchases_10_2021','purchases_10_2022', 'purchases_11_2021', 'purchases_12_2021','purchases_1_2022', 'purchases_2_2022', 'purchases_3_2022',
'purchases_4_2022', 'purchases_5_2021', 'purchases_5_2022', 'purchases_6_2021', 'purchases_6_2022', 'purchases_7_2021', 'purchases_7_2022', 'purchases_8_2021', 'purchases_4_2022', 'purchases_5_2021', 'purchases_5_2022', 'purchases_6_2021', 'purchases_6_2022', 'purchases_7_2021', 'purchases_7_2022', 'purchases_8_2021',
@ -105,6 +117,9 @@ def features_target_split(dataset_train, dataset_test):
def preprocess(type_of_model, type_of_activity): def preprocess(type_of_model, type_of_activity):
"""
preprocess variables before running machine learning pipeline
"""
numeric_features = ['nb_campaigns', 'taux_ouverture_mail', 'prop_purchases_internet', 'nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', numeric_features = ['nb_campaigns', 'taux_ouverture_mail', 'prop_purchases_internet', 'nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers',
'purchases_10_2021','purchases_10_2022', 'purchases_11_2021', 'purchases_12_2021','purchases_1_2022', 'purchases_2_2022', 'purchases_3_2022', 'purchases_10_2021','purchases_10_2022', 'purchases_11_2021', 'purchases_12_2021','purchases_1_2022', 'purchases_2_2022', 'purchases_3_2022',
@ -146,7 +161,7 @@ def preprocess(type_of_model, type_of_activity):
def draw_confusion_matrix(y_test, y_pred, model): def draw_confusion_matrix(y_test, y_pred, model):
conf_matrix = confusion_matrix(y_test, y_pred) conf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Class 0', 'Class 1'], yticklabels=['Class 0', 'Class 1']) sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Class 0', 'Class 1'], yticklabels=['Class 0', 'Class 1'], annot_kws={"size": 14})
plt.xlabel('Predicted') plt.xlabel('Predicted')
plt.ylabel('Actual') plt.ylabel('Actual')
plt.title('Confusion Matrix') plt.title('Confusion Matrix')
@ -165,10 +180,10 @@ def draw_roc_curve(X_test, y_pred_prob, model):
plt.plot(fpr, tpr, label="ROC curve(area = %0.3f)" % roc_auc) plt.plot(fpr, tpr, label="ROC curve(area = %0.3f)" % roc_auc)
plt.plot([0, 1], [0, 1], color="red",label="Random Baseline", linestyle="--") plt.plot([0, 1], [0, 1], color="red",label="Random Baseline", linestyle="--")
plt.grid(color='gray', linestyle='--', linewidth=0.5) plt.grid(color='gray', linestyle='--', linewidth=0.5)
plt.xlabel("False Positive Rate") plt.xlabel("False Positive Rate", fontsize=14)
plt.ylabel("True Positive Rate") plt.ylabel("True Positive Rate", fontsize=14)
plt.title("ROC Curve", size=18) plt.title("ROC Curve", size=18)
plt.legend(loc="lower right") plt.legend(loc="lower right", fontsize=14)
plt.show() plt.show()
save_file_s3("Roc_curve_", type_of_activity, type_of_model, model) save_file_s3("Roc_curve_", type_of_activity, type_of_model, model)

View File

@ -13,7 +13,19 @@ import io
# functions # functions
def load_train_test(type_of_activity): def load_train_test(type_of_activity):
BUCKET = f"projet-bdc2324-team1/Generalization/{type_of_activity}" """
Loads the training and test datasets from S3 storage for the type of activity specified.
Args:
- type_of_activity (str)
Returns:
DataFrame: Training dataset.
DataFrame: Test dataset.
"""
# BUCKET = f"projet-bdc2324-team1/Generalization/{type_of_activity}"
BUCKET = f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_activity}"
File_path_train = BUCKET + "/Train_set.csv" File_path_train = BUCKET + "/Train_set.csv"
File_path_test = BUCKET + "/Test_set.csv" File_path_test = BUCKET + "/Test_set.csv"
@ -29,29 +41,47 @@ def load_train_test(type_of_activity):
def features_target_split(dataset_train, dataset_test): def features_target_split(dataset_train, dataset_test):
"""
Splits the dataset into features and target variables for training and testing.
Args:
- dataset_train (DataFrame): Training dataset.
- dataset_test (DataFrame): Test dataset.
Returns:
DataFrame: Features of the training dataset.
DataFrame: Features of the test dataset.
DataFrame: Target variable of the training dataset.
DataFrame: Target variable of the test dataset.
"""
features_l = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max', features_l = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max', 'purchase_date_min', 'purchase_date_max',
'time_between_purchase', 'nb_tickets_internet', 'fidelity', 'is_email_true', 'opt_in', #'is_partner', 'time_between_purchase', 'fidelity', 'is_email_true', 'opt_in', #'is_partner', 'nb_tickets_internet',
'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened'] 'gender_female', 'gender_male', 'gender_other', 'nb_campaigns', 'nb_campaigns_opened']
# we suppress fidelity, time between purchase, and gender other (colinearity issue) X_train = dataset_train # [features_l]
"""
features_l = ['nb_tickets', 'nb_purchases', 'total_amount', 'nb_suppliers', 'vente_internet_max',
'purchase_date_min', 'purchase_date_max', 'nb_tickets_internet', 'is_email_true',
'opt_in', 'gender_female', 'gender_male', 'nb_campaigns', 'nb_campaigns_opened']
"""
X_train = dataset_train[features_l]
y_train = dataset_train[['y_has_purchased']] y_train = dataset_train[['y_has_purchased']]
X_test = dataset_test[features_l] X_test = dataset_test # [features_l]
y_test = dataset_test[['y_has_purchased']] y_test = dataset_test[['y_has_purchased']]
return X_train, X_test, y_train, y_test return X_train, X_test, y_train, y_test
def load_model(type_of_activity, model): def load_model(type_of_activity, model):
BUCKET = f"projet-bdc2324-team1/Output_model/{type_of_activity}/{model}/" """
Loads from S3 storage the optimal parameters of the chosen ML model saved in a pickle file.
Args:
- type_of_activity (str)
- model (str)
Returns:
Model: machine learning model pre-trained with a scikit learn pipeline.
"""
# BUCKET = f"projet-bdc2324-team1/Output_model/{type_of_activity}/{model}/"
BUCKET = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/standard/{type_of_activity}/{model}/"
filename = model + '.pkl' filename = model + '.pkl'
file_path = BUCKET + filename file_path = BUCKET + filename
with fs.open(file_path, mode="rb") as f: with fs.open(file_path, mode="rb") as f:
@ -62,6 +92,17 @@ def load_model(type_of_activity, model):
def df_segment(df, y, model) : def df_segment(df, y, model) :
"""
Segments customers into 4 groups based on the propensity scores given by a previously-loaded ML model.
Args:
- df (DataFrame): DataFrame to be segmented.
- y (Series): True target variable.
- model (Model): Pre-trained machine learning model for prediction.
Returns:
DataFrame: Segmented DataFrame with predicted values and true values for y.
"""
y_pred = model.predict(df) y_pred = model.predict(df)
y_pred_prob = model.predict_proba(df)[:, 1] y_pred_prob = model.predict_proba(df)[:, 1]
@ -81,7 +122,7 @@ def df_segment(df, y, model) :
def odd_ratio(score) : def odd_ratio(score) :
""" """
Args: Args:
- score (Union[float, int]): Score value. - score (Union[float, int])
Returns: Returns:
float: Odd ratio value. float: Odd ratio value.
@ -96,7 +137,7 @@ def adjust_score_1(score) :
Allows to compute odd ratios then. Allows to compute odd ratios then.
Args: Args:
- score (List[Union[float, int]]): List of score values. - score (List[Union[float, int]])
Returns: Returns:
np.ndarray: Adjusted score values. np.ndarray: Adjusted score values.
@ -112,8 +153,8 @@ def adjusted_score(odd_ratio, bias) :
Adjust the score based on the odd ratio and bias. Adjust the score based on the odd ratio and bias.
Args: Args:
- odd_ratio (Union[float, int]): Odd ratio value. - odd_ratio (Union[float, int])
- bias (Union[float, int]): Bias value. - bias (Union[float, int])
Returns: Returns:
float: Adjusted score value. float: Adjusted score value.
@ -125,12 +166,12 @@ def adjusted_score(odd_ratio, bias) :
def find_bias(odd_ratios, y_objective, initial_guess=10) : def find_bias(odd_ratios, y_objective, initial_guess=10) :
""" """
Find the bias needed to adjust scores according to the purchases observed Find the bias needed to adjust scores so that their sum is equal to the total number of purchases observed.
Args: Args:
- odd_ratios (List[float]): List of odd ratios. - odd_ratios (List[float]): List of odd ratios associated to the scores that have be adjusted.
- y_objective (Union[float, int]): Objective value to achieve. - y_objective (Union[float, int]): Objective value => total number of purchases.
- initial_guess (Union[float, int], optional): Initial guess for the bias. Default is 6. - initial_guess (Union[float, int], optional): Initial guess for the bias. Default is 10 (bias is approximately 6 for sports, 10 for music and 22 for museums)
Returns: Returns:
float: Estimated bias value. float: Estimated bias value.
@ -167,28 +208,52 @@ def plot_hist_scores(df, score, score_adjusted, type_of_activity) :
def project_tickets_CA (df, nb_purchases, nb_tickets, total_amount, score_adjusted, duration_ref, duration_projection) : def project_tickets_CA (df, nb_purchases, nb_tickets, total_amount, score_adjusted, duration_ref, duration_projection) :
""" """
Project ticket counts and total amount for a given duration and adjust based on a score. Project tickets sold and total amount based on the adjusted scores and the duration of periods of study / projection.
Args: Args:
- df (DataFrame): DataFrame containing ticket data. - df (DataFrame): DataFrame containing information about past sales.
- nb_purchases (str) : Name of the column in df representing the number of purchases. - nb_purchases (str) : Name of the column in df representing the number of purchases.
- nb_tickets (str): Name of the column in df representing the number of tickets. - nb_tickets (str): Name of the column in df representing the number of tickets.
- total_amount (str): Name of the column in df representing the total amount. - total_amount (str): Name of the column in df representing the total amount.
- score_adjusted (str): Name of the column in df representing the adjusted score. - score_adjusted (str): Name of the column in df representing the adjusted score.
- duration_ref (int or float): duration of the period of reference for the construction of the variables X. - duration_ref (int or float): Duration of the period of reference for the construction of the variables X.
- duration_projection (int or float): Duration of the period of projection of sales / revenue. - duration_projection (int or float): Duration of the period of projection of sales / revenue.
Returns: Returns:
DataFrame: DataFrame with projected ticket counts and total amount adjusted based on the score. DataFrame: DataFrame completed with sales and total amount projections.
duration_ratio = duration_ref/duration_projection
""" """
duration_ratio = duration_ref/duration_projection duration_ratio = duration_ref/duration_projection
df_output = df df_output = df
df_output.loc[:,"nb_tickets_projected"] = df_output.loc[:,nb_tickets] / duration_ratio # project number of tickets : at least 1 ticket purchased if the customer purchased
df_output.loc[:,"total_amount_projected"] = df_output.loc[:,total_amount] / duration_ratio df_output.loc[:,"nb_tickets_projected"] = df_output.loc[:,nb_tickets].apply(lambda x : max(1, x /duration_ratio))
# project amount : if the customer buys a ticket, we expect the amount to be at least the average price of tickets
# for customers purchasing exactly one ticket
if df_output.loc[df_output[nb_tickets]==1].shape[0] > 0 :
avg_price = df_output.loc[df_output[nb_tickets]==1][total_amount].mean()
else :
avg_price = df_output[total_amount].mean()
# we compute the avg price of ticket for each customer
df_output["avg_ticket_price"] = df_output[total_amount]/df_output[nb_tickets]
# correct negatives total amounts
df_output.loc[:,"total_amount_corrected"] = np.where(df_output[total_amount] < 0,
avg_price * df_output[nb_tickets],
df_output[total_amount])
df_output.loc[:,"total_amount_projected"] = np.where(
# if no ticket bought in the past, we take the average price
df_output[nb_tickets]==0, avg_price,
# if avg prices of tickets are negative, we recompute the expected amount based on the avg price of a ticket
# observed on the whole population
np.where(X_test_segment["avg_ticket_price"] < 0, avg_price * df_output.loc[:,"nb_tickets_projected"],
# else, the amount projected is the average price of tickets bought by the customer * nb tickets projected
df_output["avg_ticket_price"] * df_output.loc[:,"nb_tickets_projected"])
)
df_output.loc[:,"nb_tickets_expected"] = df_output.loc[:,score_adjusted] * df_output.loc[:,"nb_tickets_projected"] df_output.loc[:,"nb_tickets_expected"] = df_output.loc[:,score_adjusted] * df_output.loc[:,"nb_tickets_projected"]
df_output.loc[:,"total_amount_expected"] = df_output.loc[:,score_adjusted] * df_output.loc[:,"total_amount_projected"] df_output.loc[:,"total_amount_expected"] = df_output.loc[:,score_adjusted] * df_output.loc[:,"total_amount_projected"]
@ -201,7 +266,7 @@ def project_tickets_CA (df, nb_purchases, nb_tickets, total_amount, score_adjust
def summary_expected_CA(df, segment, nb_tickets_expected, total_amount_expected, total_amount, pace_purchase, def summary_expected_CA(df, segment, nb_tickets_expected, total_amount_expected, total_amount, pace_purchase,
duration_ref=17, duration_projection=12) : duration_ref=17, duration_projection=12) :
""" """
Generate a summary of expected customer acquisition based on segments. Generate a summary of expected customer sales based on segments.
Args: Args:
- df (DataFrame): DataFrame containing customer data. - df (DataFrame): DataFrame containing customer data.
@ -209,9 +274,12 @@ def summary_expected_CA(df, segment, nb_tickets_expected, total_amount_expected,
- nb_tickets_expected (str): Name of the column in df representing the expected number of tickets. - nb_tickets_expected (str): Name of the column in df representing the expected number of tickets.
- total_amount_expected (str): Name of the column in df representing the expected total amount. - total_amount_expected (str): Name of the column in df representing the expected total amount.
- total_amount (str): Name of the column in df representing the total amount. - total_amount (str): Name of the column in df representing the total amount.
- pace_purchase (str) : Name of the column in df representing the average time between 2 purchases in months.
- duration_ref (int or float): Duration of the period of reference for the construction of the variables X.
- duration_projection (int or float): Duration of the period of projection of sales / revenue.
Returns: Returns:
DataFrame: Summary DataFrame containing expected customer acquisition metrics. DataFrame: Summary DataFrame containing expected customer sales metrics.
""" """
# compute nb tickets estimated and total amount expected # compute nb tickets estimated and total amount expected
@ -229,6 +297,9 @@ def summary_expected_CA(df, segment, nb_tickets_expected, total_amount_expected,
df_expected_CA["revenue_recovered_perct"] = 100 * duration_ratio * df_expected_CA[total_amount_expected] / \ df_expected_CA["revenue_recovered_perct"] = 100 * duration_ratio * df_expected_CA[total_amount_expected] / \
df.groupby(segment)[total_amount].sum().values df.groupby(segment)[total_amount].sum().values
df_expected_CA["share_future_revenue_perct"] = 100 * duration_ratio * df_expected_CA[total_amount_expected] / \
df[total_amount].sum()
df_drop_null_pace = df.dropna(subset=[pace_purchase]) df_drop_null_pace = df.dropna(subset=[pace_purchase])
df_expected_CA["pace_purchase"] = df_drop_null_pace.groupby(segment)[pace_purchase].mean().values df_expected_CA["pace_purchase"] = df_drop_null_pace.groupby(segment)[pace_purchase].mean().values
@ -236,10 +307,18 @@ def summary_expected_CA(df, segment, nb_tickets_expected, total_amount_expected,
def save_file_s3_ca(File_name, type_of_activity): def save_file_s3_ca(File_name, type_of_activity):
"""
Saves a file in S3 storage.
Args:
- File_name (str)
- type_of_activity (str)
"""
image_buffer = io.BytesIO() image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png') plt.savefig(image_buffer, format='png', dpi=120)
image_buffer.seek(0) image_buffer.seek(0)
PATH = f"projet-bdc2324-team1/Output_expected_CA/{type_of_activity}/" PATH = f"projet-bdc2324-team1/2_Output/2_3_Sales_Forecast/{type_of_activity}/"
FILE_PATH_OUT_S3 = PATH + File_name + type_of_activity + '.png' FILE_PATH_OUT_S3 = PATH + File_name + type_of_activity + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file: with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read()) s3_file.write(image_buffer.read())

View File

@ -1,15 +1,18 @@
import pandas as pd # functions for segmentation and graphics associated
import numpy as np
import os
import io
import s3fs
import re
import pickle
import warnings
def load_model(type_of_activity, model): def load_model(type_of_activity, model):
BUCKET = f"projet-bdc2324-team1/Output_model/{type_of_activity}/{model}/" """
Loads from S3 storage the optimal parameters of the chosen ML model saved in a pickle file.
Args:
- type_of_activity (str)
- model (str)
Returns:
Model: machine learning model pre-trained with a scikit learn pipeline.
"""
BUCKET = f"projet-bdc2324-team1/2_Output/2_1_Modeling_results/standard/{type_of_activity}/{model}/"
filename = model + '.pkl' filename = model + '.pkl'
file_path = BUCKET + filename file_path = BUCKET + filename
with fs.open(file_path, mode="rb") as f: with fs.open(file_path, mode="rb") as f:
@ -20,8 +23,313 @@ def load_model(type_of_activity, model):
def load_test_file(type_of_activity): def load_test_file(type_of_activity):
file_path_test = f"projet-bdc2324-team1/Generalization/{type_of_activity}/Test_set.csv" """
Load the test dataset from S3 storage for the type of activity specified.
Args:
- type_of_activity (str)
Returns:
DataFrame: Test dataset.
"""
file_path_test = f"projet-bdc2324-team1/1_Temp/1_0_Modelling_Datasets/{type_of_activity}/Test_set.csv"
with fs.open(file_path_test, mode="rb") as file_in: with fs.open(file_path_test, mode="rb") as file_in:
dataset_test = pd.read_csv(file_in, sep=",") dataset_test = pd.read_csv(file_in, sep=",")
return dataset_test return dataset_test
def save_file_s3_mp(File_name, type_of_activity):
"""
Save a matplotlib figure to S3 storage to the location assigned for the type of activity specified.
Args:
- File_name (str)
- type_of_activity (str)
Returns:
None
"""
image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png', dpi=110)
image_buffer.seek(0)
PATH = f"projet-bdc2324-team1/2_Output/2_2_Segmentation_and_Marketing_Personae/{type_of_activity}/"
FILE_PATH_OUT_S3 = PATH + File_name + type_of_activity + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read())
plt.close()
def save_txt_file_s3(file_name, type_of_activity, content):
"""
Save a text file to S3 storage to the location assigned for the type of activity specified.
Args:
- file_name (str)
- type_of_activity (str)
- content (str)
Returns:
None
"""
FILE_PATH = f"projet-bdc2324-team1/2_Output/2_2_Segmentation_and_Marketing_Personae/{type_of_activity}/"
FILE_PATH_OUT_S3 = FILE_PATH + file_name + type_of_activity + '.txt'
with fs.open(FILE_PATH_OUT_S3, 'w') as s3_file:
s3_file.write(content)
def df_business_fig(df, segment, list_var) :
"""
Compute business key performance indicators (KPIs) based on segment-wise aggregation of variables.
Args:
- df (DataFrame): The DataFrame containing data.
- segment (str): The column name representing segments.
- list_var (list of str): The list of variable names to be aggregated.
Returns:
DataFrame: The DataFrame containing business KPIs.
"""
df_business_kpi = df.groupby(segment)[list_var].sum().reset_index()
df_business_kpi.insert(1, "size", df.groupby(segment).size().values)
all_var = ["size"] + list_var
df_business_kpi[all_var] = 100 * df_business_kpi[all_var] / df_business_kpi[all_var].sum()
return df_business_kpi
def hist_segment_business_KPIs(df, segment, size, nb_tickets, nb_purchases, total_amount, nb_campaigns, type_of_activity) :
"""
Plot a histogram stacking the relative weight of each segment regarding some key business indicators.
Args:
- df (DataFrame): The DataFrame containing pre aggregated data about some key business indicators
- segment (str): The column name representing segments.
- size (str): The column name representing the size.
- nb_tickets (str): The column name representing the number of tickets.
- nb_purchases (str): The column name representing the number of purchases.
- total_amount (str): The column name representing the total amount.
- nb_campaigns (str): The column name representing the number of campaigns.
- type_of_activity (str)
Returns:
None
"""
plt.figure()
df_plot = df[[segment, size, nb_tickets, nb_purchases, total_amount, nb_campaigns]]
x = ["number of\ncustomers", "number of\ntickets", "number of\npurchases", "total\namount",
"number of\ncampaigns"]
bottom = np.zeros(5)
# types of blue color
colors = plt.cm.Blues(np.linspace(0.1, 0.9, 4))
for i in range(4) :
height = list(df_plot.loc[i,size:].values)
plt.bar(x=x, height=height, label = str(df_plot[segment][i]), bottom=bottom, color=colors[i])
bottom+=height
# Ajust margins
plt.subplots_adjust(left = 0.125, right = 0.8, bottom = 0.1, top = 0.9)
plt.legend(title = "segment", loc = "upper right", bbox_to_anchor=(1.2, 1))
plt.ylabel("Fraction represented by the segment (%)")
plt.title(f"Relative weight of each segment regarding business KPIs\nfor {type_of_activity} companies", size=12)
# plt.show()
# def df_segment_mp(df) :
# df_mp = df.groupby("segment")[["gender_female", "gender_male", "gender_other", "country_fr"]].mean().reset_index()
# df_mp.insert(3, "share_known_gender", df_mp["gender_female"]+df_mp["gender_male"])
# df_mp.insert(4, "share_of_women", df_mp["gender_female"]/(df_mp["share_known_gender"]))
# return df_mp
# def df_segment_pb (df) :
# df_pb = df.groupby("segment")[["prop_purchases_internet", "taux_ouverture_mail", "opt_in"]].mean().reset_index()
# return df_pb
def radar_mp_plot(df, categories, index) :
"""
Plot a radar chart describing marketing personae of the segment associated to index for the given categories, for the type of activity specified.
Args:
- df (DataFrame): The DataFrame containing data about categories describing the marketing personae associated to each segment
- categories (list of str):
- index (int): The index (between 0 and 3) identifying the segment. Here, index = number of the segment - 1
Returns:
None
"""
categories = categories
# true values are used to print the true value in parenthesis
tvalues = list(df.loc[index,categories])
max_values = df[categories].max()
# values are true values / max among the 4 segments, allows to
# put values in relation with the values for other segments
# if the point has a maximal abscisse it means that value is maximal for the segment considered
# , event if not equal to 1
values = list(df.loc[index,categories]/max_values)
# values normalized are used to adjust the value around the circle
# for instance if the maximum of values is equal to 0.8, we want the point to be
# at 8/10th of the circle radius, not at the edge
values_normalized = [ max(values) * elt for elt in values]
# Nb of categories
num_categories = len(categories)
angles = np.linspace(0, 2 * np.pi, num_categories, endpoint=False).tolist()
# Initialize graphic
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
# we have to draw first a transparent line (alpha=0) of values to adjust the radius of the circle
# which is based on max(value)
# if we don't plot this transparent line, the radius of the circle will be too small
ax.plot(angles + angles[:1], values + values[:1], color='skyblue', alpha=0, linewidth=1.5)
ax.plot(angles + angles[:1], values_normalized + values_normalized[:1], color='black', alpha = 0.5, linewidth=1.2)
# fill the sector
ax.fill(angles, values_normalized, color='orange', alpha=0.4)
# labels
ax.set_yticklabels([])
ax.set_xticks(angles)
ticks = [categories[i].replace("_"," ") + f"\n({round(100 * tvalues[i],2)}%)" for i in range(len(categories))]
ax.set_xticklabels(ticks, color="black")
ax.spines['polar'].set_visible(False)
plt.title(f'Characteristics of the segment {index+1}\n')
# plt.show()
def radar_mp_plot_all(df, type_of_activity) :
"""
Plot exactly the same radar charts as radar_mp_plot, but for all segments.
Args:
- df (DataFrame)
- type_of_activity (str)
Returns:
None
"""
# table summarizing variables relative to marketing personae
df_mp = df.groupby("segment")[["gender_female", "gender_male", "gender_other", "age"]].mean().reset_index()
#df_mp.insert(3, "share_known_gender", df_mp["gender_female"]+df_mp["gender_male"])
df_mp.insert(4, "share_of_women", df_mp["gender_female"]/(df_mp["gender_female"]+df_mp["gender_male"]))
# table relative to purchasing behaviour
df_pb = df.groupby("segment")[["prop_purchases_internet", "taux_ouverture_mail", "opt_in"]].mean().reset_index()
# concatenation of tables to prepare the plot
df_used = pd.concat([df_pb, df_mp[[ 'share_of_women', 'age']]], axis=1)
# rename columns for the plot
df_used = df_used.rename(columns={'taux_ouverture_mail': 'mails_opened', 'prop_purchases_internet': 'purchases_internet'})
# visualization
nb_segments = df_used.shape[0]
categories = list(df_used.drop("segment", axis=1).columns)
var_not_perc = ["age"]
# Initialize graphic
fig, ax = plt.subplots(2,2, figsize=(20, 21), subplot_kw=dict(polar=True))
for index in range(nb_segments) :
row = index // 2 # Division entière pour obtenir le numéro de ligne
col = index % 2
# true values are used to print the true value in parenthesis
tvalues = list(df_used.loc[index,categories])
max_values = df_used[categories].max()
# values are true values / max among the 4 segments, allows to
# put values in relation with the values for other segments
# if the point has a maximal abscisse it means that value is maximal for the segment considered
# , event if not equal to 1
values = list(df_used.loc[index,categories]/max_values)
# values normalized are used to adjust the value around the circle
# for instance if the maximum of values is equal to 0.8, we want the point to be
# at 8/10th of the circle radius, not at the edge
values_normalized = [ max(values) * elt for elt in values]
# Nb of categories
num_categories = len(categories)
angles = np.linspace(0, 2 * np.pi, num_categories, endpoint=False).tolist()
# we have to draw first a transparent line (alpha=0) of values to adjust the radius of the circle
# which is based on max(value)
# if we don't plot this transparent line, the radius of the circle will be too small
ax[row, col].plot(angles + angles[:1], values + values[:1], color='skyblue', alpha=0, linewidth=1.5)
ax[row, col].plot(angles + angles[:1], values_normalized + values_normalized[:1], color='black', alpha = 0.5,
linewidth=1.2)
# fill the sector
ax[row, col].fill(angles, values_normalized, color='orange', alpha=0.4, label = index)
# labels
ax[row, col].set_yticklabels([])
ax[row, col].set_xticks(angles)
# define the ticks
values_printed = [str(round(tvalues[i],2)) if categories[i] in var_not_perc else f"{round(100 * tvalues[i],2)}%" for i in range(len(categories))]
ticks = [categories[i].replace("_"," ") + f"\n({values_printed[i]})" for i in range(len(categories))]
ax[row, col].set_xticklabels(ticks, color="black", size = 20)
ax[row, col].spines['polar'].set_visible(False)
ax[row, col].set_title(f'Segment {index+1}\n', size = 24)
fig.suptitle(f"Characteristics of marketing personae of {type_of_activity} companies", size=32)
plt.tight_layout()
# plt.show()
def known_sociodemo_caracteristics(df, type_of_activity) :
"""
Compute the share of non-NaN values for some sociodemographic caracteristics features and save the result in a latex table.
Args:
- df (DataFrame)
- type_of_activity (str)
Returns:
None
"""
table_share_known = df.groupby("segment")[["is_profession_known", "is_zipcode_known", "categorie_age_inconnue", "gender_other"]].mean().mul(100).reset_index()
table_share_known.columns = ['Segment', 'Share of Known Profession (%)', 'Share of Known Zipcode (%)', 'Share of Unknown Age (%)', 'Share of Unknown Gender (%)']
table_share_known= table_share_known.pivot_table(index=None, columns='Segment')
# Arrondir les valeurs du DataFrame à une décimale
table_share_known_rounded = table_share_known.round(1)
# Convertir le DataFrame en format LaTeX avec les valeurs arrondies et le symbole '%'
latex_table = tabulate(table_share_known_rounded, headers='keys', tablefmt='latex_raw', floatfmt=".1f")
latex_table = latex_table.replace('%', '\\%')
save_txt_file_s3("table_known_socio_demo_caracteristics", type_of_activity, latex_table)

View File

@ -1,201 +0,0 @@
### importations ###
import pandas as pd
import numpy as np
import os
import io
import s3fs
import re
import pickle
import warnings
import matplotlib.pyplot as plt
### functions for segmentation and graphics associated ###
def load_model(type_of_activity, model):
BUCKET = f"projet-bdc2324-team1/Output_model/{type_of_activity}/{model}/"
filename = model + '.pkl'
file_path = BUCKET + filename
with fs.open(file_path, mode="rb") as f:
model_bytes = f.read()
model = pickle.loads(model_bytes)
return model
def load_test_file(type_of_activity):
file_path_test = f"projet-bdc2324-team1/Generalization/{type_of_activity}/Test_set.csv"
with fs.open(file_path_test, mode="rb") as file_in:
dataset_test = pd.read_csv(file_in, sep=",")
return dataset_test
def save_file_s3_mp(File_name, type_of_activity):
image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png', dpi=110)
image_buffer.seek(0)
PATH = f"projet-bdc2324-team1/Output_marketing_personae_analysis/{type_of_activity}/"
FILE_PATH_OUT_S3 = PATH + File_name + type_of_activity + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read())
plt.close()
def df_business_fig(df, segment, list_var) :
df_business_kpi = df.groupby(segment)[list_var].sum().reset_index()
df_business_kpi.insert(1, "size", df.groupby(segment).size().values)
all_var = ["size"] + list_var
df_business_kpi[all_var] = 100 * df_business_kpi[all_var] / df_business_kpi[all_var].sum()
return df_business_kpi
def hist_segment_business_KPIs(df, segment, size, nb_tickets, nb_purchases, total_amount, nb_campaigns) :
plt.figure()
df_plot = df[[segment, size, nb_tickets, nb_purchases, total_amount, nb_campaigns]]
x = ["number of\ncustomers", "number of\ntickets", "number of\npurchases", "total\namount",
"number of\ncampaigns"]
bottom = np.zeros(5)
# types of blue color
colors = plt.cm.Blues(np.linspace(0.1, 0.9, 4))
for i in range(4) :
height = list(df_plot.loc[i,size:].values)
plt.bar(x=x, height=height, label = str(df_plot[segment][i]), bottom=bottom, color=colors[i])
bottom+=height
# Ajust margins
plt.subplots_adjust(left = 0.125, right = 0.8, bottom = 0.1, top = 0.9)
plt.legend(title = "segment", loc = "upper right", bbox_to_anchor=(1.2, 1))
plt.ylabel("Fraction represented by the segment (%)")
plt.title(f"Relative weight of each segment regarding business KPIs\nfor {type_of_activity} companies", size=12)
# plt.show()
def df_segment_mp(df, segment, gender_female, gender_male, gender_other, country_fr) :
df_mp = df.groupby(segment)[[gender_female, gender_male, gender_other, country_fr]].mean().reset_index()
df_mp.insert(3, "share_known_gender", df_mp[gender_female]+df_mp[gender_male])
df_mp.insert(4, "share_of_women", df_mp[gender_female]/(df_mp["share_known_gender"]))
return df_mp
def df_segment_pb (df, segment, nb_tickets_internet, nb_tickets, nb_campaigns_opened, nb_campaigns, opt_in) :
df_used = df
df_used["share_tickets_internet"] = df_used[nb_tickets_internet]/df_used[nb_tickets]
df_used["share_campaigns_opened"] = df_used[nb_campaigns_opened]/df_used[nb_campaigns]
df_pb = df_used.groupby(segment)[["share_tickets_internet", "share_campaigns_opened", opt_in]].mean().reset_index()
return df_pb
def radar_mp_plot(df, categories, index) :
categories = categories
# true values are used to print the true value in parenthesis
tvalues = list(df.loc[index,categories])
max_values = df[categories].max()
# values are true values / max among the 4 segments, allows to
# put values in relation with the values for other segments
# if the point has a maximal abscisse it means that value is maximal for the segment considered
# , event if not equal to 1
values = list(df.loc[index,categories]/max_values)
# values normalized are used to adjust the value around the circle
# for instance if the maximum of values is equal to 0.8, we want the point to be
# at 8/10th of the circle radius, not at the edge
values_normalized = [ max(values) * elt for elt in values]
# Nb of categories
num_categories = len(categories)
angles = np.linspace(0, 2 * np.pi, num_categories, endpoint=False).tolist()
# Initialize graphic
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
# we have to draw first a transparent line (alpha=0) of values to adjust the radius of the circle
# which is based on max(value)
ax.plot(angles + angles[:1], values + values[:1], color='skyblue', alpha=0, linewidth=1.5)
ax.plot(angles + angles[:1], values_normalized + values_normalized[:1], color='black', alpha = 0.5, linewidth=1.2)
# fill the sector
ax.fill(angles, values_normalized, color='orange', alpha=0.4)
# labels
ax.set_yticklabels([])
ax.set_xticks(angles)
ticks = [categories[i].replace("_"," ") + f"\n({round(100 * tvalues[i],2)}%)" for i in range(len(categories))]
ax.set_xticklabels(ticks, color="black")
ax.spines['polar'].set_visible(False)
plt.title(f'Characteristics of the segment {index+1}\n')
# plt.show()
def radar_mp_plot_all(df, categories) :
nb_segments = df.shape[0]
categories = categories
# Initialize graphic
fig, ax = plt.subplots(2,2, figsize=(25, 20), subplot_kw=dict(polar=True))
for index in range(nb_segments) :
row = index // 2 # Division entière pour obtenir le numéro de ligne
col = index % 2
# true values are used to print the true value in parenthesis
tvalues = list(df.loc[index,categories])
max_values = df[categories].max()
# values are true values / max among the 4 segments, allows to
# put values in relation with the values for other segments
# if the point has a maximal abscisse it means that value is maximal for the segment considered
# , event if not equal to 1
values = list(df.loc[index,categories]/max_values)
# values normalized are used to adjust the value around the circle
# for instance if the maximum of values is equal to 0.8, we want the point to be
# at 8/10th of the circle radius, not at the edge
values_normalized = [ max(values) * elt for elt in values]
# Nb of categories
num_categories = len(categories)
angles = np.linspace(0, 2 * np.pi, num_categories, endpoint=False).tolist()
# we have to draw first a transparent line (alpha=0) of values to adjust the radius of the circle
# which is based on max(value)
ax[row, col].plot(angles + angles[:1], values + values[:1], color='skyblue', alpha=0, linewidth=1.5)
ax[row, col].plot(angles + angles[:1], values_normalized + values_normalized[:1], color='black', alpha = 0.5,
linewidth=1.2)
# fill the sector
ax[row, col].fill(angles, values_normalized, color='orange', alpha=0.4, label = index)
# labels
ax[row, col].set_yticklabels([])
ax[row, col].set_xticks(angles)
ticks = [categories[i].replace("_"," ") + f"\n({round(100 * tvalues[i],2)}%)" for i in range(len(categories))]
ax[row, col].set_xticklabels(ticks, color="black", size = 20)
ax[row, col].spines['polar'].set_visible(False)
ax[row, col].set_title(f'Segment {index+1}\n', size = 24)
fig.suptitle(f"Characteristics of marketing personae of {type_of_activity} companies", size=32)
# plt.show()

View File

@ -1,16 +1,10 @@
import pandas as pd
import os
import s3fs
import io
import warnings
from datetime import date, timedelta, datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
def load_files(nb_compagnie): def load_files(nb_compagnie):
"""
load and preprocess dataframes
"""
customer = pd.DataFrame() customer = pd.DataFrame()
campaigns_brut = pd.DataFrame() campaigns_brut = pd.DataFrame()
campaigns_kpi = pd.DataFrame() campaigns_kpi = pd.DataFrame()
@ -18,7 +12,6 @@ def load_files(nb_compagnie):
tickets = pd.DataFrame() tickets = pd.DataFrame()
targets = pd.DataFrame() targets = pd.DataFrame()
# début de la boucle permettant de générer des datasets agrégés pour les 5 compagnies de spectacle
for directory_path in nb_compagnie: for directory_path in nb_compagnie:
df_customerplus_clean_0 = display_input_databases(directory_path, file_name = "customerplus_cleaned") df_customerplus_clean_0 = display_input_databases(directory_path, file_name = "customerplus_cleaned")
df_campaigns_brut = display_input_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at']) df_campaigns_brut = display_input_databases(directory_path, file_name = "campaigns_information", datetime_col = ['opened_at', 'sent_at', 'campaign_sent_at'])
@ -36,7 +29,7 @@ def load_files(nb_compagnie):
targets_columns.remove('customer_id') targets_columns.remove('customer_id')
df_target_KPI[targets_columns] = df_target_KPI[targets_columns].fillna(0) df_target_KPI[targets_columns] = df_target_KPI[targets_columns].fillna(0)
# creation de la colonne Number compagnie, qui permettra d'agréger les résultats # Create company identifier
df_tickets_kpi["number_company"]=int(directory_path) df_tickets_kpi["number_company"]=int(directory_path)
df_campaigns_brut["number_company"]=int(directory_path) df_campaigns_brut["number_company"]=int(directory_path)
df_campaigns_kpi["number_company"]=int(directory_path) df_campaigns_kpi["number_company"]=int(directory_path)
@ -44,13 +37,12 @@ def load_files(nb_compagnie):
df_target_information["number_company"]=int(directory_path) df_target_information["number_company"]=int(directory_path)
df_target_KPI["number_company"]=int(directory_path) df_target_KPI["number_company"]=int(directory_path)
# Traitement des index # Clean index
df_tickets_kpi["customer_id"]= directory_path + '_' + df_tickets_kpi['customer_id'].astype('str') df_tickets_kpi["customer_id"]= directory_path + '_' + df_tickets_kpi['customer_id'].astype('str')
df_campaigns_brut["customer_id"]= directory_path + '_' + df_campaigns_brut['customer_id'].astype('str') df_campaigns_brut["customer_id"]= directory_path + '_' + df_campaigns_brut['customer_id'].astype('str')
df_campaigns_kpi["customer_id"]= directory_path + '_' + df_campaigns_kpi['customer_id'].astype('str') df_campaigns_kpi["customer_id"]= directory_path + '_' + df_campaigns_kpi['customer_id'].astype('str')
df_customerplus_clean["customer_id"]= directory_path + '_' + df_customerplus_clean['customer_id'].astype('str') df_customerplus_clean["customer_id"]= directory_path + '_' + df_customerplus_clean['customer_id'].astype('str')
df_products_purchased_reduced["customer_id"]= directory_path + '_' + df_products_purchased_reduced['customer_id'].astype('str') df_products_purchased_reduced["customer_id"]= directory_path + '_' + df_products_purchased_reduced['customer_id'].astype('str')
<<<<<<< HEAD
# Remove companies' outliers # Remove companies' outliers
df_tickets_kpi = remove_outlier_total_amount(df_tickets_kpi) df_tickets_kpi = remove_outlier_total_amount(df_tickets_kpi)
@ -59,12 +51,10 @@ def load_files(nb_compagnie):
for dataset in [df_campaigns_brut, df_campaigns_kpi, df_customerplus_clean, df_target_information]: for dataset in [df_campaigns_brut, df_campaigns_kpi, df_customerplus_clean, df_target_information]:
dataset = dataset[dataset['customer_id'].isin(customer_id)] dataset = dataset[dataset['customer_id'].isin(customer_id)]
=======
df_target_KPI["customer_id"]= directory_path + '_' + df_target_KPI['customer_id'].astype('str') df_target_KPI["customer_id"]= directory_path + '_' + df_target_KPI['customer_id'].astype('str')
>>>>>>> main # Concatenation
# Concaténation
customer = pd.concat([customer, df_customerplus_clean], ignore_index=True) customer = pd.concat([customer, df_customerplus_clean], ignore_index=True)
campaigns_kpi = pd.concat([campaigns_kpi, df_campaigns_kpi], ignore_index=True) campaigns_kpi = pd.concat([campaigns_kpi, df_campaigns_kpi], ignore_index=True)
campaigns_brut = pd.concat([campaigns_brut, df_campaigns_brut], ignore_index=True) campaigns_brut = pd.concat([campaigns_brut, df_campaigns_brut], ignore_index=True)
@ -75,7 +65,7 @@ def load_files(nb_compagnie):
return customer, campaigns_kpi, campaigns_brut, tickets, products, targets return customer, campaigns_kpi, campaigns_brut, tickets, products, targets
def remove_outlier_total_amount(tickets): def remove_outlier_total_amount(tickets : pd.DataFrame):
Q1 = tickets['total_amount'].quantile(0.25) Q1 = tickets['total_amount'].quantile(0.25)
Q3 = tickets['total_amount'].quantile(0.75) Q3 = tickets['total_amount'].quantile(0.75)
IQR = Q3 - Q1 IQR = Q3 - Q1
@ -86,18 +76,23 @@ def remove_outlier_total_amount(tickets):
def save_file_s3(File_name, type_of_activity): def save_file_s3(File_name, type_of_activity):
"""
save plots into s3 storage
"""
image_buffer = io.BytesIO() image_buffer = io.BytesIO()
plt.savefig(image_buffer, format='png') plt.savefig(image_buffer, format='png', pad_inches=1, bbox_inches="tight", dpi = 150)
image_buffer.seek(0) image_buffer.seek(0)
FILE_PATH = f"projet-bdc2324-team1/stat_desc/{type_of_activity}/" FILE_PATH = f"projet-bdc2324-team1/2_Output/2_0_Descriptive_Statistics/{type_of_activity}/"
FILE_PATH_OUT_S3 = FILE_PATH + File_name + type_of_activity + '.png' FILE_PATH_OUT_S3 = FILE_PATH + File_name + type_of_activity + '.png'
with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file: with fs.open(FILE_PATH_OUT_S3, 'wb') as s3_file:
s3_file.write(image_buffer.read()) s3_file.write(image_buffer.read())
plt.close() plt.close()
def outlier_detection(tickets, company_list, show_diagram=False): def outlier_detection(tickets : pd.DataFrame, company_list, show_diagram=False):
"""
detect anonymous customers
"""
outlier_list = list() outlier_list = list()
for company in company_list: for company in company_list:
@ -121,12 +116,15 @@ def outlier_detection(tickets, company_list, show_diagram=False):
plt.figure(figsize=(3, 3)) plt.figure(figsize=(3, 3))
plt.pie(new_series, labels=new_series.index, autopct='%1.1f%%', startangle=140, pctdistance=0.5) plt.pie(new_series, labels=new_series.index, autopct='%1.1f%%', startangle=140, pctdistance=0.5)
plt.axis('equal') plt.axis('equal')
plt.title(f'Répartition des montants totaux pour la compagnie {company}') # plt.title(f'Répartition des montants totaux pour la compagnie {company}')
plt.show() plt.show()
return outlier_list return outlier_list
def valid_customer_detection(products, campaigns_brut): def valid_customer_detection(products : pd.DataFrame, campaigns_brut : pd.DataFrame):
"""
identify customer that are in our time perimeter
"""
products_valid = products[products['purchase_date']>="2021-05-01"] products_valid = products[products['purchase_date']>="2021-05-01"]
consumer_valid_product = products_valid['customer_id'].to_list() consumer_valid_product = products_valid['customer_id'].to_list()
@ -137,7 +135,10 @@ def valid_customer_detection(products, campaigns_brut):
return consumer_valid return consumer_valid
def identify_purchase_during_target_periode(products): def identify_purchase_during_target_periode(products : pd.DataFrame):
"""
identify customer who purchased ticket during the target period
"""
products_target_period = products[(products['purchase_date']>="2022-11-01") products_target_period = products[(products['purchase_date']>="2022-11-01")
& (products['purchase_date']<="2023-11-01")] & (products['purchase_date']<="2023-11-01")]
customer_target_period = products_target_period['customer_id'].to_list() customer_target_period = products_target_period['customer_id'].to_list()
@ -148,60 +149,60 @@ def remove_elements(lst, elements_to_remove):
return ''.join([x for x in lst if x not in elements_to_remove]) return ''.join([x for x in lst if x not in elements_to_remove])
def compute_nb_clients(customer, type_of_activity): def compute_nb_clients(customer: pd.DataFrame, type_of_activity: str):
company_nb_clients = customer[customer["purchase_count"]>0].groupby("number_company")["customer_id"].count().reset_index() company_nb_clients = customer[customer["purchase_count"]>0].groupby("number_company")["customer_id"].count().reset_index()
plt.figure(figsize=(4,3))
plt.bar(company_nb_clients["number_company"], company_nb_clients["customer_id"]/1000) plt.bar(company_nb_clients["number_company"], company_nb_clients["customer_id"]/1000)
plt.xlabel('Company Number')
plt.xlabel('Company')
plt.ylabel("Number of clients (thousands)") plt.ylabel("Number of clients (thousands)")
plt.title(f"Number of clients Across {type_of_activity} Companies") # plt.title(f"Number of clients Across {type_of_activity} Companies")
plt.xticks(company_nb_clients["number_company"], ["{}".format(i) for i in company_nb_clients["number_company"]]) plt.xticks(company_nb_clients["number_company"], ["{}".format(i) for i in company_nb_clients["number_company"]])
plt.show() plt.show()
save_file_s3("nb_clients_", type_of_activity) save_file_s3("nb_clients_", type_of_activity)
def maximum_price_paid(customer, type_of_activity): def maximum_price_paid(customer: pd.DataFrame, type_of_activity: str):
company_max_price = customer.groupby("number_company")["max_price"].max().reset_index() company_max_price = customer.groupby("number_company")["max_price"].max().reset_index()
plt.bar(company_max_price["number_company"], company_max_price["max_price"]) plt.bar(company_max_price["number_company"], company_max_price["max_price"])
plt.xlabel('Company Number') plt.xlabel('Company Number')
plt.ylabel("Maximal price of a ticket Prix") plt.ylabel("Maximal price of a ticket Prix")
plt.title(f"Maximal price of a ticket Across {type_of_activity} Companies") # plt.title(f"Maximal price of a ticket Across {type_of_activity} Companies")
plt.xticks(company_max_price["number_company"], ["{}".format(i) for i in company_max_price["number_company"]]) plt.xticks(company_max_price["number_company"], ["{}".format(i) for i in company_max_price["number_company"]])
plt.show() plt.show()
save_file_s3("Maximal_price_", type_of_activity) save_file_s3("Maximal_price_", type_of_activity)
def target_proportion(customer, type_of_activity): def target_proportion(customer: pd.DataFrame, type_of_activity: str):
df_y = customer.groupby(["number_company"]).agg({"has_purchased_target_period" : 'sum', df_y = customer.groupby(["number_company"]).agg({"has_purchased_target_period" : 'sum',
'customer_id' : 'nunique'}).reset_index() 'customer_id' : 'nunique'}).reset_index()
df_y['prop_has_purchased_target_period'] = (df_y["has_purchased_target_period"]/df_y['customer_id'])*100 df_y['prop_has_purchased_target_period'] = (df_y["has_purchased_target_period"]/df_y['customer_id'])*100
plt.bar(df_y["number_company"], df_y["prop_has_purchased_target_period"]) plt.bar(df_y["number_company"], df_y["prop_has_purchased_target_period"])
plt.xlabel('Company Number') plt.xlabel('Company Number')
plt.ylabel('Share (%)') plt.ylabel('Share (%)')
plt.title(f'Share of Customers who Bought during the Target Period Across {type_of_activity} Companies') # plt.title(f'Share of Customers who Bought during the Target Period Across {type_of_activity} Companies')
plt.xticks(df_y["number_company"], ["{}".format(i) for i in df_y["number_company"]]) plt.xticks(df_y["number_company"], ["{}".format(i) for i in df_y["number_company"]])
plt.show() plt.show()
save_file_s3("share_target_", type_of_activity) save_file_s3("share_target_", type_of_activity)
def mailing_consent(customer, type_of_activity): def mailing_consent(customer: pd.DataFrame, type_of_activity: str):
mailing_consent = customer.groupby("number_company")["opt_in"].mean().reset_index() mailing_consent = customer.groupby("number_company")["opt_in"].mean().reset_index()
mailing_consent["opt_in"] *= 100 mailing_consent["opt_in"] *= 100
plt.bar(mailing_consent["number_company"], mailing_consent["opt_in"]) plt.bar(mailing_consent["number_company"], mailing_consent["opt_in"])
plt.xlabel('Company Number') plt.xlabel('Company Number')
plt.ylabel('Mailing Consent (%)') plt.ylabel('Mailing Consent (%)')
plt.title(f'Consent of mailing Across {type_of_activity} Companies') # plt.title(f'Consent of mailing Across {type_of_activity} Companies')
plt.xticks(mailing_consent["number_company"], ["{}".format(i) for i in mailing_consent["number_company"]]) plt.xticks(mailing_consent["number_company"], ["{}".format(i) for i in mailing_consent["number_company"]])
plt.show() plt.show()
save_file_s3("mailing_consent_", type_of_activity) save_file_s3("mailing_consent_", type_of_activity)
def mailing_consent_by_target(customer): def mailing_consent_by_target(customer: pd.DataFrame, type_of_activity: str):
df_graph = customer.groupby(["number_company", "has_purchased_target_period"])["opt_in"].mean().reset_index() df_graph = customer.groupby(["number_company", "has_purchased_target_period"])["opt_in"].mean().reset_index()
# Création du barplot groupé # Création du barplot groupé
fig, ax = plt.subplots(figsize=(10, 6)) fig, ax = plt.subplots(figsize=(5, 3))
categories = df_graph["number_company"].unique() categories = df_graph["number_company"].unique()
bar_width = 0.35 bar_width = 0.35
@ -221,7 +222,7 @@ def mailing_consent_by_target(customer):
# Ajout des étiquettes, de la légende, etc. # Ajout des étiquettes, de la légende, etc.
ax.set_xlabel('Company Number') ax.set_xlabel('Company Number')
ax.set_ylabel('Mailing Consent (%)') ax.set_ylabel('Mailing Consent (%)')
ax.set_title(f'Consent of mailing according to target Across {type_of_activity} Companies') # ax.set_title(f'Consent of mailing according to target Across {type_of_activity} Companies')
ax.set_xticks([pos + bar_width / 2 for pos in np.arange(len(categories))]) ax.set_xticks([pos + bar_width / 2 for pos in np.arange(len(categories))])
ax.set_xticklabels(categories) ax.set_xticklabels(categories)
ax.legend() ax.legend()
@ -231,7 +232,7 @@ def mailing_consent_by_target(customer):
save_file_s3("mailing_consent_target_", type_of_activity) save_file_s3("mailing_consent_target_", type_of_activity)
def gender_bar(customer, type_of_activity): def gender_bar(customer: pd.DataFrame, type_of_activity: str):
company_genders = customer.groupby("number_company")[["gender_male", "gender_female", "gender_other"]].mean().reset_index() company_genders = customer.groupby("number_company")[["gender_male", "gender_female", "gender_other"]].mean().reset_index()
company_genders["gender_male"] *= 100 company_genders["gender_male"] *= 100
@ -239,6 +240,7 @@ def gender_bar(customer, type_of_activity):
company_genders["gender_other"] *= 100 company_genders["gender_other"] *= 100
# Création du barplot # Création du barplot
plt.figure(figsize=(4,3))
plt.bar(company_genders["number_company"], company_genders["gender_male"], label = "Male") plt.bar(company_genders["number_company"], company_genders["gender_male"], label = "Male")
plt.bar(company_genders["number_company"], company_genders["gender_female"], plt.bar(company_genders["number_company"], company_genders["gender_female"],
bottom = company_genders["gender_male"], label = "Female") bottom = company_genders["gender_male"], label = "Female")
@ -247,42 +249,65 @@ def gender_bar(customer, type_of_activity):
plt.xlabel('Company Number') plt.xlabel('Company Number')
plt.ylabel("Frequency (%)") plt.ylabel("Frequency (%)")
plt.title(f"Gender Distribution of Customers Across {type_of_activity} Companies") # plt.title(f"Gender Distribution of Customers Across {type_of_activity} Companies")
plt.legend() plt.legend()
plt.xticks(company_genders["number_company"], ["{}".format(i) for i in company_genders["number_company"]]) plt.xticks(company_genders["number_company"], ["{}".format(i) for i in company_genders["number_company"]])
plt.show() plt.show()
save_file_s3("gender_bar_", type_of_activity) save_file_s3("gender_bar_", type_of_activity)
def country_bar(customer, type_of_activity): def country_bar(customer: pd.DataFrame, type_of_activity: str):
company_country_fr = customer.groupby("number_company")["country_fr"].mean().reset_index() company_country_fr = customer.groupby("number_company")["country_fr"].mean().reset_index()
company_country_fr["country_fr"] *= 100 company_country_fr["country_fr"] *= 100
plt.figure(figsize=(4,3))
plt.bar(company_country_fr["number_company"], company_country_fr["country_fr"]) plt.bar(company_country_fr["number_company"], company_country_fr["country_fr"])
plt.xlabel('Company Number') plt.xlabel('Company Number')
plt.ylabel("Share of French Customer (%)") plt.ylabel("Share of French Customer (%)")
plt.title(f"Share of French Customer Across {type_of_activity} Companies") # plt.title(f"Share of French Customer Across {type_of_activity} Companies")
plt.xticks(company_country_fr["number_company"], ["{}".format(i) for i in company_country_fr["number_company"]]) plt.xticks(company_country_fr["number_company"], ["{}".format(i) for i in company_country_fr["number_company"]])
plt.show() plt.show()
save_file_s3("country_bar_", type_of_activity) save_file_s3("country_bar_", type_of_activity)
def lazy_customer_plot(campaigns_kpi, type_of_activity): def lazy_customer_plot(campaigns_kpi: pd.DataFrame, type_of_activity: str):
company_lazy_customers = campaigns_kpi.groupby("number_company")["nb_campaigns_opened"].mean().reset_index() company_lazy_customers = campaigns_kpi.groupby("number_company")[["nb_campaigns", "taux_ouverture_mail"]].mean().reset_index()
plt.bar(company_lazy_customers["number_company"], company_lazy_customers["nb_campaigns_opened"]) company_lazy_customers["taux_ouverture_mail"] *= 100
# Initialize the figure
fig, ax1 = plt.subplots(figsize=(6, 3))
width = 0.4
x = range(len(company_lazy_customers))
# Plot the bars for "nb_campaigns" on the first y-axis
ax1.bar([i - width/2 for i in x], company_lazy_customers['nb_campaigns'], width=width, align='center', label='Amount of Campaigns', color = 'steelblue')
# Set labels and title for the first y-axis
ax1.set_ylabel('Number of Mails Received', color='steelblue')
ax1.tick_params(axis='y', labelcolor='steelblue')
# Create another y-axis for "taux_ouverture_mail"
ax2 = ax1.twinx()
# Plot the bars for "taux_ouverture_mail" on the second y-axis
ax2.bar([i + width/2 for i in x], company_lazy_customers['taux_ouverture_mail'], width=width, align='center', label='Open Mail Rate', color = 'darkorange')
# Set labels and title for the second y-axis
ax2.set_ylabel('Open Mail Rate (%)', color='darkorange')
ax2.tick_params(axis='y', labelcolor='darkorange')
# Set x-axis ticks and labels
ax1.set_xticks(x)
ax1.set_xticklabels(company_lazy_customers['number_company'])
plt.xlabel('Company Number')
plt.title(f"Share of Customers who did not Open Mail Across {type_of_activity} Companies")
plt.xticks(company_lazy_customers["number_company"], ["{}".format(i) for i in company_lazy_customers["number_company"]])
plt.show() plt.show()
save_file_s3("lazy_customer_", type_of_activity) save_file_s3("lazy_customer_", type_of_activity)
def campaigns_effectiveness(customer, type_of_activity): def campaigns_effectiveness(customer: pd.DataFrame, type_of_activity: str):
campaigns_effectiveness = customer.groupby(["number_company", "has_purchased_target_period"])["opt_in"].mean().reset_index() campaigns_effectiveness = customer.groupby(["number_company", "has_purchased_target_period"])["opt_in"].mean().reset_index()
fig, ax = plt.subplots(figsize=(10, 6)) fig, ax = plt.subplots(figsize=(5, 3))
categories = campaigns_effectiveness["number_company"].unique() categories = campaigns_effectiveness["number_company"].unique()
bar_width = 0.35 bar_width = 0.35
@ -302,7 +327,7 @@ def campaigns_effectiveness(customer, type_of_activity):
# Ajout des étiquettes, de la légende, etc. # Ajout des étiquettes, de la légende, etc.
ax.set_xlabel('Company Number') ax.set_xlabel('Company Number')
ax.set_ylabel('Share of Consent (%)') ax.set_ylabel('Share of Consent (%)')
ax.set_title(f"Proportion of customers who have given their consent to receive emails, by customer class ({type_of_activity} companies)") # ax.set_title(f"Proportion of customers who have given their consent to receive emails, by customer class ({type_of_activity} companies)")
ax.set_xticks([pos + bar_width / 2 for pos in np.arange(len(categories))]) ax.set_xticks([pos + bar_width / 2 for pos in np.arange(len(categories))])
ax.set_xticklabels(categories) ax.set_xticklabels(categories)
ax.legend() ax.legend()
@ -310,7 +335,7 @@ def campaigns_effectiveness(customer, type_of_activity):
save_file_s3("campaigns_effectiveness_", type_of_activity) save_file_s3("campaigns_effectiveness_", type_of_activity)
def sale_dynamics(products, campaigns_brut, type_of_activity): def sale_dynamics(products : pd.DataFrame, campaigns_brut : pd.DataFrame, type_of_activity):
purchase_min = products.groupby(['customer_id'])['purchase_date'].min().reset_index() purchase_min = products.groupby(['customer_id'])['purchase_date'].min().reset_index()
purchase_min.rename(columns = {'purchase_date' : 'first_purchase_event'}, inplace = True) purchase_min.rename(columns = {'purchase_date' : 'first_purchase_event'}, inplace = True)
purchase_min['first_purchase_event'] = pd.to_datetime(purchase_min['first_purchase_event']) purchase_min['first_purchase_event'] = pd.to_datetime(purchase_min['first_purchase_event'])
@ -352,6 +377,7 @@ def sale_dynamics(products, campaigns_brut, type_of_activity):
merged_data = pd.merge(purchases_graph_used_0, purchases_graph_used_1, on="purchase_date_month", suffixes=("_new", "_old")) merged_data = pd.merge(purchases_graph_used_0, purchases_graph_used_1, on="purchase_date_month", suffixes=("_new", "_old"))
plt.figure(figsize=(5.5,4))
plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_new"], width=12, label="New Customers") plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_new"], width=12, label="New Customers")
plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_old"], plt.bar(merged_data["purchase_date_month"], merged_data["nb_purchases_old"],
@ -363,26 +389,26 @@ def sale_dynamics(products, campaigns_brut, type_of_activity):
plt.xlabel('Month') plt.xlabel('Month')
plt.ylabel("Number of Sales") plt.ylabel("Number of Sales")
plt.title(f"Number of Sales Across {type_of_activity} Companies") # plt.title(f"Number of Sales Across {type_of_activity} Companies")
plt.legend() plt.legend()
plt.show() plt.show()
save_file_s3("sale_dynamics_", type_of_activity) save_file_s3("sale_dynamics_", type_of_activity)
def tickets_internet(tickets, type_of_activity): def tickets_internet(tickets: pd.DataFrame, type_of_activity: str):
nb_tickets_internet = tickets.groupby("number_company")['prop_purchases_internet'].mean().reset_index() nb_tickets_internet = tickets.groupby("number_company")['prop_purchases_internet'].mean().reset_index()
nb_tickets_internet['prop_purchases_internet'] *=100 nb_tickets_internet['prop_purchases_internet'] *=100
plt.bar(nb_tickets_internet["number_company"], nb_tickets_internet["prop_purchases_internet"]) plt.bar(nb_tickets_internet["number_company"], nb_tickets_internet["prop_purchases_internet"])
plt.xlabel('Company Number') plt.xlabel('Company Number')
plt.ylabel("Share of Purchases Bought Online (%)") plt.ylabel("Share of Purchases Bought Online (%)")
plt.title(f"Share of Online Purchases Across {type_of_activity} Companies") # plt.title(f"Share of Online Purchases Across {type_of_activity} Companies")
plt.xticks(nb_tickets_internet["number_company"], ["{}".format(i) for i in nb_tickets_internet["number_company"]]) plt.xticks(nb_tickets_internet["number_company"], ["{}".format(i) for i in nb_tickets_internet["number_company"]])
plt.show() plt.show()
save_file_s3("tickets_internet_", type_of_activity) save_file_s3("tickets_internet_", type_of_activity)
def already_bought_online(tickets, type_of_activity): def already_bought_online(tickets: pd.DataFrame, type_of_activity: str):
nb_consumers_online = (tickets.groupby("number_company").agg({'achat_internet' : 'sum', nb_consumers_online = (tickets.groupby("number_company").agg({'achat_internet' : 'sum',
'customer_id' : 'nunique'} 'customer_id' : 'nunique'}
).reset_index()) ).reset_index())
@ -392,20 +418,23 @@ def already_bought_online(tickets, type_of_activity):
plt.xlabel('Company Number') plt.xlabel('Company Number')
plt.ylabel("Share of Customer who Bought Online at least once (%)") plt.ylabel("Share of Customer who Bought Online at least once (%)")
plt.title(f"Share of Customer who Bought Online at least once Across {type_of_activity} Companies") # plt.title(f"Share of Customer who Bought Online at least once Across {type_of_activity} Companies")
plt.xticks(nb_consumers_online["number_company"], ["{}".format(i) for i in nb_consumers_online["number_company"]]) plt.xticks(nb_consumers_online["number_company"], ["{}".format(i) for i in nb_consumers_online["number_company"]])
plt.show() plt.show()
save_file_s3("First_buy_internet_", type_of_activity) save_file_s3("First_buy_internet_", type_of_activity)
def box_plot_price_tickets(tickets, type_of_activity): def box_plot_price_tickets(tickets: pd.DataFrame, type_of_activity: str):
price_tickets = tickets[(tickets['total_amount'] > 0)] price_tickets = tickets[(tickets['total_amount'] > 0)]
plt.figure(figsize=(4,3))
sns.boxplot(data=price_tickets, y="total_amount", x="number_company", showfliers=False, showmeans=True) sns.boxplot(data=price_tickets, y="total_amount", x="number_company", showfliers=False, showmeans=True)
plt.title(f"Box plot of price tickets Across {type_of_activity} Companies") # plt.title(f"Box plot of price tickets Across {type_of_activity} Companies")
plt.xlabel('Company Number')
plt.ylabel("Total Amount Spent")
plt.show() plt.show()
save_file_s3("box_plot_price_tickets_", type_of_activity) save_file_s3("box_plot_price_tickets_", type_of_activity)
def target_description(targets, type_of_activity): def target_description(targets : pd.DataFrame, type_of_activity: str):
describe_target = targets.groupby('number_company').agg( describe_target = targets.groupby('number_company').agg(
prop_target_jeune=('target_jeune', lambda x: (x.sum() / x.count())*100), prop_target_jeune=('target_jeune', lambda x: (x.sum() / x.count())*100),
@ -420,7 +449,7 @@ def target_description(targets, type_of_activity):
plot = describe_target.plot.bar() plot = describe_target.plot.bar()
# Adding a title # Adding a title
plot.set_title(f"Distribution of Targets by Category for {type_of_activity} companies") # plot.set_title(f"Distribution of Targets by Category for {type_of_activity} companies")
# Adding labels for x and y axes # Adding labels for x and y axes
plot.set_xlabel("Company Number") plot.set_xlabel("Company Number")